首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Ischemic preconditioning protects the heart against subsequent ischemia. Opening of the adenosine triphosphate-sensitive potassium (KATP) channel is a key mechanism of preconditioning. Ketamine blocks KATP channels of isolated cardiomyocytes. The authors investigated the effects of ketamine and its stereoisomers on preconditioning.

Methods: Isolated rat hearts (n = 80) underwent 30 min of no-flow ischemia and 60 min of reperfusion. Two groups with eight hearts each underwent the protocol without intervention (control-1 and control-2), and, in eight hearts, preconditioning was elicited by two 5-min periods of ischemia before the 30 min ischemia. In the six treatment groups (each n = 8), ketamine, R (-)- or S (+)-ketamine were administered at concentrations of 2 or 20 [mu]g/ml before preconditioning. Eight hearts received 20 [mu]g/ml R (-)-ketamine before ischemia. Left ventricular (LV) developed pressure and creatine kinase (CK) release during reperfusion were determined as variables of ventricular function and cellular injury.

Results: Baseline LV developed pressure was similar in all groups: 104 +/- 28 mmHg (mean +/- SD). Controls showed a poor recovery of LV developed pressure (17 +/- 8% of baseline) and a high CK release (70 +/- 17 IU/g). Ischemic preconditioning improved recovery of LV developed pressure (46 +/- 14%) and reduced CK release (47 +/- 17 IU/g, both P < 0.05 vs. control-1). Ketamine (2 [mu]g/ml) and 2 or 20 [mu]g/ml S (+)-ketamine had no influence on recovery of LV developed pressure compared with preconditioning (47 +/- 18, 43 +/- 8, 49 +/- 36%) and CK release (39 +/- 8, 30 +/- 14, 41 +/- 25 IU/g). After administration of 20 [mu]g/ml ketamine and 2 or 20 [mu]g/ml R (-)-ketamine, the protective effects of preconditioning were abolished (LV developed pressure-recovery, 16 +/- 14, 22 +/- 21, 18 +/- 11%; CK release, 67 +/- 11, 80 +/- 21, 82 +/- 41 IU/g; each P < 0.05 vs. preconditioning). Preischemic treatment with R (-)-ketamine had no effect on CK release (74 +/- 8 vs. 69 +/- 9 IU/g in control-2, P = 0.6) and functional recovery (LV developed pressure 12 +/- 4 vs. 9 +/- 2 mmHg in control-2, P = 0.5).  相似文献   


2.
BACKGROUND: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. METHODS: In 46 alpha-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S(+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg(-1)) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point. RESULTS: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S(+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0). CONCLUSIONS: Ketamine, but not S(+)-ketamine blocks the cardioprotective effect of ischemic preconditioning in vivo.  相似文献   

3.
Background: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S (+)-ketamine on ischemic preconditioning in the rabbit heart in vivo.

Methods: In 46 [alpha]-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S (+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg-1) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point.

Results: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S (+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0).  相似文献   


4.
PURPOSE: Ischemic preconditioning protects the heart against subsequent prolonged ischemia by opening of adenosine triphosphate-sensitive potassium (K(ATP)) channels. Thiopentone blocks K(ATP) channels in isolated cells. Therefore, we investigated the effects of thiopentone on ischemic preconditioning. METHODS: Isolated rat hearts (n=56) were subjected to 30 min of global no-flow ischemia, followed by 60 min of reperfusion. Thirteen hearts underwent the protocol without intervention (control, CON) and in 11 hearts (preconditioning, PC), ischemic preconditioning was elicited by two five-minute periods of ischemia. In three additional groups, hearts received 1 (Thio 1, n=11), 10 (Thio 10, n=11) or 100 microg x mL(-1) (Thio 100, n=10) thiopentone for five minutes before preconditioning. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial performance and cellular injury, respectively. RESULTS: Recovery of LV developed pressure was improved by ischemic preconditioning (after 60 min of reperfusion, mean +/- SD: PC, 40 +/- 19% of baseline) compared with the control group (5 +/- 6%, P <0.01) and this improvement of myocardial function was not altered by administration of thiopentone (Thio 1, 37 +/- 15%; Thio 10, 36 +/- 16%; Thio 100, 38 +/- 16%, P=0.87-0.99 vs PC). Total CK release over 60 min of reperfusion was reduced by preconditioning (PC, 202 +/- 82 U x g(-1) dry weight) compared with controls (CON, 383 +/- 147 U x g(-1), P <0.01) and this reduction was not affected by thiopentone (Thio 1, 213 +/- 69 U x g(-1); Thio 10, 211 +/- 98 U x g(-1); Thio 100, 258 +/- 128 U x g(-1), P=0.62-1.0 vs PC). CONCLUSION: These results indicate that thiopentone does not block the cardioprotective effects of ischemic preconditioning in an isolated rat heart preparation.  相似文献   

