首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIM: To enrich putative hepatic progenitors from the developing human fetal liver using CD34 as a marker. METHODS: Aborted fetuses of 13-20 wk were used for the isolation of liver cells. The cells were labeled with anti CD34; a marker used for isolating progenitor population and the cells were sorted using magnetic cell sorting. The positive fractions of cells were assessed for specific hepatic markers. Further, these cells were cultured in vitro for long term investigation. RESULTS: Flow cytometric and immunocytochemical analysis for alphafetoprotein (AFP) showed that the majority of the enriched CD34 positive cells were positive for AFP. Furthermore, these enriched cells proliferated in the long term and maintained hepatic characteristics in in vitro culture. CONCLUSION: The study shows that aborted human fetal liver is a potential source for isolation of hepatic progenitors for clinical applications. The study also demonstrates that CD34 can be a good marker for the enrichment of progenitor populations.  相似文献   

2.
INTRODUCTION The incidence of hepatic injury and end-stage liver f ibrosis is high in China. Cirrhosis represents a serious health care problem worldwide. The prognosis of patients with the disease is poor, although liver transplantation is a successful t…  相似文献   

3.
目的探讨骨髓CD34^+细胞向血管内皮细胞转分化的诱导方法。方法采集犬骨髓,经免疫磁珠分离出内皮祖细胞,内皮细胞生长因子(VEGF)诱导分化为内皮细胞并扩增,倒置相差显微镜、免疫细胞化学和摄取DilAc—LDL试验鉴定。将所得细胞种植于人工血管,扫描电镜观察细胞形态,并与MNCs作对比。结果经流式细胞仪测定,分离后的细胞中CD34^+细胞占78.46%±6.37%;CD34^+细胞培养2周后细胞基本铺满培养瓶底面,细胞呈“鹅卵石”状排列,CD34^+和Ⅷ因子免疫细胞化学染色均为阳性。扫描电镜下观察可见内皮细胞平铺于人工血管表面,有伪足伸出并长入血管内表面微孔内。结论通过免疫磁珠方法可分离得到高纯度的骨髓CD34^+细胞,经体外培养VEGF诱导后可定向分化为内皮细胞。  相似文献   

4.
《Platelets》2013,24(6):422-432
Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34+ and CD133+ cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34+ and CD133+ cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM?+?5%, FCS?+?5% PRGF and IMDM?+?10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34+ and CD133+ cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34+ and CD133+ cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.  相似文献   

5.
6.
Within the phenotypically and functionally heterogeneous group of circulating progenitor cells (CPC), a subclass of cells with vascular repair potential have been identified. These CPC are detected and isolated based on single or combined expression of CD34, CD133 and VEGFR-2, and referred to as endothelial progenitor cells. Here we asked whether CPC subsets defined by single expression of these markers exhibit functional heterogeneity. As functional parameters, we chose the capacity of CPC to differentiate into endothelial cells. Moreover, we studied their role in remodeling by recruitment of inflammatory cells, an aspect that has been little explored. We established an in vivo model in which the intrinsic functional capacity of these human CPC subsets was studied. Human CD34+ CPC, but not CD133+ or VEGFR-2+ CPC, seeded in Matrigel pellets and transplanted subcutaneously in a nude mouse host, contributed little to donor-derived neovascularization. However, host angiogenesis in the Matrigel implant, as demonstrated by the presence of capillaries containing erythrocytes and expressing mouse CD31, was strong in response to implantation of human CD34+ CPC and significantly lower in response to the other two CPC subsets. Moreover, the CD34+ CPC subset was significantly superior to CD133+ CPC and VEGFR-2+ CPC in the recruitment of host monocytes/macrophages. These three CPC populations were further dissected into seven discrete subsets, based on three-parameter flow cytometry analysis of combined expression patterns of CD34, CD133 and VEGFR-2. In conclusion, in our system, CD34+ CPC contribute marginally to neovascularization by differentiation but are potent regulators of the host angiogenic and pro-inflammatory response, suggesting a possible role for these cells in the remodeling of vascular lesions.  相似文献   

