首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the mechanism of pancreatic HCO 3 transport, a perfused preparation of isolated intra-and interlobular ducts (i.d. 20–40 m) of rat pancreas was developed. Responses of the epithelium to changes in the bath ionic concentration and to addition of transport inhibitors was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO 3 -free and HCO 3 -containing solution was –0.8 and –2.6 mV, respectively. The equivalent short circuit current (Isc) under similar conditions was 26 and 50 A·cm–2. The specific transepithelial resistance (Rte) was 88 cm2. In control solutions the PD across the basolateral membrane (PDbl) was –63±1 mV (n=314). Ouabain (3 mmol/l) depolarized PDbl by 4.8±1.1 mV (n=6) within less than 10 s. When the bath K+ concentration was increased from 5 to 20 mmol/l, PDbl depolarized by 15.9±0.9 mV (n=50). The same K+ concentration step had no effect on PDbl if the ducts were exposed to Ba2+, a K+ channel blocker. Application of Ba2+ (1 mmol/l) alone depolarized PDbl by 26.4±1.4 mV (n=19), while another K+ channel blocker TEA+ (50 mmol/l) depolarized PDbl only by 7.7±2.0 mV (n=9). Addition of amiloride (1 mmol/l) to the bath caused 3–4 mV depolarization of PDbl. Furosemide (0.1 mmol/l) and SITS (0.1 mmol/l) had no effect on PDbl. An increase in the bath HCO 3 concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5±1.0 mV (n=149). It was investigated whether the effect of HCO 3 was due to a Na++-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively charged, or whether it was due to decreased K+ conductance caused by lowered intracellular pH. Experiments showed that the HCO 3 effect was present even when the bath Na+ concentration was reduced to a nominal value of 0 mmol/l. Similarly, the HCO 3 effect remained unchanged after Ba2+ (5 mmol/l) was added to the bath. The results indicate that on the basolateral membrane of duct cells there is a ouabain sensitive (Na++K+)-ATPase, a Ba2+ sensitive K+ conductance and an amiloride sensitive Na+/H+ antiport. The HCO 3 effect on PDbl is most likely due to rheogenic anion exit across the luminal membrane.  相似文献   

2.
The aim of this study was to investigate the role of the K+ conductance in unstimulated and stimulated pancreatic ducts and to see how it is affected by provision of exogenous HCO 3 /CO2. For this purpose we have applied electrophysiological techniques to perfused pancreatic ducts, which were dissected from rat pancreas. The basolateral membrane potential PDbl of unstimulated duct cells was between –60mV and –70mV, and the cells had a relatively large K+ conductance in the basolateral membrane as demonstrated by (a) 20–22 mV depolarization of PDbl in response to increase in bath K+ concentration from 5 mmol/l to 20mmol/l and (b) the effect of a K+ channel blocker, Ba2+ (5 mmol/l), which depolarized PDbl by 30–40mV. These effects on unstimulated ducts were relatively independent of bath HCO 3 /CO2. The luminal membrane seemed to have no significant K+ conductance. Upon stimulation with secretin or dibutyryl cyclic AMP, PDbl depolarized to about –35 mV in the presence of HCO 3 /CO2. Notably, the K+ conductance in the stimulated ducts was now only apparent in the presence of exogenous HCO 3 /CO2 in the bath solutions. Upon addition of Ba2+, PDbl depolarized by 13±1 mV (n=7), the fractional resistance of the basolateral membrane, FRbl increased from 0.66 to 0.78 (n=6), the specific transepithelial resistance, R te, increased from 52±13 cm2 to 59±15 cm2 (n=11), and the whole-cell input resistance, R c, measured with double-barrelled electrodes, increased from 20 M to 26 M (n=3). These results are consistent with Ba2+ inhibition of the K+ conductance. Following removal of exogenous HCO 3 /CO2 in the same ducts, stimulation led to a larger depolarization on PDbl to about –25 mV, and Ba2+ had a smaller effect on PDbl and no significant effect on the resistances. The individual resistances in the duct epithelium were estimated from equivalent circuit analysis. The luminal membrane resistance, R 1 decreased from about 2000 cm2 to 80 cm2 upon stimulation. The basolateral membrane resistance, R bl, remained at 90–120 cm2, and the paracellular shunt resistance, R s, at 50–80 cm2. Ba2+ increased R bl of stimulated ducts to about 200 cm2, an effect present only if the ducts were provided with exogenous HCO 3 /CO2. Taken together, the present results indicate that the basolateral K+ conductance of pancreatic ducts is sensitive to exogenous HCO 3 /CO2, i.e. without HCO 3 /CO2 the conductance becomes very low although the ducts are undergoing stimulation.A preliminary report of the present study has been presented at the XXXI International Congress of Physiological Sciences, Helsiniki, Finland, July 1989  相似文献   

