首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of portacaval anastomosis (PCA) on cholesterol biodynamics of male adult (fa/fa) Zucker rats and their lean littermates were studied with an isotopic equilibrium method. Animals were fed with a sucrose-rich semi-purified diet. Obese rats were hypercholesterolemic (2.03 +/- 0.14 vs 1.06 +/- 0.7 mg/ml), had a cholesterol-enriched liver (135.3 +/- 14.5 vs 40.0 +/- 2.6 mg/liver) and accumulated cholesterol in body pools. However no difference in the rates of cholesterol absorption, synthesis, fecal elimination or transformation into bile acids distinguished obese from lean Zucker rats. In both lean and obese rats, PCA decreased cholesterolemia by about 28 per cent and liver weight by 40 per cent while the total cholesterol content of the liver was not affected. Input of synthesized cholesterol (internal secretion) was strikingly decreased by the shunt (from 13.2 +/- 0.6 and 12.6 +/- 0.7 mg/day/rat before PCA, to 8.9 +/- 0.8 and 8.6 +/- 1.0 mg/day/rat after PCA) in lean and obese rats respectively. A similar decrease was observed in the cholesterol transformation into bile acids. Since the activity of the gut for cholesterol synthesis, as shown by the fecal external secretion (cholesterol synthesized by the gut and directly eliminated in the gut and feces) was probably not modified, the reduction of internal secretion induced by PCA resulted from decreased hepatic cholesterogenesis. It is suggested that this decrease may be one of the factors involved in the lowering effect of PCA on plasma cholesterol level.  相似文献   

2.
The livers of Zucker fatty (fa/fa) and lean (Fa/-) rats treated with standard rat chow diet containing 0, 10 or 50 ppm alpha-glucosidase inhibitor (AO-128) for 10 weeks were studied morphologically and biochemically. Light microscopic examination of livers from untreated Zucker fatty rats showed severe steatosis. The triglyceride content in the livers from Zucker fatty rats was significantly higher than that from lean rats (73 +/- 9 micrograms/mg protein for Zucker fatty rats vs. 30 +/- 10 for lean rats, p less than 0.01). Administration of the inhibitor caused a marked decrease in the number and size of lipid droplets in the hepatocytes from Zucker fatty rats and a decrease in the triglyceride content in the liver (73 +/- 9 micrograms/mg protein for untreated, 54 +/- 16 for 10-ppm-treated and 48 +/- 23 for 50-ppm-treated rats, p less than 0.05). This is the first report showing an inhibitory effect of an alpha-glucosidase inhibitor on steatosis in Zucker fatty rats.  相似文献   

3.
Insulin binding was measured in membrane particles prepared from the liver and several brain regions of 4-month-old female Zucker fa/fa (obese), Fa/fa (heterozygous), and Fa/Fa (lean) rats. High affinity insulin binding was decreased in the olfactory bulb of fatty (0.23 pmol bound/mg protein) and heterozygous (0.16 pmol/mg) rats compared with that in the lean controls (0.64 pmol/mg). Total binding was not changed in the cerebral cortex or hypothalamus. High affinity insulin binding was also decreased in the liver of both fatty (0.44 +/- 0.22 pmol/mg; P less than 0.01) and heterozygous (0.75 +/- 0.35 pmol/mg) animals compared with that in the lean rats (2.10 +/- 1.55 pmol/mg). This decreased binding is probably not due to down-regulation of receptors in the heterozygous rats, as they do not exhibit the hyperinsulinemia observed in the fatty rats. Rather, our findings suggest that there is a gene-related alteration in insulin binding in the Zucker rat, as low binding was observed in rats carrying either one (Fa/fa) or two (fa/fa) doses of the gene. We postulate that this central defect in insulin binding may contribute to inadequate perception of a central insulin feedback signal and to the hyperphagia observed in the obese rats.  相似文献   

