首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reflex control of heart rate is frequently impaired following myocardial infarction. This is referred to as depressed baroreflex sensitivity. The aim of these experiments was to assess the function of other autonomic reflexes in dogs with depressed baroreflex sensitivity. Comparisons were made to dogs in whom baroreflex sensitivity was preserved or unchanged after myocardial infarction. Under chloralose-barbiturate anesthesia, reflex control of sympathetic outflow by the sinoaortic baroreceptors was determined by measurement of changes in systolic arterial pressure and efferent renal sympathetic nerve activity during infusion of phenylephrine. Following sinoaortic denervation, reflex control of sympathetic outflow by cardiac receptors with vagal afferent fibers was determined by measurement of changes in pulmonary capillary wedge pressure and renal nerve activity during blood volume expansion. Reflex decreases in renal nerve activity in response to increases in arterial pressure were similar in the two groups of dogs. In contrast, elevation of pulmonary capillary wedge pressure elicited significantly greater reflex decreases in renal nerve activity in dogs with depressed baroreflex sensitivity following myocardial infarction compared to dogs with preserved baroreflex sensitivity. Hemodynamic parameters and infarct sizes were similar in each group. In conclusion, activation of cardiac receptors with vagal afferent fibers elicited greater reflex inhibition of sympathetic outflow in dogs with depressed baroreflex sensitivity following myocardial infarction. These data suggest that these receptors are "sensitized". These results provide additional support for the hypothesis that depressed reflex control of heart rate following myocardial infarction is related to augmented afferent input from the left ventricle.  相似文献   

2.
The aortic nerve-sympathetic reflex in the rat   总被引:1,自引:0,他引:1  
The effects of stimulation of aortic nerve A- and C-fibers on the renal and cardiac sympathetic nerve activities in anesthetized and immobilized Sprague-Dawley rats were investigated. A separate aortic nerve was found in 46 rats (90%) out of 51. Activation of A- and C-fiber groups, alone or in combination, resulted in an inhibition of renal and cardiac nerve activities. However, an excitatory component preceding the inhibitory component, representing the reflex response to stimulation of non-barosensory afferent fibers contained in the carotid sinus or aortic nerve, was never observed. This result provides electrophysiological evidence supporting the view that the rat's aortic nerve does not contain a significant amount of functionally active non-barosensory afferents. As with the aortic nerve reflex in the rabbit and cat, the sympatho-inhibitory action of C-fibers was more powerful and longer-lasting than that of A-fibers. Furthermore, the C-fiber reflex was elicited at stimulus frequencies as low as 2 Hz. No significant difference was found between the reflex response of cardiac and renal nerves. On the other hand, stimulation of the superior laryngeal nerve, which constitutes an important pathway carrying arterial baroreceptor fibers, caused a reflex sympathetic response typically consisting of excitatory and inhibitory components. Thus, the rat's aortic nerve provides a useful experimental means to activate selectively central neural structures associated with barosensory afferents and to elicit the reflex response homologous to that in the arterial baroreceptor reflex in rabbits and cats.  相似文献   

3.
In urethane-anesthetized rabbits, stimulation of the sural nerve, consisting of cutaneous afferents (A-fibers), evoked reflex responses consisting of an early small excitatory component followed by a prolonged inhibitory component in renal sympathetic nerve activity. Bilateral injections of GABA antagonist, bicuculline (4 nmol/site), into the rostral ventrolateral medulla (RVLM), where sympatho-excitatory reticulospinal neurons are located, attenuated the inhibitory component in a dose-dependent manner as well as the inhibition evoked by stimulation of the aortic nerve A-fibers (baroreceptor afferents). Bilateral injections of a neurotoxic agent, kainic acid (4 nmol/site, 3 sites/side), into the caudal ventrolateral medulla (CVLM), where sympatho-inhibitory neurons with axonal projection to the RVLM are located, diminished these sympatho-inhibitory responses. Therefore it is concluded that the sympatho-inhibition evoked by activation of somatic afferents was mediated by neurons in the CVLM and by GABA receptors in the RVLM, as was the sympatho-inhibition associated with the arterial baroreceptor reflex. Bilateral injections of kynurenic acid (4 nmol/site, 3 sites/side) into the CVLM did not affect the somato-sympathetic reflex response, but diminished the sympatho-inhibition produced by activation of the baroreceptor afferents. Sympatho-inhibitory neurons in the CVLM were activated by glutamate when baroreceptor afferents were activated, but another excitatory transmitter may participate in the somato-sympathetic reflex in the CVLM.  相似文献   