3.
Several secretagogues were used in this study, including those which enhance intracellular cyclic adenosine monophosphate (cAMP) production, as well as others which elevate intracellular Ca2+ activity and are known to increase Cl secretion in the intact colon and in colonic carcinoma cell lines. They were examined with respect to their effects on electrophysiological properties in isolated rabbit distal colonic crypts. Crypts were dissected manually and perfused in vitro. Transepithelial voltage (V te), transepithelial resistance (R te), membrane voltage across the basolateral membrane (V bl), and fractional basolateral membrane resistance (FR bl), were estimated. Basolateral prostaglandin E2 (PGE2, 0.1 mol/l), vasoactive intestinal peptide (VIP, 1 nmol/l) and adenosine (0.1 mmol/l) induced an initial depolarisation and a secondary partial repolarisation of (V bl). In the case of adenosine, the initial depolarization of (V bl) was by 31±2 mV (n=47).R te fell significantly from 16.4±3.6 to 14.2±3.7 ·cm2 (n= 6), andFR blincreased significantly from 0.11±0.02 to 0.51±0.10 (n=6). In the second phase the repolarisation of (V bl) amounted 11±2 mV (n=47) and a steadystate (V bl) of –51±2 mV (n=47) was reached.R te fell further and significantly to a steady-state value of 12.4±3.8 ·cm2 (n=6) andFR bl fell significantly to 0.42±0.13 (n=6). In 30% of the experiments, a transient hyperpolarisation of (V bl) by 8±2 mV (n=14) was seen during wash out of adenosine. In the presence of adenosine, but not under control conditions, lowering of luminal Cl concentration from 120 to 32 mmol/l depolarised (V bl) significantly by 8±1 mV (n=9). Basolateral ATP and ADP (0.1 mmol/l) led to a short initial depolarisation followed by a sustained and significant hyperpolarisation by 6±2 mV (n=27) and 5±4 mV (n=8), respectively. Carbachol (CCH) hyperpolarised (V bl) in a concentration-dependent manner. At 100 mol/l (bath) the hyperpolarisation was by 14±2 mV (n=11) andFR bl fell slightly. Neurotensin (10 nmol/l), isoproterenol (10 mol/l) and uridine 5-triphosphate (UTP, 0.1 mmol/l) had no effect. It is concluded that PGE2, VIP and adenosine upregulate sequentially a luminal Cl conductance and a basolateral K+ conductance by increasing intracellular cAMP concentration. Ca2+ mobilising hormones such as ATP, ADP, and CCH increase the basolateral K+ conductance, while the effect on luminal Cl conductance appears to be very limited.  相似文献   

4.
Rectal gland tubules (RGT) of spiny dogfish were dissected and perfused in vitro. Transepithelial PD (PDte), resistance (Rte), the PD across the basolateral membrane (PDbl) and intracellular chloride and potassium activities (a Cl– cell ,a K+ cell ) were measured. In a first series, 67 RGT segments were perfused with symmetric shark Ringers solution. The bath perfusate contained in addition db-cAMP 10–4, forskolin 10–6, and adenosine 10–4 mol · l–1. PDte was –11±1 (n=67) mV lumen negative, Rte 27±2 (n=47) cm2. PDbl –75±0.4 (n=260) mV.a K+ cell anda Cl– cell were 109±22 (n=4) and 38±4 (n=36) mmol · l–1 respectively. These data indicate that Cl secretion across the RGT must be an uphill transport process, whereas secretion of Na+ could be driven by the lumen negative PDte. Intracellular K+ is 14 mV above equilibrium with respect to the basolateral membrane PD and Cl is 23 mV above equilibrium across the apical membrane. In series 2, the conductivity properties of the apical and basolateral membrane as well as that of the paracellular pathway were examined in concentration step experiments. Decrease of the basolateral K+ concentration led to a rapid hyperpolarization of PDbt with a mean slope of 19 mV per decade of K+ concentration change. Addition of 0.5 mmol · l–1 Ba2+ to the bath solution lead to a marked depolarization and abolished the response to K+ concentration steps. In the lumen a Cl concentration downward step led to a depolarization of the lumen membrane; resulting in a mean slope of 18 mV per decade of Cl concentration change. When dilution potentials were generated across the epithelium, the polarity indicated that the paracellular pathway is cation selective. In series 3 the equivalent short circuit current (Isc=PDte/Rte) was determined as a function of symmetrical changes in Na+ concentration, with Cl held at 276 mmol · l–1, and as a function of symmetrical changes in Cl concentration, with Na+ held at 278 mmol · l–1 Isc was a saturable function of Na+ concentration (Hill coefficient 0.9±0.1,K 1/2 4.4 mmol · l–1,n=7) and also a saturable function of Cl concentration (Hill coefficient 2.0±0.1,K 1/2 75 mmol · l–1,n=11). These data are compatible with the assumption that the carrier responsible for NaCl uptake has a 1 Na+ per 2 Cl stoichiometry. In series 4, the effect of a K+ concentration downward step on PDbl anda Cl– cell transients was followed with high time resolution in the presence and absence of basolateral furosemide (5 · 10–5 to 10–4 mol · l–1) in an attempt to examine whether K+ reduction on the bath side inhibits Na+Cl uptake by the carrier system as does e.g. furosemide. The data indicate that removal of K+ from the bath side exerts an effect comparable to that of furosemide, i.e. it inhibits the carrier. We conclude that NaCl secretion in the RGT cell comprises at the least the following components: In the basolateral membrane, the (Na++K+)-ATPase, probably the Na+ 2 ClK+ carrier, and a K+ conductance. In the apical membrane a Cl conductance; and a Na+ conductive paracellular pathway.Supported by Deutsche Forschungsgemeinschaft DFG-Gr 480/8-1. Parts of this study have been presented at the 3rd International Symposium on Ion Selective Electrodes, Burg Rabenstein 1983, 16th Annual Meeting American Society of Nephrology, Washington DC 1983, 49th Tagung der Deutschen Physiologischen Gesellschaft, Dortmund 1984. A summary of the present study was published in Bulletin Mount Desert Island Biological Laboratory (Vol. 83)  相似文献   