4.
Altered triiodothyronine metabolism in Zucker fatty rats   总被引:1,自引:0,他引:1  
Genetically obese Zucker fatty rats require two autosomal recessive genes (fa/fa) to express the obese phenotype. The obese Zucker rat (fa/fa) has decreased total and free serum T3 concentrations, but normal serum T4 concentrations, compared to those in their lean littermates. To elucidate the mechanism of these differences, we measured the MCR and production rate (PR) of T4 and T3 in the three genotypes of 4-month-old male Zucker rats (Fa/Fa, Fa/fa, and fa/fa). In addition, 5'-deiodinase activity in liver, kidney, and brown adipose tissue homogenates was determined. T4 MCRs were equivalent in all three genotypes, but a decreased T3 MCR was seen in Fa/fa and fa/fa rats. An additive effect of the fa gene was noted with respect to the decrease in T3 MCR (Fa/Fa, 42.0 +/- 1.5; Fa/fa, 38.7 +/- 2.4; fa/fa, 34.7 +/- 3.4 ml/h; P less than 0.05). Whole body T4 PRs were equal in all three genotypes, but the T3 PR was decreased in the fa/fa rat by 25% compared to that in the homozygous lean rats (15.7 +/- 2.1 vs. 21.2 +/- 2.4 ng/h; P less than 0.005). Liver and kidney 5'-deiodinase activities were decreased in the fa/fa rat by 34% (P less than 0.005) and 20% (P less than 0.01), respectively. Brown adipose tissue and pituitary 5'-deiodinase activity were similar in all three genotypes. These results show a reduction in T3, but not T4, MCR in obese Zucker rats. Whole body T3 production and type I 5'-deiodinase activity were decreased in the obese (fa/fa) rats. These results suggest that decreased T4 to T3 conversion is responsible for the decreased T3 production rate in the fatty rat and may contribute to its obesity.  相似文献   

5.
In the rat, elevated arterial pressure is not consistently associated with obesity. The purpose of this study was to compare measurements of blood pressure, cardiac output, and total peripheral resistance in obese and lean Zucker rats on different NaCl intakes. Obese and lean rats drank either water or isotonic NaCl for 18 days. Tail systolic blood pressures of saline-drinking obese rats were higher than all other groups (p less than 0.05). NaCl intake did not affect blood pressure in lean rats, and blood pressures of water-drinking obese rats did not differ from those of lean controls. In a subsequent experiment, direct arterial pressures and cardiac outputs (thermodilution) were measured in separate groups of conscious rats that had been maintained on a 1% or 4% NaCl intake for 12 weeks. Arterial pressure was higher (p less than 0.01) in obese rats fed 4% NaCl (130 +/- 4 mm Hg) than in obese rats fed 1% NaCl (118 +/- 2 mm Hg) or than in lean rats fed either NaCl intake (118 +/- 3 mm Hg and 116 +/- 3 mm Hg, respectively). Cardiac output of obese rats was higher than that of lean rats (p less than 0.01); however, the NaCl-induced increase of blood pressure was accounted for by an increase of peripheral resistance (p less than 0.01). Thus, in contrast to the lean Zucker rat, arterial pressure of the obese Zucker rat is increased by a high dietary intake of NaCl.  相似文献   

6.
Obese (fa/fa) Zucker rat is a spontaneous genetic obesity model and, by comparison with lean Zucker rat, exhibits hyperphagia, hyperinsulinemia, and hyperlipidemia. The aim of this study was to examine the physiological difference concerning adiponectin between obese (fa/fa) Zucker rats and control lean Zucker rats. We therefore measured plasma adiponectin level and analyzed adiponectin and adiponectin receptor 1 mRNA expression in retroperitoneal white adipose tissue (RT WAT), brown adipose tissue (BAT), liver, and soleus muscle. We also examined the tissue mRNA expression of peroxisome proliferator-activated receptor alpha (PPAR alpha), PPAR delta, and PPAR gamma, which regulate adiponectin expression sensitivity to a PPAR gamma agonist shown by brown adipocytes from obese (fa/fa) Zucker rats and lean Zucker rats, by measuring adiponectin release from these cells. Plasma adiponectin levels of obese (fa/fa) Zucker rats were significantly higher than those of lean Zucker rats. Adiponectin mRNA expression levels in RT WAT were lower in obese (fa/fa) Zucker rats than in lean Zucker rats, but those in BAT were higher. Adiponectin receptor 1 expression levels in RT WAT, BAT, and liver of obese (fa/fa) Zucker rats were lower than in lean Zucker rats. The expression level of PPAR alpha, PPAR delta, and PPAR gamma in BAT was lower in obese (fa/fa) Zucker rats than in lean Zucker rats. Moreover, the PPAR gamma agonist increased adiponectin release only from the brown adipocytes isolated from lean Zucker rats. It is the conclusive difference between obese (fa/fa) Zucker rats and lean Zucker rats that plasma adiponectin levels of obese (fa/fa) Zucker rats are significantly higher than those of lean Zucker rats. Moreover, we clarified that mRNA expression level of adiponectin receptor 1 in RT WAT, BAT, and liver of obese (fa/fa) Zucker rats is low despite high plasma adiponectin level, and low expression of PPARs in BAT leads to less sensibility of adiponectin release from brown adipocytes to a PPAR gamma agonist in obese (fa/fa) Zucker rats.  相似文献   