4.
Electrical stimulation of the phrenic nerve afferents evoked excitatory responses in the right inferior cardiac sympathetic nerve in chloralose-anaesthetized cats. The reflex was recorded in intact and spinal cats. The latency and threshold of the volley recorded from the phrenic nerve as well as of the cord dorsum potentials evoked by electrical stimulation of the phrenic nerve indicated that group III afferents were responsible for this reflex. The phrenicocardiac sympathetic reflex recorded in intact cats was followed by a silent period. The maximum amplitude of the reflex discharges was 800 microV, the latency was 83 ms and the central transmission time 53 ms. Duration of the silent period lasted up to 0.83 s. In spinal cats the reflex was recorded 5.5-8 h after spinalization. The maximum amplitude of the spinal reflex discharges ranged from 22 to 91 microV and the latency from 36 to 66 ms.  相似文献   

5.
Neurons in the rostral ventrolateral medulla (RVLM neurons) receive inputs from various sources, including baroreceptors, and then regulate activity of sympathetic preganglionic neurons. Though RVLM neurons are assumed to mediate the viscero-sympathetic reflex, it has not been clarified yet. Here we give a brief overview of the participation of RVLM neurons in the viscero-sympathetic reflex. We conclude that RVLM neurons show excitatory and inhibitory responses to stimulation of sympathetic afferents and mediate multi-phase reflex responses of the sympathetic nerve.  相似文献   

6.
The patterns of impulse activity of medullar neurons were investigated in nembutal-anaesthetized cats during the expiration reflex elicited by electrical stimulation of the internal branch of superior laryngeal nerve. It was shown that low- and high-threshold superior laryngeal afferents caused excitatory reflex reactions of different complexity in significant number of reticular nonrespiratory neurons. Respiratory neurons exhibited systemic changes of spontaneous activity, but in 22.4 per cent of them reflex responses were recorded. These responses occurred during activation of low-threshold laryngeal afferents. Oligo- and polysynaptic excitatory connections of low-threshold laryngeal afferents are found with inspiratory beta neurons, P-cells and laryngeal motoneurons, but inhibitory ones-with inspiratory gamma neurons. Participation of investigated neurons in the mechanisms of inhibition of inspiration, vocal cords closure and rate of breathing adaptive decrease during expiration reflex is discussed.  相似文献   

7.
Phrenic afferents are capable of attenuating the phrenic motor response elicited by the intercostal-to-phrenic excitatory reflex in decerebrate, paralyzed cats. High spinal transection eliminates the attenuating effect of the bilateral phrenic-to-phrenic inhibitory reflex. These results indicate that although phrenic nerve afferents do exert an inhibitory influence in the cervical spinal cord, some of the inhibitory effects are likely to involve supraspinal mechanisms.  相似文献   