5.
The effect of cAMP on transepithelial and transmembrane potential differences and resistances was examined in isolated in vitro perfused mouse medullary thick ascending limbs of Henle's loop (mTAL). The effects of furosemide and barium were tested. Stimulation of NaCl transport by ADH 10–9+dbcAMP 4·10–4+forskolin 10–6 mol·l–1 (paired experiments) resulted in: a) an increase in transepithelial potential difference, referenced to the grounded bath, from +6.7±0.3 mV to +12.0±0.4 mV (n=47); b) a decrease in transepithelial resistance from 25±1 cm2 to 20±1 cm2 (n=47); c) a depolarization of the basolateral membrane by 12 mV and of the apical membrane by 7 mV (n=36); d) a decrease in the fractional resistance of the basolateral membrane from 0.27±0.005 to 0.15±0.06 (n=12). Furosemide (10–4 mol·l–1) abolished the active transepithelial transport potential and hyperpolarized the basolateral membrane potential to values which were similar in both control and cAMP treated mTAL segments. Barium increased the transepithelial resistance and depolarizedPD bl to similar values in both functional states. An increase in the fractional conductance of the basolateral membrane was also seen, if, prior to the cAMP treatment, the luminal Na+2ClK+ contransport was inhibited by furosemide. Thus, we propose that stimulation of active NaCl reabsorption in the mTAL segment of the mouse by ADH, mediated via cAMP, increases primarily the basolateral chloride conductance.Supported by Deutsche Forschungsgemeinschaft Gr 480/6-2Parts of this study have been presented at the 59th Meeting of the German Physiological Society in Dortmund 1984 and at the 69th FASEB Meeting in Anaheim 1985  相似文献   

6.
In isolated perfused segments of the mouse proximal tubule, the potential difference across the basolateral cell membrane (PDbl) was determined with conventional microelectrodes. Under control conditions with symmetrical solutions it amounted to –62±1 mV (n=118). The potential difference across the epithelium (PDte) was –1.7±0.1 mV (n=45). Transepithelial resistance amounted to 1.82±0.09 k cm (n=28), corresponding to 11.4±0.6 cm2. Increasing bath potassium concentration from 5 to 20 mmol/l depolarized PDbl by +24±1 mV (n=103), and PDte by +1.6±0.1 mV (n=19). Thus, the basolateral cell membrane is preferably conductive to potassium. Rapid cooling of the bath perfusate from 38°C to 10°C led to a transient hyperpolarization of PDbl from –60±1 to –65±1 mV (n=21) within 40 s followed by gradual depolarization by +18±1% (n=14) within 5 min. The transepithelial resistance increased significantly from 1.78±0.11 k cm to 2.20±0.21 k cm (n=15). Rapid rewarming of the bath to 38°C caused a depolarization from –61±2 mV (n=17) to –43±2 mV (n=16) within 15 s followed by a repolarization to –59±2 mV (n=10) within 40 s. Ouabain invariably depolarized PDbl. During both, sustained cooling or application of ouabain, the sensitivity of PDbl to bath potassium concentration decreased in parallel to PDbl pointing to a gradual decrease of potassium conductance. Phlorizin hyperpolarized the cell membrane from –59±2 to –66±1 mV (n=13), virtually abolished the transient hyperpolarization under cooling, and significantly reduced the depolarization after rewarming from +17±2 mV (n=16) to +9±3 mV (n=9).The present data indicate that the contribution of peritubular potassium conductance to the cell membrane conductance decreases following inhibition of basolateral (Na++K+)-ATPase. Apparently, cooling from 37° to 10°C does not only reduce (Na+K+)-ATPase activity but in addition luminal sodium uptake mechanisms such as the sodium glucose cotransporter. As a result, cooling leads to an initial hyperpolarization of the cell followed by depolarization only after some delay.Parts of this study have been presented at the 60th and 61th Meeting of the Deutsche Physiologische Gesellschaft, Dortmund 1984 and Berlin 1985  相似文献   