7.
The mechanisms of insulin resistance in the obese Zucker rat have not been clearly established but increased diacylglycerol-protein kinase C (DAG-PKC) signalling has been associated with decreased glucose utilisation in states of insulin resistance and non-insulin-dependent diabetes mellitus. The purpose of this study was to characterise tissue- and isoform-selective differences in DAG-PKC signalling in insulin-sensitive tissues from obese Zucker rats, and to assess the effects of feeding on DAG-PKC pathways. Groups of male obese (fa/fa, n=24) and lean (fa/-, n=24) Zucker rats were studied after baseline measurements of fasting serum glucose, triglycerides, insulin and oral glucose tolerance tests. Liver, epididymal fat and soleus muscle samples were obtained from fed and overnight-fasted rats for measurements of DAG, PKC activity and individual PKC isoforms in cytosol and membrane fractions. Obese rats were heavier (488+/-7 vs 315+/-9 g) with fasting hyperglycaemia (10.5+/-0.8 vs 7.7+/-0.1 mM) and hyperinsulinaemia (7167+/-363 vs 251+/-62 pM) relative to lean controls. In fasted rats, PKC activity in the membrane fraction of liver was significantly higher in the obese group (174+/-16 vs 108+/-12 pmol/min/mg protein, P<0.05) but there were no differences in muscle and fat. The fed state was associated with increased DAG levels and threefold higher PKC activity in muscle tissue of obese rats, and increased expression of the major muscle isoforms, PKC-theta and PKC-epsilon: e.g. PKC activity in the membrane fraction of muscle from obese animals was 283+/-42 (fed) vs 107+/-20 pmol/min/mg protein (fasting) compared with 197+/-27 (fed) and 154+/-21 pmol/min/mg protein (fasting) in lean rats. In conclusion, hepatic PKC activity is higher in obese rats under basal fasting conditions and feeding-induced activation of DAG-PKC signalling occurs selectively in muscle of obese (fa/fa) rats due to increased DAG-mediated activation and/or synthesis of PKC-theta and PKC-epsilon. These changes in PKC are likely to exacerbate the hyperglycaemia and hypertriglyceridaemia associated with obesity-induced diabetes.  相似文献   

8.
Recently, a defect in pertussis toxin-independent actions of epinephrine on pancreatic B-cells of fa/fa Zucker rats was reported (Cawthorn and Chan (1991) Mol. Cell. Endocrinol. 75, 197-204). We now report studies of islet alpha 2-adrenoceptor function of fa/fa rats. Insulin and cAMP production by islets of obese rats were both inhibited by the alpha 2-adrenoceptor agonist clonidine. Calculated pD2 values for clonidine were 9.57 +/- 0.59 and 9.43 +/- 0.33 for lean and fa/fa rat islets, respectively. Yohimbine reversed clonidine effects equipotently in lean and obese rat islets (pA2 values of 7.48 +/- 0.57 vs 7.43 +/- 0.58). Unexpectedly, the alpha 1-antagonist prazosin stimulated insulin secretion from islets of obese but not lean rats. Functional characteristics of the alpha-adrenoceptors on fa/fa islets are thus similar to those recently designated alpha 2B. Altered expression of alpha-adrenoceptors on pancreatic islets of fa/fa rats may contribute to changes in the pertussis toxin-independent pathway of epinephrine action previously observed.  相似文献   

9.
Studies were performed in male Zucker rats to determine the metabolic effect of genetic obesity on whole body cholesterol homeostasis. Lean and obese mature Zucker rats were studied during intake of either a chow diet or a semisynthetic diet containing 10% corn oil; in addition growing animals were studied during constant body weight gain on a chow diet. Under all conditions the obese Zucker rats had significantly higher levels of total plasma cholesterol and triglyceride; however, measurements of the specific activity of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and of the rate of whole body cholesterol synthesis by sterol balance techniques demonstrated that the lean and obese animals did not differ in their endogenous rates of cholesterol synthesis. When sterol balance data were calculated per kilogram body weight, lean male Zucker rats synthesized a greater amount of cholesterol per day than obese animals. These studies demonstrate that the obese male Zucker rat, in many ways a model of human obesity, does not overproduce cholesterol and thus fails to exhibit one of major characteristics of the obese human.  相似文献   