5.
Racemic ketamine blocks K(ATP) channels in isolated cells and abolishes short-term cardioprotection against prolonged ischemia. We investigated the effects of racemic ketamine and S(+)-ketamine on ischemic late preconditioning (LPC) in the rabbit heart in vivo. A coronary occluder was chronically implanted in 36 rabbits. After recovery, the rabbits divided into four groups (each n = 9). LPC was induced in conscious rabbits by a 5-min coronary occlusion. Twenty-four hours later, the animals were instrumented for measurement of left ventricular systolic pressure (LVSP, tip manometer), cardiac output (CO, ultrasonic flowprobe) and myocardial infarct size (triphenyltetrazolium staining). All rabbits were then subjected to 30-min coronary occlusion and 2 h reperfusion. Controls underwent the ischemia-reperfusion program without LPC. To test whether racemic ketamine or S(+)-ketamine blocks the cardioprotection induced by LPC, the drugs (10 mg/kg) were given 10 min before the 30-min ischemia. Hemodynamic values were not significantly different between groups during the experiments (baseline: LVSP, 94 +/- 3 mm Hg [mean +/- SEM] and CO, 243 +/- 9 mL/min; coronary occlusion: LVSP, 93% +/- 4% of baseline and CO, 84% +/- 4%; after 2 h of reperfusion: LVSP, 85% +/- 4% and CO, 83% +/- 4%). LPC reduced infarct size from 44% +/- 3% of the area at risk in controls to 22% +/- 3% (P = 0.002). Administration of racemic ketamine abolished the cardioprotective effects of LPC (44 +/- 4%, P = 0.002). S(+)-ketamine did not affect the infarct size reduction induced by LPC (26 +/- 6%, P = 0.88). IMPLICATIONS: Racemic ketamine, but not S(+)-ketamine, blocks the cardioprotection induced by ischemic late preconditioning in rabbit hearts in vivo. Thus, the influence of ketamine on ischemic late preconditioning is most likely enantiomer specific, and the use of S(+)-ketamine may be preferable in patients with coronary artery disease.  相似文献   

6.
Polymorphonuclear neutrophils (PMN) play a crucial role in the initiation of reperfusion injury. In a previous study, we found that ketamine reduced the postischemic adherence of PMN to the intact coronary system of isolated guinea pig hearts. Because ketamine is a racemic mixture (1:1) of two optical enantiomers, we looked for possible differences in action between the stereoisomers. Seventy-six guinea pig hearts were perfused in the "Langendorff" mode under conditions of constant flow (5 mL/min) using modified Krebs-Henseleit buffer. After 15 min of global warm ischemia, freshly isolated human PMN (10(6)) were infused as a bolus into the coronary system during the second minute of reperfusion. PMN adhesion was expressed as the numeric difference between PMN recovered in the effluent and those applied. Series A hearts received 5 microM S(+), 5 microM R(-), or 10 microM racemic ketamine starting 20 min before ischemia and during reperfusion. In Series B hearts, 10 microM nitro-L-arginine, an inhibitor of NO synthase, was added to the perfusate. In Series C, PMN were preincubated for 15 min with 5 microM S(+)- or R(-)-ketamine. Coronary vascular leak was assessed by measuring the rate of formation of transudate on the epicardial surface. Ischemia/reperfusion without anesthetics increased coronary PMN adherence from 25.5% +/-2.3% (basal) to 35.3%+/-1.5% of the number applied. S(+)-ketamine reduced postischemic adherence in each series (A, 25.5%+/-5.1%; B, 22.5%+/-1.7%; C, 25.3%+/-7.7%), as did racemate (A, 26.4%+/-3.7%). Although 5 microM R(-)-ketamine had no effect on adhesion (A, 30.5%+/-6.7%; B, 34.3%+/-5.1%; C, 34.3%+/-4.3%), it significantly increased vascular leak in the presence of NOLAG. These findings indicate stereoselective differences in biological action between the two ketamine isomers: S(+)-ketamine inhibited PMN adherence, R(-)-ketamine worsened coronary vascular leak in reperfused isolated hearts. IMPLICATIONS: In this study, we demonstrated stereoselective differences in the biologic action of the two ketamine isomers in an animal model of myocardial ischemia. Polymorphonuclear neutrophil adherence to the coronary vasculature after ischemia was inhibited by S(+)-ketamine, whereas R(-)-ketamine increased coronary vascular fluid leak.  相似文献   