7.
According to a previous study from this laboratory, the electrochemical gradient for potassium across the peritubular cell membrane of proximal tubules in the isolated perfused frog kidney increases following the application of ouabain. In order to test, if this phenomenon were due to a decrease of potassium conductance, the effects of ouabain on cell membrane resistances and the sensitivity of the peritubular cell membrane potential difference (PDpt) to step changes of peritubular potassium and bicarbonate concentration were studied. In the absence of ouabain, PDpt averaged –60±3 mV (n=25). A step increase of peritubular potassium concentration from 3 to 18 mmol/l (pH 8.07) depolarises PDpt (PDk) by +24±2 mV (n=8). An increase of bicarbonate from 20 to 40 mmol/l (pH 8.07) hyperpolarises PDpt (PDb) by –2.8±0.4 mV (n=9). The resistance of the luminal and peritubular cell membranes in parallel (R m) amounts to 45±9 k cm (tubule length) (n=4) and the voltage divider ratio (VDR) to 1.4±0.2 (n=7). The resistance of the cellular cable (cellular core,R c) approaches 131±37 M/cm (n=4). Peritubular application of 0.1 mmol/l ouabain leads to a gradual decline of PDpt (t 1/2 approx. 30 min), to an increase ofR m, a decrease of PDk and an increase of PDb. VDR andR c are not changed significantly. The data point to a functional link between the sodium/potassium ATPase and the potassium conductance of the peritubular cell membrane.  相似文献   

8.
The aim of the present study was to study the effect of secretin on the electrophysiological response of pancreatic ducts. Furthermore, we investigated the effects of lipid-soluble buffers and inhibitors of HCO3 /H+ transport. Ducts obtained from fresh rat pancreas were perfused in vitro. Secretin depolarized the basolateral membrane voltage, V bl, by up to 35 mV (n=37); a halfmaximal response was obtained at 3×10–11 mol/l. In unstimulated ducts a decrease in the luminal Cl concentration (120 to 37 mmol/l) had a marginal effect on V bl, but after maximal secretin stimulation it evoked a 14±2 mV depolarization (n=6), showing that a luminal Cl conductance G Cl- was activated. The depolarizing effect of secretin on V bl was often preceded by about a 6 mV hyperpolarization, most likely due to an increase in the basolateral G K+. Perfusion of ducts with DIDS (4,4 — diisothiocyanatostilbene — 2,2 — disulphonic acid, 0.01 mmol/l) or addition of ethoxzolamide (0.1 mmol/l) to the bath medium diminished the effect of secretin. Acetate or pre-treatment of ducts with NH4 +/NH3 (10 mmol/l in the bath) depolarized the resting V bl of –65±2 mV by 16±4 mV (n=7) and 19±3 mV (n=10), respectively. The fractional resistance of the basolateral membrane (FR bl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22±1 to 11±2 mV. The Na+/H+ antiporter blocker EIPA (5-[N-ethyl-N-isopropyl]-amiloride, 0.1 mmol/l) also depolarized V bl by 10±1 mV, FRbl increased and the response to K+ concentration changes decreased (n=7). Effects of EIPA and ethoxzolamide on V bl were greater in ducts deprived of exogenous HCO3 /CO2. Taken together, the present study shows that secretin increased the basolateral G K+ and the luminal G Cl-. The depolarizing effect of secretin was diminished following inhibition of HCO3 transport (DIDS), or HCO3 /H+ generation (ethoxzolamide). Manoeuvres that presumably led to lowered intracellular pH (NH4 +/NH3 removal, acetate, EIPA) decreased the basolateral G K+. The present data support our previously published model for pancreatic HCO3 secretion, and indicate that the basolateral membrane possesses a pH-sensitive G K+.  相似文献   

9.
The macula densa cells of the juxtaglomerular apparatus probably serve as the sensor cells for the signal which leads to the appropriate tubuloglomerular feedback response. The present study reports basolateral membrane voltage (PDbl) measurements in macula densa cells. We isolated and perfused in vitro thick ascending limb segments with the glomerulus, and therefore the macula densa cells, and the early distal tubule still attached. Macula densa cells were impaled with microelectrodes under visual control. PDbl was recorded in order to examine how these cells sense changes in luminal NaCl concentrations. The addition of furosemide, a specific inhibitor of the Na+2ClK+ cotransporter in the thick ascending limb, to the lumen of the perfused thick ascending limb hyperpolarized PDbl from –55±5 mV to –79±4 mV (n=7). Reduction of NaCl in the lumen perfusate from 150 mmol/l to 30 mmol/l also hyperpolarized PDbl from –48±3 mV to –66±5 mV (n=4). A Cl concentration step in the bath from 150 mmol/l to 30 mmol/l resulted in a 24±4 mV (n=4) depolarization of PDbl. This depolarization of PDbl was absent when furosemide was present during the Cl concentration step. These data suggest that the macula densa cells sense changes in luminal NaCl concentration via coupled uptake of Na+ and Cl. The transport pathways for NaCl transport in macula densa cells are probably identical to those in the thick ascending limb: the (Na++K+)-ATPase in the basolateral membrane drives Na+ and Cl uptake via the luminal Na+2ClK+ cotransport, Cl leaves the cell via basolateral Cl channels and K+ recycles across the apical membrane via K+ channels. Changes in intracellular Cl activity as a result of altered luminal NaCl uptake, and thus voltage changes of the basolateral membrane are probably the first signal in the tubuloglomerular feedback regulation.This study was supported by Deutsche Forschungsgemeinschaft Gr. 480/9  相似文献   

