首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP‐sensitive potassium channel to open L‐type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co‐secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.  相似文献   

2.
Glucagon‐like peptide‐1 (GLP‐1) is the primary incretin hormone secreted from the intestine upon uptake of food to stimulate insulin secretion from pancreatic β‐cells. GLP‐1 exerts its effects by binding to its G‐protein coupled receptors and subsequently activating adenylate cyclase, leading to generation of cyclic adenosine monophosphate (cAMP). cAMP stimulates insulin secretion via activation of its effectors PKA and Epac2 in pancreatic β‐cells. In addition to its insulinotropic effects, GLP‐1 also preserves pancreatic β‐cell mass by stimulating β‐cell proliferation. Unlike the action of sulphonylureas in lowering blood glucose levels, action of GLP‐1 is affected by and interplays with glucose levels. Due to such advantages, GLP‐1‐based therapeutics have been rapidly developed and used clinically for treatment of type 2 diabetes. However, molecular mechanisms underlying how GLP‐1 potentiates diminished glucose‐stimulated insulin secretion and β‐cell proliferation under diabetic conditions are not well understood. Here, we review the actions of GLP‐1 in regulation of insulin secretion and pancreatic β‐cell proliferation.  相似文献   

3.
Based on increasing evidence from animal and human studies, vitamin D deficiency is now regarded as a potential risk factor for Type 2 diabetes mellitus (T2DM). Vitamin D is involved in the pathogenesis of pancreatic β‐cell dysfunction, insulin resistance, and systemic inflammation, conditions that contribute to the development of T2DM. Vitamin D can affect the progress of this disease directly through the activation of its own receptor, and indirectly via the regulation of calcium homeostasis. Observational studies have revealed the association between vitamin D deficiency and incident T2DM. More double‐blind randomized control studies that investigate the effects of vitamin D supplementation on insulin sensitivity, insulin secretion, and the occurrence of T2DM are needed.  相似文献   

4.
Background: Diabetic oxidative stress coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. Zinc is an essential trace element with significant antidiabetic activity. However, the acceptance of zinc compounds as promising therapeutic antidiabetic agents has been slowed due to concerns regarding chronic toxicity. Recently, we have designed, synthesized and characterized a novel zinc–flavonol complex and evaluated its antidiabetic efficacy in streptozotocin (STZ)‐diabetic rats. The aim of the present study was to evaluate the role of the zinc–flavonol complex in the antioxidant status of diabetic rats. Methods: Diabetes was induced in rats by i.p. injection of STZ. Diabetic rats were then treated with the zinc–flavonol complex (5 mg/kg, p.o.) for 30 days. The extent of oxidative stress was assessed by determining lipid peroxide levels, pancreatic tissue antioxidant enzyme activities and plasma concentrations of non‐enzymatic antioxidants. In addition, nuclear levels of nuclear factor (NF)‐κB p65, pancreatic nitric oxide (NO), and plasma levels of tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β and IL‐6 were determined. Pancreatic tissues were examined histologically. Results: Oral treatment with the zinc–flavonol complex significantly improved antioxidant levels and alleviated levels of oxidative stress markers. Furthermore, significant increases were seen in NF‐κB p65, NO, TNF‐α, IL‐1β and IL‐6 levels. Histological observations revealed that the zinc–flavonol complex effectively protects pancreatic β‐cells against oxidative damage. Conclusion: The results of the present study indicate that the zinc–flavonol complex has an antioxidative and anti‐inflammatory role in the diabetic milieu.  相似文献   

5.
Because of the progressive nature of type 2 diabetes mellitus (T2DM), insulin therapy will eventually become necessary in most patients. Recent evidence suggests that maintaining optimal glycemic control by early insulin therapy can reduce the risk of microvascular and macrovascular complications in patients with T2DM. The present review focuses on relevant clinical evidence supporting the use of premixed insulin analogues in T2DM when intensifying therapy, and as starter insulins in insulin‐naïve patients. Our aim is to provide relevant facts and clinical evidence useful in the decision‐making process of treatment selection and individualized treatment goal setting to obtain sustained blood glucose control.  相似文献   

6.
Type 2 diabetes mellitus (T2DM) is a progressive disease characterized by worsening insulin resistance and a decline in β‐cell function. Achieving good glycemic control becomes more challenging as β‐cell function continues to deteriorate throughout the disease process. The traditional management paradigm emphasizes a stepwise approach, and insulin has generally been reserved as a final armament. However, mounting evidence indicates that short‐term intensive insulin therapy used in the early stages of type 2 diabetes could improve β‐cell function, resulting in better glucose control and more extended glycemic remission than oral antidiabetic agents. Improvements in insulin sensitivity and lipid profile were also seen after the early initiation of short‐term intensive insulin therapy. Thus, administering short‐term intensive insulin therapy to patients with newly diagnosed T2DM has the potential to delay the natural process of this disease, and should be considered when clinicians initiate treatment. Although the early use of insulin is advocated by some guidelines, the optimal time to initiate insulin therapy is not clearly defined or easily recognized, and a pragmatic approach is lacking. Herein we summarize the current understanding of early intensive insulin therapy in patients with newly diagnosed T2DM, focusing on its clinical benefit and problems, as well as possible biological mechanisms of action, and discuss our perspective.  相似文献   