7.
OBJECTIVE: Ischemic preconditioning combined with potassium cardioplegia does not always confer additive myocardial protection. This study tested the hypothesis that the efficacy of ischemic preconditioning under potassium cardioplegia is dependent on protein kinase C isoform. METHODS: Isolated and crystalloid-perfused rat hearts underwent 5 cycles of 1 minute of ischemia and 5 minutes of reperfusion (low-grade ischemic preconditioning) or 3 cycles of 5 minutes of ischemia and 5 minutes of reperfusion (high-grade ischemic preconditioning) or time-matched continuous perfusion. These hearts received a further 5 minutes of infusion of normal buffer or oxygenated potassium cardioplegic solution. The isoform nonselective protein kinase C inhibitor chelerythrine (5 micromol/L) was administered throughout the preischemic period. All hearts underwent 35 minutes of normothermic global ischemia followed by 30 minutes of reperfusion. Isovolumic left ventricular function and creatine kinase release were measured as the end points of myocardial protection. Distribution of protein kinase C alpha, delta, and epsilon in the cytosol and the membrane fractions were analyzed by Western blotting and quantified by a densitometric assay. RESULTS: Low-grade ischemic preconditioning was almost as beneficial as potassium cardioplegia in improving functional recovery; left ventricular developed pressure 30 minutes after reperfusion was 70 +/- 15 mm Hg (P <.01) in low-grade ischemic preconditioning and 77 +/- 14 mm Hg (P <.001) in potassium cardioplegia compared with values found in unprotected control hearts (39 +/- 12 mm Hg). Creatine kinase release during reperfusion was also equally inhibited by low-grade ischemic preconditioning (18.2 +/- 10.6 IU/g dry weight, P <.05) and potassium cardioplegia (17.6 +/- 6.7 IU/g, P <.01) compared with control values. However, low-grade ischemic preconditioning in combination with potassium cardioplegia conferred no significant additional myocardial protection; left ventricular developed pressure was 80 +/- 17 mm Hg, and creatine kinase release was 14.8 +/- 11.0 IU/g. In contrast, high-grade ischemic preconditioning with potassium cardioplegia conferred better myocardial protection than potassium cardioplegia alone; left ventricular developed pressure was 121 +/- 16 mm Hg (P <.001), and creatine kinase release was 8.3 +/- 5.8 IU/g (P <.05). Chelerythrine itself had no significant effect on functional recovery and creatine kinase release in the control hearts, but it did inhibit the salutary effects not only of low-grade and high-grade ischemic preconditioning but also those of potassium cardioplegia. Low-grade ischemic preconditioning and potassium cardioplegia enhanced translocation of protein kinase C alpha to the membrane, whereas high-grade ischemic preconditioning also enhanced translocation of protein kinase C delta and epsilon. Chelerythrine inhibited translocation of all 3 protein kinase C isoforms. CONCLUSIONS: These results suggest that myocardial protection by low-grade ischemic preconditioning and potassium cardioplegia are mediated through enhanced translocation of protein kinase C alpha to the membrane. It is therefore suggested that activation of the novel protein kinase C isoforms is necessary to potentiate myocardial protection under potassium cardioplegia.  相似文献   

