首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cultured rat cortical neurons was established. Proprotein convertase 2 activity gradually decreased in the ischemic cortex with increasing duration of reperfusion. In cultured rat cortical neurons, the number of terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate-biotin nick end labeling-positive neurons significantly increased and proprotein convertase 2 activity also decreased gradually with increasing duration of oxygen-glucose deprivation. These experimental findings indicate that proprotein convertase 2 activity decreases in ischemic rat cortex after reperfusion, as well as in cultured rat cortical neurons after oxygen-glucose deprivation. These changes in enzyme activity may play an important pathological role in brain injury.  相似文献   

3.
Although there is significant evidence correlating overreacting or perhaps misguided immune cells and the blood–brain barrier (BBB) with the pathogenesis of neuroinflammatory diseases, the mechanisms by which they enter the brain are largely unknown. For this purpose, we revised our humanized dynamic in vitro BBB model (DIV-BBBr) to incorporate modified hollow fibers that now feature transmural microholes (2 to 4 μm ∅) allowing for the transendothelial trafficking of immune cells. As with the original model, this new DIV-BBBr reproduces most of the physiological characteristics of the BBB in vivo. Measurements of transendothelial electrical resistance (TEER), sucrose permeability, and BBB integrity during reversible osmotic disruption with mannitol (1.6 mol/L) showed that the microholes do not hamper the formation of a tight functional barrier. The in vivo rank permeability order of sucrose, phenytoin, and diazepam was successfully reproduced in vitro. Flow cessation followed by reperfusion (Fc/Rp) in the presence of circulating monocytes caused a biphasic BBB opening paralleled by a significant increase of proinflammatory cytokines and activated matrix metalloproteinases. We also observed abluminal extravasation of monocytes but only when the BBB was breached. In conclusion, the DIV-BBBr represents the most realistic in vitro system to study the immune cell trafficking across the BBB.  相似文献   

4.
1-(2,6-Dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)-propane hydrochloride(DDPH) is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH(10 mg/kg) significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH(3 × 10–5 M) also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.  相似文献   

5.
Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.  相似文献   

6.

Objective

To explore the association between the 5-HTR2A-1438A/G, COMTVal158Met, MAOA-LPR, DATVNTR and 5-HTTVNTR polymorphisms with comorbidity of antisocial personality disorder in male heroin-dependent patients.

Subjects and methods

In case control study, we compared the polymorphic distributions of 5-HTR2A-1438A/G, COMTVal158Met, MAOA-LPR, DATVNTR and 5-HTTVNTR in 588 male heroin-dependent patients (including 311 patients with antisocial personality disorder and 277 patients without antisocial personality disorder) and 194 normal males by genotypes, alleles, and interaction between genes.

Results

Between male heroin-dependent patients with antisocial personality disorder and normal males, and between male heroin-dependent patients with and without antisocial personality disorder, the distributions of 5-HTTVNTR polymorphic genotypes and alleles were in statistical significance. Individuals carrying 10R allele were in higher risk of the comorbidity of antisocial personality disorder and heroin dependence. By MDR analyses, the interaction between 5-HTTVNTR and DATVNTR was close to statistical significance in predicting the risk of antisocial personality disorder in male heroin dependent patients. In male heroin dependent patients, individuals carrying 5-HTTVNTR 10R allele or/and DATVNTR 9R allele were in higher risks of co-occurring antisocial personality disorder, while individuals with 5-HTTVNTR 12R/12R and DATVNTR 10R/10R genotypes together were in lower risks of antisocial personality disorder.

Conclusion

5-HTTVNTR, and the interaction between 5-HTTVNTR and DATVNTR may be associated with the comorbidity of antisocial personality disorder in male heroin-dependent patients.  相似文献   

7.
The members of the neuropeptide Y (NPY) family are key players in food-intake regulation. In humans this family consists of NPY, peptide YY (PYY) and pancreatic polypeptide (PP) which interact with distinct preference for the four receptors showing very low sequence identity, i.e. Y1, Y2, Y4 and Y5. The binding of similar peptides to these divergent receptors makes them highly interesting for mutagenesis studies. We present here a site-directed mutagenesis study of four amino acid positions in the human Y2 receptor. T3.40 was selected based on sequence alignments both between subtypes and between species and G2.68, L4.60 and Q6.55 also on previous binding studies of the corresponding positions in the Y1 receptor. The mutated receptors were characterized pharmacologically with the peptide agonists NPY, PYY, PYY(3-36), NPY(13-36) and the non-peptide antagonist BIIE0246. Interestingly, the affinity of NPY and PYY(3-36) increased for the mutants T3.40I and Q6.55A. Increased affinity was also observed for PYY to Q6.55A. PYY(3-36) displayed decreased affinity for G2.68N and L4.60A whereas binding of NPY(13-36) was unaffected by all mutations. The antagonist BIIE0246 showed decreased affinity for T3.40I, L4.60A and Q6.55A. Although all positions investigated were found important for interaction with at least one of the tested ligands the corresponding positions in hY1 seem to be of greater importance for ligand binding. Furthermore these data indicate that binding of the agonists and the antagonist differs in their points of interaction. The increase in the binding affinity observed may reflect an indirect effect caused by a conformational change of the receptor. These findings will help to improve the structural models of the human NPY receptors.  相似文献   