7.
Background  The acceptable dose of haematopoietic progenitor cells (HPCs) for transplantation is generally based on the number of CD34+ cells determined prior to cryopreservation. Commonly, cryopreservation is associated with total nucleated cell viability loss. Because HPCs have been shown to be more resistant to cryopreservation damage than nucleated cells overall, low viability may not reflect the quality and integrity of the thawed product.
Methods  Peripheral blood HPC products from 45 mobilized allogeneic and autologous donors were harvested by continuous flow blood separation and cryopreserved in 7·5% dimethyl sulfoxide. The number of viable CD34+ cells was determined by flow cytometry. Viability was measured by trypan blue (TB) uptake and 7-aminoactinomycin D (7-AAD) flow cytometry.
Results  Post-thaw HPC products were analysed for viability, CD34+ cell recovery and engraftment capability. The average post-thaw viable CD34+ cell recovery was 86·4%, while the average post-thaw viability, measured by TB or 7-AAD, was 74·0% and 57·0%, respectively. Most of the cells that did not survive cryopreservation were of the granulocyte series. All of the donors who underwent transplantation engrafted, mostly within 14 days.
Conclusions  Our data show that most CD34+ cells survive cryopreservation, regardless of the overall post-thaw total nucleated cell viability. Measuring the number of viable CD34 cells post-thaw might be of importance, and in cases of low viability can confirm the quality of the product issued.  相似文献   

8.
Dendritic cells (DC) have been generated in vitro from either CD34+ haemopoietic progenitor cells (HPC) or peripheral blood monocytes (Mo) in the presence of specific cytokine combinations, including granulocyte-macrophage colony-stimulating factor (GM-CSF). Since differences between DC from either source may be important for the clinical use of these antigen-presenting cells (APC), a comparative analysis was performed. HPC were expanded in the presence of interleukin (IL)-3, IL-6 and stem cell factor (SCF) (days 1–7) and subsequently induced by IL-4 + GM-CSF (days 8–26) to differentiate to Langerhans-type cells (pLC). The latter cytokines were similarly used to generate Mo-derived LC (mLC). Maturation of both cell types, pLC and mLC, to interdigitating DC-type cells (iDC) was induced by tumour necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Analysis of mLC/pLC and miDC/piDC with respect to morphology, phenotype, antigen uptake and presentation revealed a high similarity of DC from either source. The majority of mLC, however, exhibited a more mature differentiation stage, compared to pLC, evidenced from lower numbers of multilaminar MHC class II compartments and less efficient APC function for extracellular protein antigens. Although macropinocytosis was performed by LC, neither LC nor iDC from either source were able to take up 0.5 μm latex beads. However, phagocytosis of 0.5 μm and 1 μm beads was performed by Mo that could subsequently be induced to become iDC, thus providing the unique opportunity to present phagocytosed material in DC-type fashion. Mo may be the preferential source for clinical use of iDC-type cells since preparation and culture are easier to perform and are less costly while APC function is similar to HPC-derived iDC.  相似文献   

9.
Aim: Hepatic progenitor cells can serve as an alternative source of hepatocytes for the treatment of liver diseases. Methods: We isolated and expanded the epithelial progenitor cells (EPC) from the human fetal liver and investigated the differentiation of EPC into hepatic cells by fluorescence-activated cell sorter (FACS), real-time polymerase chain reaction (PCR), immunofluorescence assay, western blotting, and periodic acid-Schiff staining. Results: Isolated EPC possessed highly proliferative ability and subpassaged for more than 25 passages. Real-time PCR showed that EPC expressed liver epithelial markers (cytokeratin [CK]8 and CK18) and biliary-specific markers (CK7 and CK19). FACS analysis indicated that these cells were positive for CD117, CD147, CD90, CD44, human leucocyte antigen class I and CD71, but negative for CD34 and CD45. The EPCpossessed multipotential indicated by differentiating into osteoblasts and adipocytes; when subjected to the hepatic differentiation condition, EPC could be induced to hepatocyte-like cells, which expressed albumin, alpha-fetoprotein, and CK18 proteins. Two months after EPC transplantation, we observed that the grafted cells differentiated into hepatocyte-like cells and there was no observable tumor mass. Conclusion: We have isolated and characterized the human fetal liver-derived EPC and these cells may serve as an ideal cell source for cell-replacement therapy of diseased livers.  相似文献   