8.
BACKGROUND: S(+)-Ketamine is reported to exert twofold greater analgesic and hypnotic effects but a shorter recovery time in comparison with racemic ketamine, indicating possible differential effects of stereoisomers. However, cardiovascular regulation during S(+)-ketamine anesthesia has not been studied. Muscle sympathetic activity (MSA) may be an indicator of the underlying alterations of sympathetic outflow. Whether S(+)-ketamine decreases MSA in a similar manner as the racemate is not known. Thus, the authors tested the hypothesis that S(+)-ketamine changes MSA and the muscle sympathetic response to a hypotensive challenge. METHODS: Muscle sympathetic activity was recorded by microneurography in the peroneal nerve of six healthy participants before and during anesthesia with S(+)-ketamine (670 microg/kg intravenously followed by 15 microg x kg(-1) x min(-1)). Catecholamine and ketamine plasma concentrations, heart rate, and arterial blood pressure were also determined. MSA responses to a hypotensive challenge were assessed by injection of sodium nitroprusside (2-10 microg/kg) before and during S(+)-ketamine anesthesia. In the final step, increased arterial pressure observed during anesthesia with S(+)-ketamine was adjusted to preanesthetic values by sodium nitroprusside infusion (1-6 microg x kg(-1) x min(-1)). RESULTS: Anesthesia with S(+)-ketamine (ketamine plasma concentration 713 +/- 295 microg/l) significantly increased MSA burst frequency (mean +/- SD; 18 +/- 6 to 35 +/- 11 bursts/min) and burst incidence (32 +/- 10 to 48 +/- 15 bursts/100 heartbeats) and was associated with a doubling of norepinephrine plasma concentration (from 159 +/- 52 to 373 +/- 136 pg/ml) parallel to the increase in MSA. Heart rate and arterial blood pressure also significantly increased. When increased arterial pressure during S(+)-ketamine was decreased to awake values with sodium nitroprusside, MSA increased further (to 53 +/- 24 bursts/min and 60 +/- 20 bursts/100 heartbeats, respectively). The MSA increase in response to the hypotensive challenge was fully maintained during anesthesia with S(+)-ketamine. CONCLUSIONS: S(+)-Ketamine increases efferent sympathetic outflow to muscle. Despite increased MSA and arterial pressure during S(+)-ketamine anesthesia, the increase in MSA in response to arterial hypotension is maintained.  相似文献   

9.
BACKGROUND: Ketamine is increasingly used in pain therapy but may impair brain functions. Mood and cognitive capacities were compared after equianalgesic small-dose S(+)-, R(-)-, and racemic ketamine in healthy volunteers. METHODS: Twenty-four subjects received intravenous 0.5 mg/kg racemic, 0.25 mg/kg S(+)-, and 1.0 mg/kg R(-)-ketamine in a prospective, randomized, double-blind, crossover study. Hemodynamic variables, mood, and cognitive capacities were assessed for 60 min. RESULTS: Transient increases in blood pressure, heart rate, and catecholamines were similar after administration of all drugs. At 20 min after injection, subjects felt less decline in concentration and were more brave after S(+)- than racemic ketamine. They reported being less lethargic but more out-of-control after R(-)- than racemic ketamine. Ketamine isomers induced less drowsiness, less lethargy, and less impairment in clustered subjective cognitive capacity than racemic ketamine for the 60-min study. Objective concentration capacity [test time, S(+): 25.4 +/- 15.2 s, R(-): 34.8 +/- 18.4 s, racemic ketamine: 40.8 +/- 20.8 s, mean +/- SD] and retention in primary memory [test time, S(+): 4.6 +/- 1.2 s, R(-): 4.2 +/- 1.4 s, racemic ketamine: 4.0 +/- 1.4 s, mean +/- SD] declined less after S(+)- than either R(-)- or racemic ketamine at 1 min. At 5 min, immediate recall, anterograde amnesia, retention in primary memory, short-term storage capacity, and intelligence quotient were less reduced after the isomers than racemic ketamine. Speed reading and central information flow decreased less after S(+)- than racemic ketamine. CONCLUSIONS: Early after injection, ketamine isomers induce less tiredness and cognitive impairment than equianalgesic small-dose racemic ketamine. In addition, S(+)-ketamine causes less decline in concentration capacity and primary memory. The differences in drug effects cannot be explained by stereoselective action on one given receptor.  相似文献   