8.
β-Catenin stabilization achieved either via GSK-3β specific inhibition or involving canonical Wnt signalling pathway, contributes to neuroprotection in an oxygen-glucose deprivation (4 h OGD) in vitro hypoxia model performed on human cortical neural progenitor cells previously differentiated into neurons and glia. Neuroprotection mechanisms include both acquiring tolerance to injury throughout preconditioning (72 h prior to OGD) or being pro-survival during 24 h reoxygenation after the insult. Four hours of OGD induced apoptotic cell death elevation to 73 ± 1% vs. 12% measured in control and the LDH level, indicative of necrotic cell injury, elevation by 67 ± 7% (set to 100%). A significant reduction in apoptosis occurred at 24 h reoxygenation with indirubin supplement which was 49 ± 6% at 2.5 μM BIO while LDH level was only 47 ± 5% of OGD. Kenpaullone was efficient in reducing both cell deaths at 5 μM (apoptosis 38 ± 1% and necrosis 33 ± 3% less than in OGD). Wnt agonist reduced apoptosis to 45 ± 3% at 0.01 μM, while LDH value was decreased to a level of 53 ± 5% of control. Our findings suggest that GSK-3beta inhibitors/β-catenin stabilizers may ultimately be useful drugs in neuroprotection and neuroregeneration therapies in vivo.  相似文献   

9.
We have used intracellular recording techniques to examine the effects of 5-hydroxytryptamine (5-HT, serotonin) on 5-HT-containing neurones of the guinea pig dorsal raphe nucleus in vitro. Bath-applied 5-HT (30–300 μM) had two opposing effects on the membrane excitability of these cells, reflecting the activation of distinct 5-HT receptor subtypes. As demonstrated previously in the rat, 5-HT evoked a hyperpolarization and inhibition of 5-HT neurones, which appeared to involve the activation of an inwardly rectifying K+ conductance. This hyperpolarizing response was blocked by the 5-HT1A receptor-selective antagonist WAY-100635 (30–100 nM). In the presence of WAY-100635, 5-HT induced a previously unreported depolarizing, excitatory response of these cells, which was often associated with an increase in the apparent input resistance of the neurone, likely due to the suppression of a K+ conductance. Like the hyperpolarizing response to 5-HT, this depolarization could be recorded in the presence of the Na+ channel blocker tetrodotoxin. In addition, the response was not significantly attenuated by the α1-adrenoceptor antagonist prazosin (500 nM), indicating that it is not due to the release of noradrenaline, or to the direct activation of α1-adrenoceptors by 5-HT. The 5-HT3 receptor antagonist granisetron (1 μM) and the 5-HT4 receptor antagonist SB 204070 (100 nM) failed to reduce the depolarizing response to 5-HT; however, ketanserin (100 nM), mesulergine (100 nM) and lysergic acid diethylamide (1 μM) significantly reduced or abolished the depolarization, indicating that this effect of 5-HT is mediated by 5-HT2 receptors.  相似文献   

10.

Objective

Clarifying the similarities and differences between the two most common subtypes of bipolar disorder, bipolar-I and bipolar-II, is essential for improving our understanding of them. Because the serotonergic system has been implicated in the pathogenesis of bipolar disorder, it may be important to investigate genes such as the aldehyde dehydrogenase 2 (ALDH2) and serotonin 2A receptor genes, which are involved in metabolizing serotonin and encoding serotonin receptors. We examined the association of the ALDH2 and 5-HT2A-A1438G polymorphisms with bipolar I and II and possible interactions between these genes.

Methods

One thousand forty-nine participants were recruited: 249 with bipolar-I, 456 with bipolar-II, and 344 healthy controls. The genotypes of the ALDH2 and 5HT2A-A1438G polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis.