10.
CD34+ progenitor cells hold promise for therapeutic neovascularization in various settings. In this study, the role of human peripheral blood CD34+ cells in neovascularization and inflammatory cell recruitment was longitudinally studied in vivo. Human CD34+ cells were incorporated in Matrigel, implanted subcutaneously in nude mice, and explanted after 2, 4, 7, or 14 days. Cell-free Matrigels served as controls. Histochemical analyses demonstrated that neovascularization occurred almost exclusively in CD34+ implants. Cellular and capillary density were increased in cell-loaded Matrigels after 2 days and further increased at 14 days. Human CD34+ cells did not incorporate in neovessels, but formed vWF+/CD31+/VEGF+ cell clusters that were present up to day 14. However, CD34+ cells induced host neovascularization, as demonstrated by increased presence of murine CD31+ and vWF+ vasculature from day 7 to 14. Moreover, recruitment of murine monocytes/macrophages was significantly enhanced in CD34+ implants at all time points. Gene expression of chemotactic cytokines MCP-1 and IL-8 was detected on CD34+ cells in vitro and confirmed immunohistochemically in cell-loaded explants at all time points. Our data indicate that human CD34+ cells, implanted in a hypoxic environment, generate an angiogenic niche by secreting chemotactic and angiogenic factors, enabling rapid neovascularization, possibly via recruitment of monocytes/macrophages.  相似文献   

11.
Multiparameter flow cytometry was applied on normal human bone marrow (BM) cells to study the lineage commitment of progenitor cells ie, CD34+ cells. Lineage commitment of the CD34+ cells into the erythroid lineage was assessed by the coexpression of high levels of the CD71 antigen, the myeloid lineage by coexpression of the CD33 antigen and the B-lymphoid lineage by the CD10 antigen. Three color immunofluorescence experiments showed that all CD34+ BM cells that expressed the CD71, CD33, and CD10 antigens, concurrently stained brightly with anti-CD38 monoclonal antibodies (MoAbs). In addition, the CD38 antigen was brightly expressed on early T lymphocytes in human thymus, characterized by CD34, CD5, and CD7 expression. Only 1% of the CD34+ cells, 0.01% of nucleated cells in normal BM, did not express the CD38 antigen. The CD34+, CD38- cell population lacked differentiation markers and were homogeneous primitive blast cells by morphology. In contrast the CD34+, CD38 bright cell populations were heterogeneous in morphology and contained myeloblasts and erythroblasts, as well as lymphoblasts. These features are in agreement with properties expected from putative pluripotent hematopoietic stem cells; indeed, the CD34 antigen density decreased concurrently with increasing CD38 antigen density suggesting an upregulation of the CD38 antigen on differentiation of the CD34+ cells. Further evidence for a strong enrichment of early hematopoietic precursors in the CD34+, CD38- cell fraction was obtained from culture experiments in which CD34+ cell fractions with increasing density of the CD38 antigen were sorted singularly and assayed for blast colony formation. On day 14 of incubation, interleukin-3 (IL-3), IL-6, and GM-CSF, G-CSF, and erythropoietin (Epo) were added in each well. Twenty-five percent of the single sorted cells that expressed CD34 but lacked CD38 antigen gave rise to primitive colonies 28 to 34 days after cell sorting. The ability to form primitive colonies decreased rapidly with increasing density of the CD38 antigen. During 120 days of culture, up to five sequential generations of colonies were obtained after replating of the first-generation primitive colonies. This study provides direct evidence for the existence of a single class of progenitors with extensive proliferative capacity in human BM and provides an experimental approach for their purification, manipulation, and further characterization.  相似文献   