10.
Modulation of NMDA receptor function by ketamine and magnesium: Part I   总被引:7,自引:0,他引:7  
N-methyl-D-aspartate (NMDA) receptors are important components of pain processing. Ketamine and Mg2+ block NMDA receptors and might therefore be useful analgesics, and combinations of Mg2+ and ketamine provide more effective analgesia. We investigated their interactions at NMDA receptors. Xenopus oocytes, expressing NR1/NR2A or NR1/NR2B glutamate receptors, were studied. The effects of Mg2+, racemic ketamine and its isomers, and the combination of Mg2+ and S(+)-ketamine on NMDA signaling were determined. Mg2+ and ketamine alone inhibited NMDA receptors noncompetitively (half-maximal inhibitory effect concentration: Mg2+ 4.2 +/- 1.2 x 10(-)(4) M at NR1/NR2A and 6.3 +/- 2.4 x 10(-)(4) M at NR1/NR2B; racemic ketamine 13.6 +/- 8.5 x 10(-)(6) M at NR1/NR2A and 17.6 +/- 7.2 x 10(-)(6) M at NR1/NR2B; S(+)-ketamine 4.1 +/- 2.5 x 10(-)(6) at NR1/NR2A and 3.0 +/- 0.3 at NR1/NR2B; R(-)-ketamine 24.4 +/- 4.1 x 10(-)(6) M at NR1/NR2A and 26.0 +/- 2.4 x 10(-)(6) M at NR1/NR2B). The combined application of Mg2+ and ketamine decreased the half-maximal inhibitory effect concentration >90% at both receptors. Isobolographic analysis demonstrated super-additive interactions. Ketamine and Mg2+ inhibit responses of recombinantly expressed NR1/NR2A and NR1/NR2B glutamate receptors, and combinations of the compounds act in a super-additive manner. These findings may explain, in part, why combinations of ketamine and Mg2+ are more effective analgesics than either compound alone. IMPLICATIONS: Ketamine and Mg2+ inhibit functioning of recombinantly expressed NR1/NR2A and NR1/NR2B glutamate receptors, and combinations of the compounds act in a super-additive manner. These findings may explain, in part, why combinations of ketamine and Mg2+ are more effective analgesics than either compound alone.  相似文献   

11.
目的 评价右美托咪啶预处理对大鼠离体心脏缺血再灌注损伤的影响.方法 健康清洁级雄性Wistar大鼠24只,体重230~ 260 g,制备离体Langendorff心脏灌注模型后,采用随机数字表法,将离体心脏随机分为3组(n=8):缺血再灌注组(I/R组)、右美托咪啶Ⅰ组(DI组)、右美托咪啶Ⅱ组(DⅡ组).各组均先用K-H液平衡灌注10 min后,I/R组用K-H液继续灌注30 min,D I组和DⅡ组分别用含有0.23.、2.30ng/ml右美托咪啶的K-H液继续灌注20 min,再用K-H液冲洗10 min.各组心脏均缺血30 min,K-H液再灌注120 min.于平衡灌注末、再灌注5、30、60和120min时收集冠脉流出液,测定肌酸激酶(CK)和乳酸脱氢酶(LDH)活性.再灌注末取心肌组织,测定SOD活性及MDA含量.结果 与I/R组比较DⅠ组和DⅡ组冠脉流出液CK、LDH活性、心肌组织MDA含量降低,心肌组织SOD活性升高(P<0.05);与DI组比较,DⅡ组冠脉流出液CK、LDH活性、心肌组织MDA含量降低,心肌组织SOD活性升高(P<0.05).结论 右美托咪啶预处理可减轻大鼠心肌缺血再灌注损伤,且与浓度有关.  相似文献   