Results

Logistic regression analysis showed a significant effect of the ALDH2 and the 5-HT2A-A1438G polymorphisms, and a significant interaction effect for the A/G genotypes of the 5-HT2A-A1438G polymorphism and the ALDH2*1*1 genotypes (p = 0.004) discriminated between bipolar-I patients and controls without bipolar disorder. These polymorphisms, however, were not associated with bipolar-II disorder.

Limitations

The significant differences of age and gender between patients and controls limit the comparison, although statistical adjustments were made for them.

Conclusion

Our findings provide initial evidence that the ALDH2 and 5-HT2A genes interact in bipolar-I but not in bipolar-II disorder. Our findings suggest a unique genetic distinction between bipolar-I and bipolar-II.  相似文献   

11.
12.
The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinical interview (MINI-PLUS). Patients underwent a semistructured interview to assess suicide attempt history and its characteristics. In addition, at least one close relative of the patient was interviewed to assess proband and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT(2A)/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall. We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or allele frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the 5-HT(2A) gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed.  相似文献   

13.
Primary autosomal recessive microcephaly (MCPH) is a genetically heterogeneous condition characterized by congenital microcephaly and intellectual disability. To date, 10 MCPH loci have been identified and due to the genetic heterogeneity of this condition, molecular testing for MCPH can be complicated. Our methods involved employing a next generation sequencing panel of MCPH-related genes allowing for the evaluation of multiple disease loci simultaneously. Next generation sequencing analysis of a 6 year old female with primary microcephaly identified novel compound heterozygous mutations (c.524_528del and c.4005-1G>A) in the CDK5RAP2 gene. A review of the published literature to date reveals that only three mutations have been previously reported in the CDK5RAP2 gene in the homozygous state in three Northern Pakistani and one Somali consanguineous MCPH families. Our patient represents the first non-consanguineous Caucasian individual to have been identified with CDK5RAP2-related MCPH. As only a handful of patients have been reported in the literature with CDK5RAP2-related MCPH, we anticipate the identification of individuals with CDK5RAP2 mutations from all ethnic backgrounds will continue. Our patient contributes to the ethnic and genotypic spectrum of CDK5RAP2-related MCPH and supports the occurrence of this genetic condition beyond that of consanguineous families of certain ethnic populations. Our results also highlight the utility of multi-gene sequencing panels to elucidate the etiology of genetically heterogeneous conditions.  相似文献   

14.
An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T9. Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.  相似文献   

15.
The rapid differentiating effects of brain-derived neurotrophic factor (BDNF) or dibutyryl-cAMP (dBcAMP) were characterized on RN46A, a rat raphe-derived neuronal cell line. After BDNF treatment, RN46A cells were serotonin-immunopositive and bipolar, and expressed the microtubule-associated-protein 2 (Map2). After dBcAMP treatment, the cells often became multipolar, bearing very long processes strongly immunopositive for serotonin and Map2. Under both conditions, the expression and distribution of 5-HT(1A) and 5-HT(1B) autoreceptors remained identical. 5-HT(1A) and Map2 immunolabelings were superimposable, as expected of their somato-dendritic targeting. Surprisingly, the distribution of 5-HT(1B) immunoreactivity was similar, in contrast with its usual localization in axons and nerve terminals in the brain. In conclusion, both BDNF and cAMP-differentiated RN46A cells towards a neuronal serotoninergic-like phenotype without the typical differential targeting of the 5-HT(1) autoreceptors, an interesting model to study the molecular mechanisms ensuing the targeting of 5-HT(1) autoreceptors to somas and dendrites.  相似文献   

16.
Tanshinone lla is an effective monomer component of Danshen, which is a traditional Chinese medicine for activating blood circulation to dissipate blood stasis. Tanshinone lla can effectively improve brain tissue ischemia/hypoxia injury. The present study established a rat model of spinal cord ischemia/reperfusion injury and intraperitoneally injected Tanshinone IIa, 0.5 hour prior to model establishment. Results showed that Tanshinone lla promoted heat shock protein 70 and Bcl-2 protein expression, but inhibited Bax protein expression in the injured spinal cord after ischemia/reperfusion injury. Furthermore, Nissl staining indicated a reduction in nerve cell apoptosis and fewer pathological lesions in the presence of Tanshinone lla, compared with positive control Danshen injection.  相似文献   