12.
Young  JC; Bruno  E; Luens  KM; Wu  S; Backer  M; Murray  LJ 《Blood》1996,88(5):1619-1631
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage.  相似文献   

13.
BACKGROUND AND OBJECTIVES: We hypothesized that qualitative or quantitative differences in hematopoietic stem cells from fetal liver (FL) and fetal bone marrow (FBM) may be the cause of their organ specificity. DESIGN AND METHODS: To analyze possible differences in vivo, we compared the engraftment potential of equal numbers of CD34+ cells isolated from human FL or FBM into immunodeficient NOD/SCID mice. RESULTS: Mice showing engraftment following transplantation of CD34+ cells from FL demonstrated 14% (range 2-76%) CD45+ cells of human origin in the bone marrow compared to significantly lower levels of engraftment (4%, range 2-20%, p < 0.04) of FBM CD34+ cells. Likewise, the percentage of CD34+ CD38- cells in FBM was 4 times lower than the percentage in FL (1.4+/-0.9% and 5.6+/-0.7%, respectively). Similar organ distribution of engrafted human cells was found. Subset analysis of human cells in bone marrow of engrafted mice revealed identical distribution of the lymphoid, myeloid and erythroid lineages after transplantation of CD34+ cells from FL or FBM. INTERPRETATION AND CONCLUSIONS: The FL CD34+ cells showed a four-fold higher content of the CD34+ CD38- subset coinciding with a four-fold higher engraftment of CD34+ cells into NOD/SCID mice. Since the organ distribution and differentiation potential of the cells engrafted were similar, we concluded that CD34+ hematopoietic cells derived from FL and FBM have quantitatively different, but qualitatively the same potential for engraftment into NOD/SCID mice.  相似文献   

14.
AIM: To examine the efficacy of the radial flow bioreactor (RFB) as an extracorporeal bioartificial liver (BAL) and the reconstruction of liver organoids using embryonic pig liver cells. METHODS: We reconstructed the liver organoids using embryonic porcine liver cells in the RFB. We also determined the gestational time window for the optimum growth of embryonic porcine liver cells. Five weeks of gestation was designated as embryonic day (E) 35 and 8 wk of gestation was designated as E56. These cells were cultured for one week before morphological and functional examinations. Moreover, the efficacy of pulsed adminisbation of a high concentration hepatocyte growth factor (HGF) was examined. RESULTS: Both cell growth and function were excellent after harvesting on E35. The pulsed administration of a high concentration of HGF promoted the differentiation and maturation of these fetal hepatic cells. Microscopic examination of organoids in the RFB revealed palisading and showed that bile duct-like structures were well developed, indicating that the organoids were mini livers. Transmission electron microscopy revealed microvilli on the luminal surfaces of bile duct-like structures and junctional complexes, which form the basis of the cytoskeleton of epithelial tissues. Furthermore, strong expression of connexin (Cx) 32, which is the main protein of hepatocyte gap junctions, was observed. With respect to liver function, ammonia detoxification and urea synthesis were shown to be performed effectively.
CONCLUSION: Our system can potentially be applied in the fields of BAL and transplantation medicine.  相似文献   

15.
Positive selected haematopoietic stem cells are increasingly used for allogeneic transplantation with the CD34 antigen employed in most separation techniques. However, the recently described pentaspan molecule CD133 appears to be a marker of more primitive haematopoietic progenitors. Here we report our experience with a new CD133-based selection method in 10 paediatric patients with matched unrelated (n = 2) or mismatched-related donors (n = 8). These patients received a combination of stem cells (median = 29.3 x 10(6)/kg), selected with either anti-CD34 or anti-CD133 coated microbeads. The proportion of CD133+ selected cells was gradually increased from patient to patient from 10% to 100%. Comparison of CD133+ and CD34+ separation procedures revealed similar purity and recovery of target populations but a lower depletion of T cells by CD133+ selection (3.7 log vs. 4.1 log, P < 0.001). Both separation procedures produced >90% CD34+/CD133+ double positive target cells. Engraftment occurred in all patients (sustained primary, n = 8; after reconditioning, n = 2). No primary acute graft versus host disease (GvHD) >/= grade II or chronic GvHD was observed. The patients showed a rapid platelet recovery (median time to independence from substitution = 13.5 d), whereas T cell regeneration was variable. Five patients are alive with a median follow-up of 10 months. Our data demonstrates the feasibility of CD133+ selection for transplantation from alternative donors and encourages further trials with total CD133+ separated grafts.  相似文献   