8.
The study was undertaken in order to assess the changes in sympathetic output in a split medulla preparation of the cat which, as shown earlier, has impaired respiratory rhythm generation. The effects of medullary midsagittal sections on renal sympathetic nerve firing were investigated in chloralose anesthetized, paralyzed and artificially ventilated cats. Recordings of phrenic and recurrent laryngeal nerve activity served as indices of central respiratory rhythm generation. Sections, 5 mm deep from the dorsal medullary surface and extending 6 mm rostrally and 3 mm caudally to the obex, did not produce any significant changes in heart rate, blood pressure or tonic renal sympathetic nerve firing levels. They decreased or abolished, however, the respiratory rhythmicity in renal sympathetic nerve which paralleled the reduction of inspiratory discharges in phrenic and recurrent laryngeal nerves, and abolished the carotid body chemoreceptor-sympathetic reflex. The inspiratory activity remaining after the sections could still be enhanced by chemoreceptor stimulation. The inhibitory baroreceptor and pulmonary stretch receptor sympathetic reflexes, and the central excitatory effect of CO2 on renal sympathetic nerve firing were not altered. The effects of electrical stimulation within the midsagittal plane of the medulla have shown that descending pathways from the medullary inspiratory neurons (or their medullary collaterals) do not participate in the facilitation of spinal preganglionic neurons during inspiration and in relaying the pulmonary stretch receptor inhibitory sympathetic reflex. A region located close to the obex was identified from which excitatory responses in renal sympathetic nerves, compatible with the response obtained by carotid sinus nerve stimulation, could be evoked. It is concluded that a lesion in the midline of the lower medulla at the level of the obex selectively destroys cells or pathways which relay the carotid body chemoreceptor-sympathetic reflex.  相似文献   

9.
The effects of electro-acupuncture stimulation (EAS) of two different areas of a hindlimb with different stimulus intensities on sympathoadrenal medullary functions were examined in anesthetized artificially ventilated rats. Two needles of 160 microm diameter and about 5 mm apart were inserted about 5 mm deep into a hindpaw (Chungyang, S42) or a hind leg (Tsusanli, S36) and current of various intensities passed to excite various afferent nerve fiber groups at a repetition rate of 20 Hz and pulse duration of 0.5 ms for 30-60 s. Fiber groups of afferent nerves stimulated in a hindlimb were monitored by recording evoked action potentials from the afferents innervating the areas stimulated. The sympathoadrenal medullary functions were monitored by recording adrenal sympathetic efferent nerve activity and secretion rates of catecholamines from the adrenal medulla. EAS of a hindpaw at a stimulus strength sufficient to excite the group III and IV somatic afferent fibers produced reflex increases in both adrenal sympathetic efferent nerve activity and the secretion rate of catecholamines. EAS of a hind leg at a stimulus strength sufficient to excite the group III and IV afferent fibers produced reflex responses of either increases or decreases in sympathoadrenal medullary functions. All responses of adrenal sympathetic efferent nerve activity were lost after cutting the afferent nerves ipsilateral to the stimulated areas, indicating that the responses are the reflexes whose afferents nerve pathway is composed of hindlimb somatic nerves. It is concluded that electro-acupuncture stimulation of a hindpaw causes an excitatory reflex, while that of a hind leg causes either excitatory or inhibitory reflex of sympathoadrenal medullary functions, even if both group III and IV somatic afferent fibers are stimulated.  相似文献   

10.
This study was designed to evaluate the contribution of the systemic baroreceptor reflex on renal nerve activity (RNA) and renal vascular resistance (RVR) during occlusion of the superior mesenteric artery (SMAO) in anesthetized dogs. Animals were divided into two groups; RVR evaluated group and RNA measured group. For evaluation of changes in RVR, the left kidney was perfused at a constant flow with heparinized blood by using a pulsatile roller pump. Renal perfusion pressure, arterial blood pressure and heart rate were measured simultaneously. During SMAO, MAP and RVR increased significantly in animals with intact systemic baroreceptors. After combined denervation of the carotid sinus and vagal nerves, a significant enhancement of this RVR response during SMAO occurred and the level of changes in RVR were significantly greater than those in animals with an intact neuraxis. In the RNA measured group, renal sympathetic nerve activity, arterial blood pressure and heart rate were measured simultaneously before and during SMAO. During SMAO, MAP and RNA increased significantly in animals with intact systemic baroreceptors. These MAP and RNA responses to SMAO were significantly enhanced in animals with combined denervation of the carotid sinus and vagal nerves. These results indicate that SMAO evokes an increase in arterial blood pressure, renal sympathetic nerve activity and renal vascular resistance. The reflex increase in renal nerve activity and renal vascular tone during SMAO is modified and minimized by an activation of systemic baroreceptors.  相似文献   