10.
GH secretion is markedly blunted in obesity; however, the mechanism(s) mediating this response remains to be elucidated. In the present study we examined the involvement of the two hypothalamic GH-regulatory hormones, GH-releasing factor (GRF) and somatostatin (SRIF), using the genetically obese male Zucker rat. Spontaneous GH, insulin, and glucose secretory profiles obtained from free moving, chronically cannulated rats revealed a marked suppression in amplitude and duration of GH pulses in obese Zucker rats compared to their lean littermates (mean 6-h plasma GH level, 3.9 +/- 0.4 vs. 21.5 +/- 3.8 ng/ml; P less than 0.001). Obese rats also exhibited significant hyperinsulinemia in the presence of normoglycemia. The plasma GH response to an iv bolus of 1 microgram rat GRF-(1-29)NH2, administered during peak and trough periods of the GH rhythm, was significantly attenuated in obese rats at peak (137.4 +/- 26.1 vs. 266.9 +/- 40.7 ng/ml; P less than 0.02), although not at trough, times. Passive immunization of obese rats with a specific antiserum to SRIF failed to restore the amplitude of GH pulses to normal values; the mean 6-h plasma GH level of obese rats given SRIF antiserum was not significantly different from that of obese rats administered normal sheep serum. Both pituitary wet weight and pituitary GH content and concentration were reduced in the obese group. Measurement of hypothalamic GRF immunoreactivity revealed a significant (P less than 0.05) reduction in the mediobasal hypothalamic GRF content in obese rats (503.2 +/- 60.1 pg/fragment) compared to that in lean controls (678.1 +/- 50.2 pg/fragment), although no significant difference was observed in hypothalamic SRIF concentration. Peripheral SRIF immunoreactive levels were significantly (P less than 0.01) elevated in both the pancreas and stomach of obese rats. These results demonstrate that the genetically obese Zucker rat exhibits 1) marked impairment in both spontaneous and GRF-induced GH release, which cannot be reversed by SRIF immunoneutralization, 2) significant reduction in pituitary GH concentration, 3) depressed hypothalamic GRF content, and 4) elevated gastric and pancreatic, but not hypothalamic, SRIF levels. The findings suggest that the defect in pituitary GH secretion observed in the genetically obese Zucker rat is due, at least partially, to insufficient stimulation by hypothalamic GRF, and that SRIF does not play a significant role.  相似文献   

11.
12.
The hyperphagic, genetically obese Zucker rat (fa/fa) exhibits both a greater kidney size and a progressive, premature glomerular sclerosis. In the present study, glomerular filtration rate (GFR), effective renal plasma flow (ERPF) and renal tubular function were evaluated during study 1 in lean Zucker (FA/-), fa/fa, and lean Sprague-Dawley (S-D) rats. The GFR as measured by renal inulin clearance (ClIN) was not significantly different (P greater than 0.05) between S-D (1.36 +/- 0.18 ml/min) vs FA/- (1.36 +/- 0.33 ml/min) and FA/- vs fa/fa (1.25 +/- 0.42 ml/min). The ERPF as measured by renal p-aminohippurate (PAH) clearance (ClPAH) also was not significantly different between S-D (3.98 +/- 0.80 ml/min) vs Fa/- (3.71 +/- 0.81 ml/min) and Fa/- vs fa/fa (3.34 +/- 1.60 ml/min). There was a significant difference (P less than 0.05) in the renal tubular transport maximum (Tm) of PAH between S-D (2.23 +/- 0.40 mg/min) and Fa/- (1.64 +/- 0.63 mg/min) groups but not between Fa/- and fa/fa (1.29 +/- 0.61 mg/min) groups, indicating a strain effect in organic anionic renal transport. The Fa/- vs fa/fa comparisons were significant when GFR, ERPF and Tm were corrected for total body or kidney weight. In a second group of animals (study 2), GFR (as reflected by creatinine clearance [Clcr]) and histologic studies were performed in Fa/- and fa/fa rats. Clcr values were significantly higher in the fa/fa (2.10 +/- 0.44 ml/min) vs Fa/- (1.68 +/- 0.17 ml/min). Histologic studies in group 2 demonstrated no remarkable differences between Fa/- and fa/fa rats. These results suggest wide interanimal variation in obesity associated changes in renal function and possibly pathology in the fa/fa rat.  相似文献   