7.
The forkhead box O (FoxO) subfamily has four members, namely FoxO1, FoxO3, FoxO4, and FoxO6. Unlike the other three members of the FoxO family, FoxO6 has garnered considerably less attention because of earlier reports that FoxO6 expression was limited to the brain. Recent data indicate that FoxO6 is produced in the liver of both rodents and humans. Hepatic FoxO6 activity, which remains at low basal levels in fed states, is markedly induced in fasted mice. FoxO6 activity becomes abnormally higher in the liver of mice with dietary obesity or type 2 diabetes (T2D). Genetically engineered mice with elevated FoxO6 activity in the liver exhibit prediabetes, culminating in the development of glucose intolerance, fasting hyperglycemia, and hyperinsulinemia. Conversely, inhibition of FoxO6 activity in the insulin‐resistant liver results in a reduction in fasting hyperglycemia, contributing to the amelioration of hyperinsulinemia in T2D mice. These new data suggest that FoxO6 is an important regulator of hepatic glucose metabolism in response to insulin or physiological cues. Insulin inhibits FoxO6 activity by promoting its phosphorylation and disabling its activity in the nucleus without altering its subcellular distribution via a mechanism that is distinct from other members of the FoxO subfamily. In this article, we comprehensively review the role of FoxO6 in glucose metabolism in health and disease. We also address whether FoxO6 dysregulation is a contributing factor for the pathogenesis of fasting hyperglycemia and discuss whether FoxO6 is a potential therapeutic target for improving fasting hyperglycemia in T2D.  相似文献   

8.
Aim/Introduction: Preservation of β‐cell mass is crucial for maintaining long‐term glucose homeostasis. Therapies based on incretin and its mimetics are expected to achieve this goal through various biological functions, particularly the restoration of β‐cell mass. Here we tested the effects of gastrin and exendin‐4 in type 2 diabetic animals. Materials and Methods: The effects of exendin‐4 and gastrin on β‐cell function and mass were examined in 8‐week‐old db/db mice. INS‐1 beta cells and AR42J cells were used to determine the molecular mechanism underlying the effects of the two agents. Immunohistochemistry, western blotting and RT‐PCR assays were used to assess the biological effects of the two agents. Results: Two weeks of combination administration of exendin‐4 plus gastrin resulted in a significant improvement of glucose tolerance associated with a marked preservation of β‐cell mass in db/db mice. Immunohistochemical analysis showed that such treatment resulted in the appearance of numerous irregularly‐shaped small islets and single insulin‐positive cells. While gastrin had little biological effect on INS‐1 β‐cells consistent with low expression of its intrinsic receptor on these cells, it caused differentiation of AR42J cells into insulin‐producing cells. Co‐stimulation with exendin‐4 significantly enhanced gastrin‐induced endocrine differentiation of AR42J precursor cells. These findings were further supported by enhanced expression of key genes involved in β‐cell differentiation and maturation, such as neurogenin3 (Ngn3) and MafA. Conclusions: These results suggest that combination treatment of db/db mice with exendin‐4 and gastrin preserves β‐cell mass by stimulating β‐cell growth and differentiation. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.00044.x, 2010)  相似文献   

9.
Dipeptidyl peptidase (DPP)‐4 inhibitors are a new class of antidiabetic agents that reduce blood glucose by preventing the degradation of the endogenous incretin hormones glucagon‐like peptide‐1 and glucose‐dependent insulinotropic polypeptide. Protection by DPP‐4 inhibitors of β‐cell function has been demonstrated in patients with type 2 diabetes. Because DPP‐4 is an enzyme widely expressed in humans, DPP‐4 inhibitors are speculated to be multitarget agents. However, other potential therapeutic benefits of DPP‐4 inhibitors remain unknown. Recently, some therapeutic effects of DPP‐4 inhibitors, such as immune regulation, cardiovascular protection, and anti‐inflammatory effects, have been observed. This article provides a systematic and comprehensive review of current research into the newly found effects and mechanism of action of DPP‐4 inhibitors in a therapeutic context.  相似文献   