11.
Reflex responses of the lower oesophageal sphincter (l.o.s.) to distension of the stomach were studied by electromyographic and manometric techniques. Distension of the fundus and gastric antrum by inflation of a balloon elicited two types of reflex response of the l.o.s. Thus, whereas excitatory responses were recorded following slight distensions, larger distensions resulted in inhibitory responses. Splanchnic fibres and sympathetic fibres originating from the stellate ganglion, as well as vagal fibres served as the efferent pathways for the excitatory reflex response. The efferent pathways for the inhibitory response involved only vagal fibres.  相似文献   

12.
Sympathetic activation and the kidney play critical roles in hypertension and chronic heart failure.The role of the kidney in sympathetic activation is still not well known.In this study,we revealed an excitatory renal reflex(ERR)in rats induced by chemical stimulation of the kidney that regulated sympathetic activity and blood pressure.The ERR was induced by renal infusion of capsaicin,and evaluated by the changes in renal sympathetic outflow,blood pressure,and heart rate.Renal infusion of capsaicin dose-dependently increased the contralateral renal sympathetic nerve activity,mean arterial pressure,and heart rate.Capsaicin in the corticomedullary border had greater effects than in the cortex or medulla.Intravenous infusion of capsaicin had no significant effects.The effects of renal infusion of capsaicin were abolished by ipsilateral renal denervation,but were not affected by bilateral sinoaortic denervation.Renal infusion of capsaicin increased the ipsilateral renal afferent activity.The ERR was also induced by renal infusion of bradykinin,adenosine,and angiotensin II,but not by ATP.Renal infusion of capsaicin increased c-Fos expression in the paraventricular nucleus(PVN)of hypothalamus.Lesion of neurons in the PVN with kainic acid abolished the capsaicin-induced ERR.These findings indicate that chemical stimulation of kidney causes an excitatory reflex,leading to sympathetic activation,pressor response,and accelerated heart rate.The PVN is an important central nucleus in the pathway of the ERR.  相似文献   

13.
Electrical stimulation of the aortic nerve of anesthetized rabbits reflexly evoked both excitation and inhibition of renal nerve activity. The excitatory component of the reflex, observed in about 75% of the animals, was elicited by activation of aortic C-fibers. It was selectively suppressed by chronic treatment of the animal with capsaicin. Intracisternal injection of either [D-ala2]-met-enkephalinamide or beta-endorphin markedly attenuated this excitatory component, although neither affected the excitatory component mediated by chemoreceptor fibers in response to stimulation of the carotid sinus nerve. It seems most likely that nociceptive C-fibers of the rabbit's aortic nerve were responsible for the excitatory component. On the other hand, the inhibitory component was reflexly elicited by stimulation of the aortic A- or C-fiber group activated separately or in combination. In agreement with previous reports, the sympatho-inhibitory action of C-fibers was more powerful and longer-lasting than that of A-fibers. We found that the inhibitory component induced by C-fibers was markedly attenuated by the two opioid peptides mentioned above, but was resistant to pentobarbital. On the contrary, the component mediated by A-fibers was suppressed by pentobarbital but was relatively resistant to the opioid peptides. Thus, the rabbit's aortic nerve-renal sympathetic reflex consists of the following 3 subsystems characterized by different physiological and pharmacological properties: sympatho-inhibitory systems activated by barosensory A- or C-fibers and a sympatho-excitatory system attributable to C-fibers probably of nociceptive modality.  相似文献   