13.
The short term effects of fenofibrate (150 mg/kg per day), administered by gavage, on lipoprotein and fatty acid distribution have been investigated in an hypertriglyceridemic model, the Zucker rat. Lean rats were compared to control obese and treated obese rats, and control obese animals to treated obese littermates. Classically, plasma cholesterol and triacylglycerol increased by 1.8- and 7.9-fold, respectively, in control obese versus lean rats. Treatment of the Zucker obese rats with fenofibrate reduced their plasma cholesterol by 10% and raised triacylglycerol by 47% (P less than 0.001) in comparison to untreated control obese rats. These effects were accompanied by a change in the composition of all plasma lipoproteins. The cholesterol/triacylglycerol ratio in VLDL rose by 32% while that in LDL and HDL fell by 43 and 47%, respectively. Drug therapy altered the fatty acid profile in both plasma and liver; the percentage of polyunsaturated fatty acids fell while monounsaturated fatty acids increased. The increased proportion of monounsaturated fatty acids in plasma suggests that the fatty acid composition of circulating lipoproteins is modified, particularly in VLDL. This, in association with the altered lipid distribution in VLDL may reflect an abnormal metabolism of this lipoprotein. In view of these abnormalities, we conclude that this rat is not an appropriate model for the short-term study of clofibrate analogues.  相似文献   

14.
Immunoreactive insulin (IRI) concentrations were measured in plasma and cerebrospinal fluid (CSF) of four-month old genetically obese Zucker rats, their heterozygote lean littermates, and age-matched normal-weight Wistar rats. Basal plasma IRI was 201 + 35 microU/ml (means +/- SEM) in the obese animals and was significantly elevated compared to both lean Zucker rats (18 +/- 2.4 microU/ml, P less than 0.001) and Wistar rats (12 +/- 2.4 microU/ml, P less than 0.001). The mean CSF IRI concentration of fasted obese Zucker rats was 1.59 +/- 0.19 microU/ml; this was significantly higher than the CSF IRI level of either fasted Zucker lean rats (0.31 +/- 0.08 microU/ml, P less than 0.001) or Wistar rats (0.34 +/- 0.12 microU/ml, P less than 0.001). Plasma and CSF IRI concentrations were increased in free-feeding as compared with fasted animals. These data provide evidence that endogenous CSF insulin is derived from circulating plasma insulin in the rat and suggest that the hyperphagia and obesity of the Zucker fatty rat are not due to an inability of circulating insulin to gain access to the CSF.  相似文献   

15.
The effects of a hyperlipidic diet containing medium-chain triacylglycerols (MCT) or long-chain triacylglycerols (LCT) and a control diet on the lipid composition of liver and adipose tissue in the Zucker fa/fa and Fa/- rat are compared. The weights of liver and adipose tissues of the rats fed the MCT diet are little different from those of the two other groups, but they are always higher in obese rats than in lean rats. After feeding the MCT diet, the amounts of the constituent octanoic and decanoic acids in liver and adipose tissues are higher in the fa/fa rat than in the Fa/- rat. The rate of lipogenesis in liver and adipose tissues of the obese rat fed the MCT diet remains high.  相似文献   

16.
Life-long sequential changes in glucose tolerance and insulin secretion were investigated in genetically obese Zucker rats (fa/fa) fed a diabetogenic diet rich in lard and sucrose. Comparisons were made with lean littermates (Fa/-) receiving normal chow diet. At 3-month intervals, seven to nine lean and obese rats had two permanent venous catheters implanted, allowing stress- and pain-free sampling of blood before, during, and after substrate administration. Intravenous glucose, iv arginine, and oral glucose tolerance were tested. The obese rats progressively developed hyperglycemia and severe hyperinsulinemia; their basal glycemia reached 8.8 +/- 1.1 vs. 5.8 +/- 0.2 mmol/liter in the lean rats at 46 weeks of age; respective insulinemia was 287.7 +/- 61.9 and 18.1 +/- 2.8 mU/liter (mean +/- SD). In the obese rats a distinct loss in glucose tolerance was seen with progression of age in spite of rising stimulated insulin secretion, which suggests progressive development of insulin resistance without exhaustion of B-cell secretory capacity. Absence of insulin deficiency was also suggested by immunohistochemical staining of pancreatic tissue specimens from obese rats, which showed large populations of insulin-containing cells. Like the obese animals, lean rats exhibited a decrease in insulin sensitivity with age. Relating basal individual glycemia and insulinemia, a rise by 1 mmol/liter in glycemia was associated with a 8.8-fold rise in basal insulinemia in lean rats, but only with a 1.8-fold increase in obese rats. Similar correlations for stimulated glycemia and insulinemia suggest impaired glucose sensitivity of pancreatic B-cells in obese vs. lean rats. In conclusion, hyperglycemia and hyperinsulinemia in insulin-resistant obese Zucker rats on a diabetogenic diet are not characterized by quantitatively deficient B-cell secretory capacity, but, rather, by impaired B-cell sensitivity to glucose with qualitatively intact regulation of glycemia and insulinemia at elevated plasma concentrations.  相似文献   