10.
The aim of the present study was to investigate by what transport mechanism does HCO 3 cross the luminal membrane of pancreatic duct cells, and how do the cells respond to stimulation with dibytyryl cyclic AMP (db-cAMP). For this purpose a newly developed preparation of isolated and perfused intra-and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO 3 /CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9mV, as also observed in a previous study [21]. This HCO 3 effect was abolished by Cl channel blockers or SITS infused into the lumen of the duct: i. e. 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 10–5 M) hyperpolarized PDbl by 8.2±1.6 mV (n=13); 3,5-dichlorodiphenylamine-2-carboxylic acid (DCl-DPC, 10–5 M) hyperpolarized PDbl by 10.3±1.7 mV (n=10); and SITS hyperpolarized PDbl by 7.8±0.9 mV (n=4). Stimulation of the ducts with dbcAMP in the presence of bath HCO 3 /CO2 resulted in depolarization of PDbl, the ductal lumen became more negative and the fractional resistance of the luminal membrane decreased. Together with forskolin (10–6 M), db-cAMP (10–4 M) caused a fast depolarization of PDbl by 33.8±2.5 mV (n=6). When db-cAMP (5×10–4 M) was given alone in the presence of bath HCO 3 /CO2, PDbl depolarized by 25.3±4.2 mV (n=10). In the absence of exogenous HCO 3 , db-cAMP also depolarized PDbl by 24.7±3.0 mV (n=10). The present data suggest that in the luminal membrane of pancreatic duct cells there is a Cl conductance in parallel with a Cl/HCO 3 antiport. Dibutyryl cyclic AMP increases the Cl conductance of the luminal membrane. Taking together our present results, and the recent data obtained for the basolateral membrane [21], a tentative model for pancreatic HCO 3 transport is proposed.Parts of this study have been presented at the Scandinavian Physiological Society Meeting in Copenhagen 1986 and 64th Meeting of the German Physiological Society in Homburg/Saar  相似文献   

11.
Previously we have shown that arylamino-benzoates like 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), which are very potent inhibitors of NaCl absorption in the thick ascending limb of the loop of Henle, are only poor inhibitors of the cAMP-mediated secretion of NaCl in rat colon. This has prompted our search for more potent inhibitors of NaCl secretion in the latter system. The chromanole compound 293 B inhibited the equivalent short-circuit current (I sc) induced by prostaglandin E2 (n=7), vasoactive intestinal polypeptide (VIP,n=5), adenosine (n=3), cholera toxin (n=4) and cAMP (n=6), but not by ionomycin (n=5) in distal rabbit colon half maximally (IC50) at 2 mol/l from the mucosal and at 0.7 mol/l from the serosal side. The inhibition was reversible and paralleled by a significant increase in transepithelial membrane resistance [e.g. in the VIP series from 116±16 ·cm2 to 136±21 ·cm2 (n=5)]. A total of 25 derivatives of 293 B were examined and structure activity relations were obtained. It was shown that the racemate 293 B was the most potent compound with-in this group and that its effect was due to the enantiomer 434 B which acted half maximally at 0.25 mol/l. Further studies in isolated in vitro perfused colonic crypts revealed that 10 mol/l 293 B had no effect on the membrane voltage across the basolateral membrane (V bl) in non-stimulated crypt cells: –69±3 mV versus –67±3 mV (n=10), whilst in the same cells 1 mmol/l Ba2+ depolarised (V bl) significantly. However, 293 B depolarised (V bl) significantly in the presence of 1 mol/l forskolin: –45±4mV versus –39±5 mV (n=7). Similar results were obtained with 0.1 mmol/l adenosine. 293 B depolarised (V bl) from –40±5 mV to –30±4 mV (n=19). This was paralleled by an increase in the fractional resistance of the basolateral membrane. VIP had a comparable effect. The hyperpolarisation induced by 0.1 mmol ATP was not influenced by 10 mol/l 293 B: –75±6 mV versus –75±6 mV (n=6). Also 293 B had no effect on basal K+ conductance (n=4). Hence, we conclude that 293 B inhibits the K+ conductance induced by cAMP. This conductance is apparently relevant for Cl secretion and the basal K+ conductance is insufficient to support secretion.  相似文献   