14.
Stimulation of cardiac sympathetic afferents evokes excitatory cardiovascular reflexes. However, the exact regions in the brain that integrate these reflexes have not been identified. Expression of c-Fos in the neurons provides a useful marker of the activated neurons. In the present study, we examined the response of c-Fos within the medulla of the cat to chemical stimulation of cardiac sympathetic afferents. After bilateral sinoaortic denervation and cervical vagotomy, we applied bradykinin (BK, 1-10 microg, n=7) six times to the anterior ventricular surface every 20 min. We observed consistent increases in blood pressure and heart rate while the vehicle for BK (0.9% saline, n=6) produced no responses. Ninety minutes after the end of the sixth treatment, transcardial perfusion was performed with 4% paraformaldehyde and the brainstem was harvested for immunohistochemical staining. Compared to the control animals, we noted Fos immunoreactive neurons in the nucleus of the solitary tract, lateral tegmental field, caudal and rostral ventrolateral medulla (VLM), and vestibular nucleus in the BK-treated cats (all P<0.05). Fos immunoreactivity was found in catecholaminergic neurons of the VLM. These findings indicate that the activated neurons in the medulla, especially in the VLM, are involved in integration of cardiac-cardiovascular sympathoexcitatory reflexes.  相似文献   

15.
In anesthetized cats with intact neuraxis, vasoconstrictor neurons supplying skeletal muscle (MVC) and hairy and hairless skin (CVC), and sudomotor neurons innervating sweat glands (SM), exhibit distinct reflex patterns. MVC and SM are largely under excitatory, CVC under inhibitory control of various afferent input systems from the body surface and from the viscera. In chronic spinal animals all 3 types of sympathetic neurons exhibit some resting activity without cardiac and respiratory modulation. Sixty to 150 days after isolation of the neural circuits within the sympathetic systems within the spinal cord from their descending control systems by spinalization, these reflex patterns are very similar to those in animals with intact neuraxis. Important changes which do occur after spinalization are the following: CVC neurons are excited by stimulation of visceral afferents in spinal animals but inhibited in animals with intact neuraxis; noxious stimulation of skin leads to long-lasting after-effects in CVC and SM neurons in spinal animals. Comparison of reflexes among spinal animals and animals with intact neuraxis indicates that spinal circuits are probably important for the functioning of the sympathetic systems. It is possible that these circuits determine the typical reaction patterns seen in the sympathetic systems by integrating multisensory information from primary afferents and information from spinal descending fiber tracts.  相似文献   

16.
The age-related changes in the sensitivity of reflex responses of adrenal sympathetic nerve activity following stimulation of glucoreceptors and arterial chemoreceptors were investigated in young adult rats 4-5 months old and aged rats 24-26 months old. The sensitivity of the inhibitory reflex responses to stimulation of glucoreceptors and the sensitivity of excitatory reflex responses to systemic hypoxia with end-tidal O2 concentration at 8% and 6% were well maintained in the same ranges in aged rats as in young adult rats. The sensitivity of the excitatory reflex responses to mild systemic hypoxia with end-tidal O2 concentration at 10% increased slightly but significantly in aged rats compared with that in young adult rats.  相似文献   

17.
Sympathoexcitatory and sympathoinhibitory neurons in the rostral and caudal ventrolateral medulla (VLM) play a crucial role in the tonic and reflex control of sympathetic vasomotor activity. Recent evidence also indicates that the VLM contains a high density of P2x purinoceptors. In this study, we investigated the cardiovascular effects of selective activation of P2x purinoceptors in the rostral and caudal VLM, and the effects of blockade of P2x purinoceptors in the rostral VLM on the tonic and reflex control of sympathetic vasomotor activity. In anesthetized barodenervated rabbits, microinjection into the rostral and caudal VLM of the P2x purinoceptor agonist, alpha,beta-methylene adenosine triphosphate (alpha,beta-meATP) (4-400 pmol) elicited dose-dependent increases and decreases, respectively, in arterial pressure (AP), heart rate (HR) and renal sympathetic nerve activity (RSNA). The response evoked by alpha,beta-meATP in the rostral VLM was blocked by prior injection into the same site of the P2 purinoceptor antagonist suramin but not by the ionotropic glutamate receptor antagonist kynurenic acid. Bilateral injections of suramin into the rostral VLM sympathoexcitatory region had no significant effect on resting cardiovascular variables, nor on the reflex increase in RSNA evoked by sciatic nerve stimulation (which is known to be mediated by the rostral VLM sympathoexcitatory neurons). The results demonstrate that: (1) activation of P2x purinoceptors in the VLM are capable of producing marked excitation of both sympathoexcitatory and sympathoinhibitory neurons; (2) these effects are not due to modulation of glutamatergic inputs to these neurons; and (3) P2x purinoceptors do not play a significant role in maintaining the tonic activity of rostral VLM sympathoexcitatory neurons or in modulating their responses to excitatory synaptic inputs evoked by stimulation of sciatic nerve afferents.  相似文献   