12.
BACKGROUND: Propofol is short-acting intravenous general anesthetics that reduces cardiovascular hemodynamics. The effects of propofol on intrinsic myocardial contractility, however, remain debatable. The aim of the current study was to test the hypothesis that inhibitory effects of propofol on left ventricular (LV) contractility and mechanical work capability of in situ ejecting rat hearts are attenuated after a brief regional ischemia and reperfusion. METHODS: The authors obtained steady-state LV pressure-volume loops and intermittently obtained LV end-systolic pressure-volume relation and evaluated effects of propofol on LV function by end-systolic pressure (ESPmLVV), systolic pressure-volume area (PVAmLVV) at midrange LV volume (mLVV). RESULTS: Propofol (5.2 +/- 0.3 approximately 11.1 +/- 3.7 microg.ml) significantly decreased ESP0.08 to 78 +/- 12% approximately 64 +/- 13% of prepropofol and PVA0.08 to 76 +/- 13%approximately 63 +/- 16% of prepropofol in normal hearts, whereas propofol at a lower concentration (4.1 +/- 1.0 microg/ml) did not. Although brief ischemic-reperfusion per se did not affect LV function, propofol after that, even at a lower concentration (4.1 +/- 1.0 microg/ml), significantly decreased ESP0.08 to 70 +/- 27% of prepropofol and PVA0.08 to 68 +/- 33% of prepropofol. Pretreatment with a protein kinase C (PKC) inhibitor, bisindolylmaleimide reduced the propofol (4.1 +/- 1.0 microg/ml)-induced greater decreases in ESP0.08 and PVA0.08 after brief ischemic-reperfusion to 94 +/- 33% and 92 +/- 39% of prepropofol. In the propofol-infused hearts after brief ischemic-reperfusion, protein kinase C-epsilon translocation to the nucleus-myofibril fraction was found. CONCLUSION: In contrast to the study hypothesis, brief ischemic-reperfusion enhanced the inhibitory effects of propofol on LV systolic function; this enhancement is attributable to activation of protein kinase C.  相似文献   

13.
PURPOSE: To determine whether sevoflurane or desflurane offer additional protective effects against myocardial reperfusion injury after protecting the heart against the ischemic injury by cardioplegic arrest. METHODS: Isolated rat hearts in a Langendorff-preparation (n = 9) were arrested by infusion of HTK cardioplegic solution and subjected to 30 min global ischemia followed by 60 min reperfusion (controls). An additional 18 hearts were subjected to the same protocol, and sevoflurane (n = 9) or desflurane (n = 9) was added to the perfusion medium during the first 30 min of reperfusion in a concentration corresponding to 1.5 MAC in rats. Left ventricular (LV) developed pressure and creatine kinase (CK) release were determined as indices of myocardial performance and cellular injury, respectively. RESULTS: The LV developed pressure recovered to 46+/-7% of baseline in controls. Functional recovery during reperfusion was improved by inhalational anesthetics to 67+/-3% (sevoflurane, P<0.05) and 61+/-5% of baseline (desflurane, P<0.05), respectively. Peak CK release during early reperfusion was reduced from 52+/-11 U x min(-1) x g(-1) in controls to 34+/-7 and 26+/-7 U x min(-1) x g(-1) in sevoflurane and desflurane treated hearts, respectively. The CK release during the first 30 min of reperfusion was reduced from 312+/-41 U x g(-1) in control hearts to 195+/-40 and 206+/-37 U x g(-1) in sevoflurane and desflurane treated hearts. CONCLUSION: After ischemic protection by cardioplegia, sevoflurane and desflurane given during the early reperfusion period offer additional protection against myocardial reperfusion injury.  相似文献   