10.
Diabetes and cancer are both heterogeneous and multifactorial diseases with tremendous impact on health worldwide. Epidemiologic evidence suggests that certain malignancies may be associated with diabetes, as well as with diabetes risk factors and, perhaps, with certain diabetes treatments. Numerous biological mechanisms could account for these relationships. Insulin‐like growth factor (IGF)‐1, IGF‐2, IGF‐1 receptors, insulin, and the insulin receptor play roles in the development and progression of cancers. Although evidence from randomized controlled trials does not support or refute associations of diabetes and its treatments with either increased or reduced risk of cancer incidence or prognosis, consideration of malignancy incidence rates and the magnitude of the trials that would be required to address these issues explains why such studies may not be readily undertaken.  相似文献   

11.
12.
13.
MicroRNAs (miRNAs) are important endogenous regulators in eukaryotic gene expression and a broad range of biological processes. MiRNA‐related genetic variations have been proved to be associated with human diseases, such as type 2 diabetes mellitus (T2DM). Polymorphisms in miRNA genes (primary miRNAs, precursor miRNAs, mature miRNAs, and miRNA regulatory regions) may be involved in the development of T2DM by changing the expression and structure of miRNAs and target gene expression. Genetic polymorphisms of the 3′‐untranslated region (UTR) in miRNA target genes may destroy putative miRNA binding sites or create new miRNA binding sites, which affects the binding of UTRs with miRNAs, finally resulting in susceptibility to and development of T2DM. Therefore, focusing on studies into genetic polymorphisms in miRNAs or miRNA binding sites will help our understanding of the pathophysiology of T2DM development and lead to better health management. Herein, we review the association of genetic polymorphisms in miRNA and miRNA targets genes with T2DM development.  相似文献   

14.
15.
16.
Corticosteroid‐induced hyperglycemia is a common medical problem that can lead to frequent emergency room visits, hospital admissions and prolonged hospital stay, in addition to the well known morbidity associated with hyperglycemia. However, the diagnosis and treatment of corticosteroid‐induced hyperglycemia is surprisingly undervalued by most professionals, probably because of the lack of quality studies to determine specific strategies of action. In the present review, we discuss the pathophysiology of corticosteroid‐induced hyperglycemia, focusing on diverse patterns of hyperglycemia induced by the different formulations, and provide clues for diagnosis based on the duration of treatment and the administration schedule of corticosteroids. We propose a treatment strategy based on both the pathophysiology of the process and the mechanism of action of different corticosteroids, and take into account dosing and administration timing to predict the duration of therapy. Finally, we propose treatment goals that differ slightly between the transient and continuous use of corticosteroids based on evidence from clinical practice guidelines of diabetes care both in ambulatory and hospital settings.  相似文献   

17.
18.
19.
20.
Aim: Alogliptin, a dipeptidyl peptidase‐4 (DPP‐4) inhibitor, and voglibose, an alpha‐glucosidase inhibitor, have different but complementary mechanisms of action on glucagon‐like peptide‐1 (GLP‐1) regulation and glucose‐lowering effects. The present study evaluated the chronic effects of combination treatment with alogliptin and voglibose in prediabetic db/db mice. Methods: Alogliptin (0.03%) and voglibose (0.001%) alone or in combination were administered in the diet to prediabetic db/db mice. Results: After 3 weeks, voglibose treatment increased GLP‐1 secretion (voglibose alone, 1.6‐fold; alogliptin plus voglibose, 1.5‐fold), while it decreased plasma glucose‐dependent insulinotropic polypeptide (GIP) (voglibose alone, ?30%; alogliptin plus voglibose, ?29%). Alogliptin, voglibose and combination treatment decreased plasma DPP‐4 activity by 72, 15 and additively by 80%, respectively, and increased plasma active GLP‐1 levels by 4.5‐, 1.8‐ and synergistically by 9.1‐fold respectively. Combination treatment increased plasma insulin by 3.6‐fold (alogliptin alone, 1.3‐fold; voglibose alone, 1.8‐fold), decreased plasma glucagon by 30% (alogliptin alone, 11%; voglibose alone, 8%), and prevented the development of diabetes, much more effectively than either agent alone. After 4 weeks, alogliptin, voglibose and combination treatment increased pancreatic insulin content by 1.6‐, 3.4‐ and synergistically by 8.5‐fold respectively. Furthermore, combination treatment resulted in an increased expression of insulin, pancreatic and duodenal homeobox 1 (PDX1) and glucose transporter 2 (GLUT2), and maintenance of normal beta/alpha‐cell distribution in the pancreatic islet. Conclusions: Chronic treatment with alogliptin in combination with voglibose concurrently increased active GLP‐1 circulation, increased insulin secretion, decreased glucagon secretion, prevented the onset of the disease, and preserved pancreatic beta‐cells and islet structure in prediabetic db/db mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号