12.
The present study has been performed to test for the effect of hypotonic extracellular fluid on the electrical properties of Madin Darby canine kidney (MDCK)-cells. The volume of suspended MDCK-cell is 1,892±16 fl (n=8) in isotonic (298.7 mosmol/l) extracellular fluid. Exposure of the cells to hypotonic (230.7 mosmol/l) extracellular fluid is followed by cellular swelling to 2,269±18 fl (n=4) and subsequent volume regulatory decrease to 2,052±22 fl (n=4) within 512 s. Volume regulatory decrease is abolished by quinidine (1 mmol/l) and by lipoxygenase inhibitor nordihydroguaiaretic acid (50 mol/l). The potential difference across the cell membrane averages –53.6±0.9 mV (n=49) in isotonic extracellular perfusates. Reduction of extracellular osmolarity depolarizes the cell membrane by +25.7±0.8 mV (n=67), reduces the apparent potassium selectivity of the cell membrane, from 0.55±0.07 (n=9) to 0.09±0.01 (n=26), and increases the apparent chloride selectivity from close to zero to 0.34±0.02 (n=21). Potassium channel blocker barium (1 mmol/l) depolarizes the cell membrane by +15.2±1.1 mV (n=13). In the presence of barium, reduction of extracellular osmolarity leads to a further depolarization by +14.0±1.4 mV (n=12). Addition of chloride channel blocker anthracene-9-COOH (1 mmol/l) leads to a hyperpolarization of the cell membrane by –6.7±2.2 mV (n=11). In the presence of anthracene-9-COOH, reduction of the extracellular osmolarity leads to a depolarization by +22.4±1.7 mV (n=11). Application of 1 mmol/l quinidine depolarizes the cell membrane to –6.6±0.5 mV (n=8) and virtually abolishes the effect of reduced extracellular osmolarity on cell membrane potential. Nordihydroguaiaretic acid (50 mol/l), a substance known to inhibit lipoxygenase, increases steady state cell membrane potential in isotonic extracellular fluid to –58.8±1.8 mV (n=10) and blunts the depolarizing effect of hypotonic extracellular fluid (+5.4±1.5 mV,n=10). In conclusion, exposure of MDCK-cells to hypotonic media depolarizes the cell membrane by activation of a conductive pathway, which is insensitive to both barium and anthracene-9-COOH. The conductive pathway is possibly activated by leucotrienes.Parts of this work were presented at the 8th International Symposium on Biochemical Aspects of Kidney Function, Dubrovnik, 1986.  相似文献   

13.
Intracellular microelectrode techniques were used together with inhibitors of Na+ transport (amiloride) and H+ transport (acetazolamide and SITS1) to identify principal cells and intercalated cells in the outer stripe of the rabbit outer medullary collecting duct. The principal cell (n=9) had a basolateral membrane voltage (V bl) of –64.7±3.2 mV, a fractional resistance of the apical membrane (fR a=R a/R a+R bl) of 0.82±0.02, and a K+-selective basolateral membrane. Luminal amiloride hyperpolarizedV bl by 10.3±2.1 mV and increasedfR a to near unity (n=7). Bath acetazolamide and SITS were without effect on these parameters. The intercalated cell (n=5) had aV bl of –25.0±3.2 mV, afR a of 0.99±0.01, and a Cl-selective basolateral membrane. Bath acetazolamide or SITS hyperpolarizedV bl by 26.4±8.2 mV. Luminal amiloride did not alterV bl of this cell. The differential effects of the inhibitors also indicate that the principal and intercalated cells are probably not directly coupled electrically.  相似文献   

14.
The effect of picomolar concentrations of angiotensin II (AII) was investigated in isolated perfused rabbit renal proximal tubules using conventional or pH-sensitive intracellular microelectrodes. Under control conditions cell membrane potential (V b) and cell pH (pHi) averaged –53.8±1.9 mV (mean±SEM,n=49) and 7.24±0.01 (n=10), respectively. AII (at 10–11 mol/l), when applied from the bath (but not when applied from the lumen perfusate), produced the following effects: approximately 85% of the viable tubules responded with a small depolarization (+ 5.5±0.4 mV,n=43) which was accompanied in half of the pHi measurements by a slow acidification (pHi=–0.03±0.01,n=5). The remaining 15% responded with a small hyperpolarization (Vb=–3.1±0.4 mV,n=6). All changes were fully reversible and repeatable. Experiments with fast changes in bath HCO3 or K concentrations, as well as measurements of the basolateral voltage divider fraction in response to transepithelial current flow, explain these observations as stimulation of a basolateral Na-HCO3 cotransporter and of a basolateral K conductance. Both counteract in their effect onV b, but can be individuated by blocker experiments with 4,4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and barium. Both the stimulation of Na-HCO3 cotransport and the stimulation of the K conductance may result from down-regulation of the level of cyclic adenosine monophosphate in the cell.  相似文献   