17.
Deficits in serotonergic (5-HT-ergic) neurotransmission and stressful life events have been implicated in affective disorders, and chronic variable stress (CVS) can elicit behavioral changes reminiscent of increased emotionality, anxiety and atypical depression after partial 5-HT depletion. This study examined the effect of chronic citalopram treatment (10 mg/kg daily) on these changes. Parachloroamphetamine (PCA) (2 mg/kg) reduced the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the frontal cortex, increased anxiety in the social interaction test, and increased activity in the open field. CVS reduced social activity in the social interaction test and immobility time in the forced swimming test. Reduction of excrements left during immobilization indicated partial adaptation with the CVS. Specific stressors had different effects on body weight gain, shorter lasting stressors having a smaller effect in general than those that lasted longer. Combination of CVS and PCA increased sucrose intake after two weeks of stress. In addition, combination of the two treatments reduced diving in the forced swimming test. Citalopram prevented the increase in sucrose consumption in the PCA+CVS rats, and in 5-HT-depleted animals blocked the increase in struggling and reduced the number of defecations in the forced swim test. In conclusion, citalopram treatment prevented several effects of either 5-HT depletion or combined PCA+CVS treatment, suggesting that these behavioral changes could be used in studies on the neural mechanisms underlying emotional behavior that may have relevance to the neurobiology of depression.  相似文献   

18.
Both glial cell line-derived neurotrophic factor (GDNF) and adenosine influence dopaminergic function in the striatum. We now evaluated the GDNF effect on dopamine release from rat striatal nerve endings and if this effect of GDNF is modulated by adenosine A(2A) receptors.Dopamine release was evoked twice (S(1) and S(2)); GDNF was added before S(2) and drugs used to modify GDNF actions were present during both stimulation periods. The effect of GDNF was taken as the change in the S(2)/S(1) ratio in the absence and in the presence of GDNF in the same experimental conditions. GDNF (3-30 ng/ml) increased dopamine release from K(+) (20 mM, 2 min) stimulated synaptosomes and electrically (2 Hz, 2 min) stimulated striatal slices, an effect dependent upon tonic adenosine A(2A) receptor activation, since it was blocked by the A(2A) receptor antagonist, SCH 58261 (50 nM). Activation of A(2A) receptors with CGS 21680 (10 nM) potentiated the effect of GDNF in synaptosomes. CGS 21680 also potentiated the effect of GDNF in striatal slices, providing that GABAergic transmission was inhibited; if not, the action of GDNF was attenuated by CGS 21680. Blockade of GABAergic transmission per se increased dopamine release, but attenuated the effect of GDNF upon dopamine release in slices.The results suggest that GDNF enhances dopamine release by acting presynaptically at the striatum, an action that requires adenosine A(2A) receptor activity. Furthermore, in striatal slices, the action of GDNF as well as its modulation by adenosine A(2A) receptor activation appears to be also under control of GABAergic transmission.  相似文献   

19.
In the developing CNS, the manifestation of the macroglial phenotypes is delayed behind the formation of neurons. The “neurons first – glia second” principle seems to be valid for neural tissue differentiation throughout the neuraxis, but the reasons behind are far from clear. In the presented study, the mechanisms of this timing were investigated in vitro, in the course of the neural differentiation of one cell derived NE-4C neuroectodermal stem and P19 embryonic carcinoma cells. The data demonstrated that astrocyte formation coincided in time with the maturation of postmitotic neurons, but the close vicinity of neurons did not initate astrocyte formation before schedule. All-trans retinoic acid, a well-known inducer of neuronal differentiation, on the other hand, blocked effectively the astroglia production if present in defined stages of the in vitro neuroectodermal cell differentiation. According to the data, retinoic acid plays at least a dual role in astrogliogenesis: while it is needed for committing neural progenitors for a future production of astrocytes, it prevents premature astrogliogenesis by inhibiting the differentiation of primed glial progenitors.  相似文献   

20.
Summary Using both quantitative autoradiography in sections and a homogenate preparation assay, the distribution and density of3H-ketanserin binding to 5HT2 receptors was examined in frontal cortex and the hippocampal region from six control subjects and seven subjects who had dementia of the Alzheimer type (DAT). There was no difference between control and DAT subjects in the levels of ketanserin binding in any region of the frontal cortex or hippocampus determined by quantitative autoradiography or in parallel experiments using homogenate preparations (e.g. left frontal cortex, layer III; controls, 34.4±1.6 pmol/g, DAT, 37.1±4.6 pmol/g). In all of the DAT brains there were abundant neuritic plaques (e.g. superficial layers of left frontal cortex; 35±7 plaques/mm2), and a marked reduction of choline acetyltransferase activity, (by 30–60% relative to controls), in both frontal cortex and the hippocampus. Thus, despite the presence of morphological abnormalities and a loss of cholinergic function, two classic features of DAT, 5HT2 receptor binding was unaltered in this group of DAT brains compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号