18.
In chloralose-anaesthetized cats, sympathetic reflex responses were recorded in left cardiac and renal nerve during stimulation of afferent fibres in the ipsilateral phrenic nerve. In cardiac nerve, a late reflex potential with a mean onset latency of 75.6 +/- 13.8 ms was regularly recorded which, in 20% of the experiments, was preceded by an early, very small reflex component (latency between 35 and 52 ms). In contrast, in renal nerve only a single reflex component after a mean latency of 122.1 +/- 13.1 ms was observed. Bilateral microinjections of the GABA-agonist muscimol into the rostral ventrolateral medulla oblongata resulted in a nearly complete abolition of sympathetic background activity and in an 88% reduction of the late reflex amplitude with only small effects on the latency of the evoked potentials. Under this condition, an early reflex component was never observed to appear. After subsequent high cervical spinalization, the residual small potentials which persisted after bilateral muscimol injections were completely abolished and in cardiac nerve an early reflex potential with a mean latency of 45 +/- 10 ms was observed in all but one experiment. The early reflex was therefore referred to as a spinal reflex component which, however, is suppressed in most animals with an intact neuraxis. In the renal nerve a spinal response was only observed in one experiment after spinalization. The results suggest that sympathetic reflexes evoked by stimulation of phrenic nerve afferent fibres possess similar spinal and supraspinal pathways as previously described for somato-sympathetic and viscero-sympathetic reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In intact rats, an inhibitory mechanism counteracts the increase in excitability of a flexor reflex seen in spinal animals following high-intensity, repetitive stimulation of C-fibres. We tested the hypothesis that the rostral ventromedial medulla (RVM) is involved in these processes. Electromyographic responses elicited by electrical stimulation of the sural nerve, were recorded from the ipsilateral biceps femoris in halothane-anaesthetised, sham-operated or RVM-lesioned rats. There were no significant differences between the C-fibre reflexes in the two groups in terms of their thresholds, latencies, durations or mean recruitment curves. The excitability of the C-fibre reflex was tested following 20 s of high-intensity homotopic electrical conditioning stimuli at 1 Hz. During the conditioning period, the EMG responses first increased in both groups (the wind-up phenomenon), but then decreased in the sham-operated rats and plateaued in the RVM-lesioned rats. These effects were followed by inhibitions that were very much smaller in the RVM-lesioned rats, both in terms of their magnitudes and their durations. It is concluded that the RVM is involved in inhibitory feedback mechanisms elicited by temporal summation of C-fibre afferents that both counteract the wind-up phenomenon and trigger long periods of inhibition.  相似文献   

20.
Reflex changes in heart rate and arterial blood pressure can be elicited in pigeons with high cervical transection by stimulation of brachial or lumbosacral peripheral and spinal nerves. This extends the phenomenon of spinally mediated, somatosympathetic reflexes to another vertebrate class. In a preliminary attempt to explore the spinal circuitry mediating these reflexes, the responses of single sympathetic postganglionic neurons were studied during spinal and peripheral nerve stimulation. With stimulation and recording at the same spinal segment, calculation of the central delay suggests the segmental reflex circuitry may be relatively simple, possibly trisynaptic. As the distance between stimulating and recording sites increases, postganglionic neuronal responsiveness decreases and becomes more variable. However, there is clear evidence that lumbosacral afferents can activate postganglionic neurons at brachial levels, indicating an effective propriospinal circuitry for somatosympathetic reflexes. Experiments on birds with intact spinal cords demonstrate that these spino-spinal pathways are also functional in the intact animal. While the segmental reflex is not different in the intact bird, the propriospinal pathways do behave somewhat differently, possible suggesting tonic central control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号