15.
The present study has been performed, to test for the influence of epinephrine on the potential difference across the cell membrane (PD) of Madin-Darby canine kidney (MDCK) cells. Under control conditions, mimicking the in vivo situation, PD averages –53.3±0.9 mV (n=37). Increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +4.3±0.4 mV (n=5) and +15.8±1.2 mV (n=5), respectively. The application of 1 mol/l epinephrine leads to sustained hyperpolarization of the cell membrane to –71.5±0.7 mV (n=37). In the presence of epinephrine, increasing extracellular potassium concentration from 5.4 to 20 mmol/l depolarizes the cell membrane by +30.6 ±0.2 mV (n=5); 1 mmol/l barium depolarizes the cell membrane by +14.8±0.7 mV (n=20) and abolishes the effect of step increases of extracellular potassium concentration from 5.4 to 10 mmol/l. In the presence of barium, epinephrine leads to a transient hyperpolarization by –31.2 ±1.2 mV (n=18). During this transient hyperpolarization, the cell membrane is sensitive to extracellular potassium concentration despite the continued presence of barium; 10 mol/l verapamil depolarizes the cell membrane to –41.0±2.6 mV (n=11). In the presence of verapamil, the hyperpolarizing effect of epinephrine is only transient; 10 mol/l phentolamine depolarizes the cell membrane by +3.0±0.6 mV (n=8). In the presence of phentolamine, the effect of epinephrine is virtually abolished (+0.4±0.6 mV,n=8); 1 mol/l isoproterenol depolarizes the cell membrane by +2.8±0.8 mV (n=8). In the norminal absence of extracellular calcium, epinephrine leads to a transient hyperpolarization, which can only be elicited once. In conclusion, cpinephrine hyperpolarizes MDCK cells by increasing the apparent potassium conductance. This effect is transmitted by -receptors and may be mediated by increases of intracellular calcium activity.  相似文献   

16.
The distal convoluted tubule (DCT) from rabbit kidney were perfused in vitro to study the conductive properties of the cell membranes by using electrophysiological methods. When the lumen and the bath were perfused with a biearbonate free solution buffered with HEPES, the transepithelial voltage (V T) averaged –2.8±0.6 mV (n=20), lumen negative. The basolateral membrane voltage (V B) averaged –77.8±1.1 mV (n=33) obtained by intracellular impalement of microelectrodes. Cable analysis performed by injecting a current from perfusion pipette revealed that the transepithelial resistance was 21.8±1.7 ·cm2 and the fractional resistance of the luminal membrane was 0.78±0.03 (n=8), indicating the existence of ionic conductances in the luminal membrane. Addition of amiloride (10–5 mol/l) to the luminal perfusate or Na+ removal from the lumen abolished the lumen negativeV T and hyperpolarized the apical membrane. An increase in luminal K+ concentration from 5 to 50 mmol/l reduced the apical membrane potential (V A) by 37.5±2.6 mV (n=7), whereas a reduction of Cl in the luminal perfusate did not changeV A significantly (0.5±0.5 mV,n=4). Addition of Ba2+ to the lumen reducedV A by 42.6±1.0 mV (n=4). When the bathing fluid was perfused with 50 mmol/l K+ solution, the basolateral membrane voltage (V B) fell from –76.8±1.5 to –31.0±1.3 mV (n=18), and addition of Ba2+ to the bath reducedV B by 18.3±4.8 mV (n=7). Although a reduction of Cl in the bathing fluid from 143 to 5 mmol/l did not cause any significant fast initial depolarization (1.8±1.7 mV,n=8), a spike like depolarization (14.0±2.5 mV,n=4) was observed, upon Cl reduction in the presence of Ba2+ in the bath. From these results, we conclude that the apical membrane of DCT has both K+ and Na+ conductances and the basolateral membrane has a K+ conductance and a small Cl conductance.  相似文献   

17.
The present study has been performed to test for the influence of serotonin on the potential difference across the cell membrane (PD) of Madin-Darby canine kidney (MDCK)-cells. Under control conditions PD averages –48.6±0.6 mV (n=98). Increasing extracellular potassium concentration from 5.4 to 10 and 20 mmol/l depolarizes the cell membrane by +6.3±0.6 mV (n=6) and +14.1±1.0 mV (n=12), respectively. The cell membrane is transiently hyperpolarized to –67.8±0.8 mV (n=63) by 1 mol/l serotonin. In the presence of serotonin, increasing extracellular potassium concentration from 5.4 to 20 mmol/l depolarizes the cell membrane by +26.4±1.0 mV (n=11). 1 mmol/l barium depolarizes the cell membrane by +15.7±1.3 mV (n=17) and abolishes the effect of step increases of extracellular potassium concentration from 5.4 to 10 mmol/l. In the presence of barium, serotonin leads to a transient hyperpolarization by –26.3±1.0 mV (n=16). During this transient hyperpolarization, the cell membrane is sensitive to extracellular potassium concentration despite the continued presence of barium. 10 mol/l methysergide hyperpolarize the cell membrane by –7.2±2.0 mV (n=6). In the presence of 10mol/l methysergide, the effect of serotonin is virtually abolished (+0.4±0.9 mV,n=6). 1 mol/l ketanserin, a 5-HT2 receptor blocking agent, ICS 205-930, a 5-HT3 receptor blocking agent, and phentolamine, an unspecific -receptor blocking agent, do not significantly modify the effect of serotonin. In the nominal absence of extracellular calcium, the effect of serotonin is markedly reduced. In conclusion, serotonin hyperpolarizes MDCK-cells by increasing apparent potassium conductance. This effect is transmitted by 5-HT1 receptors and depends on extracellular calcium.  相似文献   