17.
Hypothesizing that UCP2 may influence insulin secretion by modifying the ATP/ADP ratio within pancreatic islets, we have investigated the expression of intraislet UCP2 gene in rats showing insulin oversecretion (non-diabetic Zucker fa/fa obese rats, glucose-infused Wistar rats) or insulin undersecretion (fasting and mildly diabetic rats). We found that in Zucker fa/fa obese rats, hyperinsulinemia (1222+/-98 pmol/l vs. 128+/-22 pmol/l in lean Zucker rats) was accompanied by a significant increase in UCP2 mRNA levels. In rat submitted to a 5 day infusion with glucose, hyperinsulinemia (1126+/-101 pmol/l vs. 215+/-25 pmol/l in Wistar control rats), coincided with an enhanced intraislet UCP2 gene expression, whereas a 8h or a 2 day-infusion did not induce significant changes in UCP2 mRNA expression. In rats made hypoinsulinemic and mildly diabetic by the injection of a low dose of streptozotocin, and in 4-day-fasting rats (plasma insulin 28+/-5 pmol/l) UCP2 gene expression was sharply decreased. A 3-day-fast was ineffective. The data show the existence of a time-dependent correlation between islet mRNA UCP2 and insulin that may be interpreted as an adaptative response to prolonged insulin excess.  相似文献   

18.
Effect of clinofibrate on lipid metabolism of aorta in atherosclerotic rats   总被引:1,自引:0,他引:1  
Atherosclerotic lesions formed in the aorta of rats given diet containing propylthiouracil (PTU), vitamin D2 and high cholesterol diet (atherogenic) for 8 weeks. The effect of clinofibrate, which lowers the plasma lipid level, on lipid metabolism in the arterial wall of the atherosclerotic rats was studied. Clinofibrate significantly decreased the high plasma cholesterol level of atherosclerotic rats, which was 823 +/- 256 (mean +/- SD) mg/dl, or about ten times that of control rats (85 +/- 11 mg/dl). On treatment with clinofibrate, the cholesterol level was reduced most in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Heparin-releasable lipoprotein lipase activity in epididymal adipose tissue, lipoprotein lipase activity in post heparin plasma, and VLDL-triolein hydrolizing activity in adipose tissue stromal vessels were higher in clinofibrate-treated rats than in atherosclerotic rats. Of the enzymes in the arterial wall concerned with cholesterol ester metabolism, acid cholesterol esterase activity was decreased in atherosclerotic rats, and clinofibrate treatment increased this activity. The ratio of acyl-CoA cholesterol acyltransferase activity (ACAT) to neutral cholesterol esterase activity was higher in atherosclerotic rats than in control rats and was lower in clinofibrate-treated rats than in atherosclerotic rats. From these results, it is concluded that clinofibrate modifies enzyme activities in such a way as to cause a reduction of cholesterol accumulation in the arterial wall and lowers the plasma VLDL and LDL cholesterol levels.  相似文献   

19.
OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.  相似文献   

20.
Androgen levels are lower in obese men as compared with normal weight individuals. However, there are no safety data regarding the chronic use of androgen supplements in middle-aged men. The present study was undertaken to determine the cardiovascular and metabolic effects of chronic (10 weeks) testosterone treatment in male obese Zucker rats, starting at 22 weeks of age, when testosterone levels were significantly decreased. Testosterone supplements increased plasma levels, 10-fold in both obese Zucker rats and lean Zucker rats. In obese Zucker rats, testosterone supplements reduced body weight, plasma insulin, and cholesterol levels and improved the oral glucose tolerance test. None of these parameters were affected in lean Zucker rats. Mean arterial pressure was significantly increased in obese Zucker rats but not lean Zucker rats. Testosterone supplements increased proteinuria and accelerated renal injury in lean Zucker rats only. Thus, treatment of obese men with chronic testosterone supplements should be done with careful monitoring of blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号