16.
The orderly transfer of haemopoiesis from the fetal liver to the medullary cavities during the ontogeny may result from a decrease in the capacity of the fetal liver to support haemopoiesis. Alternatively it could be facilitated by the preferential migration of primitive haemopoietic cells to the marrow. In this study we have compared the ability of high proliferative potential colony forming cells (HPP-CFC) derived from murine fetal liver (FL) on the 15th day of gestation and from murine adult bone marrow (BM) to adhere to either FL or BM derived stromal layers. Adhesion of FL HPP-CFC to bone marrow stromal layers was significantly greater than all other combinations tested. The remarkable affinity of HPP-CFC derived from FL for BM stromal layers is consistent with the preferential migration of haemopoietic cells from the fetal liver to the medullary cavities.  相似文献   

17.
We examined the effects of different cytokine combinations and culture conditions on the expansion and modulation of cell surface antigens of CD34+ derived dendritic cells (DCs), the most efficient antigen-presenting cells capable of stimulating resting T cells in the primary immune response. Cells with a dendritic morphology and expressing HLA-DR, CD1a, S100 and CD83 were maximally expanded under serum-free conditions with the addition of SCF, GM-CSF, TNF-α, TGF-β and Flt-3 ligand (fold increase of CD1a+ cells = 102 ± 32 after 2 weeks of culture). CD34+ cells were also grown under continuous flow conditions in an artificial capillary system; after 14 d of culture, the expansion in the total cell number was lower than that of the static cultures (3.3 ± 2 v 18.9 ± 4) but the percentage of CD1a+/CD83+/CD80+ cells was considerably higher, whereas the CD14+ cells were significantly reduced (8.9 ± 2 v 26 ± 13). In continuous perfusion cultures, low levels of DC precursors and of LTC-IC were still present up to day 14. The DCs generated under flow conditions stimulated the mixed leucocyte reaction (MLR) more than the cells grown in static cultures. By electron microscopy, cells grown in the continuous flow system showed an increased number of large cells with numerous dendritic processes and abundant multilamellar complexes. The cells expanded under these conditions were sorted on the basis of their light-scatter properties into two fractions: one containing a predominance of CD1a+/S100+/CD83+/CD80+/CD14?‘large cells’ with great internal complexity (mature DCs); the second including ‘small cells’ either CD33+/CD14+, CD33+/CD15+ or CD33+/CD13±/CD14?. The DCs generated and selected with this method are therefore particularly well suited for immunotherapeutic protocols.  相似文献   

18.
The discovery of peripheral circulating cells that contribute to vasculogenesis and endothelial repair was one of the most fascinating breakthroughs in the domain of vascular research during the last two decades. The population of vasculogenic cells however, is heterogeneous and can be analyzed using different approaches including in vitro culture and flow cytometry. Circulating CD34+/KDR+/CD45dim endothelial progenitor cells (EPC) have a great potential as biomarkers in various cardiovascular diseases. With the expanding interest in this field, the development of standardized protocols is critical.  相似文献   

19.
20.
The aim of our study was to test if dendritic cells contain the KSHV genome. CD34+ peripheral blood progenitor cells (PBPC) and bone marrow mononuclear cells were cultured in X-VIVO 15 medium supplemented with GM-CSF and TNF-alpha in gas-permeable containers. Dendritic cells were identified morphologically and immunophenotypically. The KSHV genome was not identified in any of the cases using a nested primer PCR approach. Serological analysis corroborated the molecular findings: no antibodies for KSHV were found in any of the multiple myeloma patients. These data are of importance when considering use of DC for therapeutic approaches in multiple myeloma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号