18.
The present study was designed to elucidate the effects of sodium-coupled transport on the electrical properties of proximal tubule cells in the isolated perfused frog kidney. Cable analysis techniques have been employed to determine the resistance of the luminal and peritubular cell membranes in parallel (R m) and the apparent ratio of the luminal over the peritubular cell membrane resistance (VDR). Furthermore, the sensitivity of the potential difference across the peritubular cell membrane (PDpt) to 6-fold increases of peritubular potassium concentration (PDk) was taken as a measure of the relative potassium conductance of this membrane. In the absence of luminal phenylalanine, PDpt amounts to –60±1 mV (n=90),R m to 36±3 k cm (n=22), VDR to 1.81±0.14 (n=20), and PDk to 15.0±0.9 mV (n=25). The application of 10 mmol/l phenylalanine replacing 10 mmol/l raffinose leads to a rapid (within 30 s) depolarisation of PDpt to 50±5% of its control value and to a delayed (within 12 min) recovery to 95±5% of control. The rapid depolarisation is associated with a decline ofR m and VDR, indicating a decrease mainly of the luminal cell membrane resistance. During recovery of PDpt there is a parallel increase of VDR and a further decline ofR m pointing to a decline of the basolateral cell membrane resistance. PDk is decreased during rapid depolarisation but increases again during the recovery phase. Thus, phenylalanine initially decreases but then increases above control the apparent potassium conductance. Removal of phenylalanine leads to a transient hyperpolarisation and increased apparent potassium conductance. If a cell is depolarised by current injection into a neighbouring cell, a similar decrease of PDk is observed which shows also a similar recovery (partial repolarisation) despite continued injection of constant current. The data point to a potential-dependent peritubular K+-conductance (of the inwardly rectifying type) and to a regulatory increase within some ten minutes, when the cell is depolarised either by sodium entry across the luminal cell membrane or by current injection into a neighbouring cell.  相似文献   

19.
The aim of this study was to characterize ion conductances and carrier mechanisms of isolated in vitro perfused rabbit colonic crypts. Crypts were isolated from rabbit colon mucosa and mounted on a pipette system which allowed controlled perfusion of the lumen. In non-stimulated conditions basolateral membrane voltage (V b1) was –65±1 mV (n=240). Bath Ba2+ (1 mmol/ l) and verapamil (0.1 mmol/l) depolarized V b1 by 21±2 mV (n=7) and 31±1 (n=4), respectively. Lowering of bath Cl concentration hyperpolarized V b1 from –69±3 to –75±3 mV (n=9). Lowering of luminal Cl concentration did not change V b1. Basolateral application of loop diuretics (furosemide, piretanide, bumetanide) had no influence on V b1 in non-stimulated crypts. Forskolin (10–6 mol/l) in the bath depolarized V b1 by 29±2 mV (n=54) and decreased luminal membrane resistance. In one-third of the experiments a spontaneous partial repolarization of V b1 was seen in the presence of forskolin. During forskolin-induced depolarization basolateral application of loop diuretics hyperpolarized V b1 significantly and concentration dependently with a potency sequence of bumetanide > piretanide furosemide. Lowering bath Cl concentration hyperpolarized V b1. Lowering of luminal Cl concentration from 120 to 32 mmol/l during forskolin-induced depolarization led to a further depolarization of Vb1 by 7±2 mV (n=10). We conclude that Vb1 of rabbit colonic crypt cells is dominated by a K+ conductance. Stimulation of the cells by forskolin opens a luminal Cl conductance. Basolateral uptake of Cl occurs via a basolateral Na+ : 2Cl : K+ cotransport system.  相似文献   

20.
To gain some insight into electrogenic transport processes across the plasma membrane of Madin-Darby canine kidney (MDCK)-cells, continuous measurements of the potential difference across the plasma membrane (PD) were made during step changes of extracellular ion composition as well as application of barium or valinomycin. During control conditions mimicking in vivo extracellular fluid, PD approaches –51.5±0.8 mV (n=62). Step increase of extracellular potassium concentration from 5.4 to 10, to 20 or to 35 mmol/l, depolarizes PD by +5.5±0.8 mV (n=7), by +15.8±0.5 mV (n=64) and by +23.8±1.2 mV (n=12), respectively. 1 mmol/l barium depolarizes PD by +19.8±0.6 mV (n=38) and abolishes the effect of increasing extracellular potassium from 5.4 to 10 mmol/l but not to 35 mmol/l. Ten mol/l valinomycin hyperpolarizes PD to –69.3±2.9 mV (n=7). In the presence of valinomycin, increase of extracellular potassium from 5.4 to 20 mmol/l depolarizes PD by +31.0±1.0 mV (n=7). Ouabain depolarizes PD and reduces the sensitivity of PD to extracellular potassium concentration. Omission of extracellular bicarbonate and carbondioxide as well as increase of extracellular bicarbonate at constant carbondioxide lead to a hyperpolarization and enhanced sensitivity of PD to extracellular potassium. In the presence of barium, the effects of omitted bicarbonate and carbondioxide are only transient. In conclusion, the plasma membrane of MDCK-cells is highly conductive to potassium. At low but not at high extracellular potassium concentrations the potassium conductance can be blocked by barium. The potassium conductance can further be reduced by ouabain as well as acidosis and enhanced by alkalosis as well as omission of extracellular carbondioxide and bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号