14.
Cytokine production, neutrophil adhesion to endothelial cells, and release of reactive oxygen species are thought to be critical events in sepsis or ischemia/reperfusion. Modulation of leukocyte responses by anesthetics may have an important role in limiting tissue injury under these conditions. Therefore, we investigated the effect of ketamine on the expression of CD18, CD62L, and oxygen radical production of human neutrophils in vitro and on interleukin-6 production in endotoxin-stimulated human whole blood. Ketamine inhibited both the N-formyl-methionyl-leucyl-phenylalanine- and phorbol 12-myristate 13-acetate-induced up-regulation of CD18 and shedding of CD62L, determined by flow cytometry, in a concentration-dependent manner. Ketamine also caused a significant suppression of oxygen radical generation of isolated human neutrophils. In addition, there was a significant decrease in endotoxin-stimulated interleukin-6 production in human whole blood. The inhibitory effects were similar for racemic ketamine and its isomers S(+)-ketamine and R(-)-ketamine, suggesting that the inhibition of stimulated neutrophil function is most likely not mediated through specific receptor interactions. IMPLICATIONS: Modulation of leukocyte responses by anesthetics may have an important role in limiting tissue injury in sepsis or ischemia/reperfusion. Therefore, we examined the effect of ketamine on stimulated neutrophil functions in vitro. These neutrophil functions were significantly inhibited by ketamine, independent of whether the racemic mixture or isomers were tested.  相似文献   

15.
Background: Ketamine is increasingly used in pain therapy but may impair brain functions. Mood and cognitive capacities were compared after equianalgesic small-dose S (+)-, R (-)-, and racemic ketamine in healthy volunteers.

Methods: Twenty-four subjects received intravenous 0.5 mg/kg racemic, 0.25 mg/kg S (+)-, and 1.0 mg/kg R (-)-ketamine in a prospective, randomized, double-blind, crossover study. Hemodynamic variables, mood, and cognitive capacities were assessed for 60 min.

Results: Transient increases in blood pressure, heart rate, and catecholamines were similar after administration of all drugs. At 20 min after injection, subjects felt less decline in concentration and were more brave after S (+)- than racemic ketamine. They reported being less lethargic but more out-of-control after R (-)- than racemic ketamine. Ketamine isomers induced less drowsiness, less lethargy, and less impairment in clustered subjective cognitive capacity than racemic ketamine for the 60-min study. Objective concentration capacity [test time, S (+): 25.4 +/- 15.2 s, R (-): 34.8 +/- 18.4 s, racemic ketamine: 40.8 +/- 20.8 s, mean +/- SD] and retention in primary memory [test time, S (+): 4.6 +/- 1.2 s, R (-): 4.2 +/- 1.4 s, racemic ketamine: 4.0 +/- 1.4 s, mean +/- SD] declined less after S (+)- than either R (-)- or racemic ketamine at 1 min. At 5 min, immediate recall, anterograde amnesia, retention in primary memory, short-term storage capacity, and intelligence quotient were less reduced after the isomers than racemic ketamine. Speed reading and central information flow decreased less after S (+)- than racemic ketamine.  相似文献   


16.
PURPOSE: To determine the effects of the non-competitive NMDA-receptor antagonist S(+)-ketamine on neurological outcome in a rat model of incomplete cerebral ischemia. METHODS: Thirty rats were anesthetized, intubated and mechanically ventilated with isoflurane, O2 30% and nitrous oxide 70%. Following surgery animals were randomly assigned to one of the following treatment groups: Rats in group 1 (n = 10,OFF control) received fentanyl (bolus: 10 microg x kg(-1) i.v.; infusion 25 microg x kg(-1) x h(-1)) and N2O 70% / O2. Rats in group 2 (n = 10) received O2 30% in air and low-dose S(+)-ketamine (infusion: 0.25 mg x kg(-1) x min(-1)). Rats in group 3 (n = 10) received O2 30% in air and high-dose S(+)-ketamine (infusion: 1.0 mg x kg(-1) min(-1)). Following 30 min equilibration period ischemia was induced by combined unilateral common carotid artery ligation and hemorrhagic hypotension to 35 mm Hg for 30 min. Plasma catecholamines were assayed before and at the end of ischemia. Neurological deficit was evaluated for three postischemic days. RESULTS: Neurological outcome was improved with high-dose S(+)-ketamine when compared to fentanyl / N2O -anesthetized controls (9 vs. 1 stroke related deaths, P<0.05). Increases in plasma catecholamine concentrations were higher in fentanyl / N2O -anesthetized (adrenaline baseline 105.5+/-92.1 pg x ml(-1), during ischemia 948+/-602.8 pg x ml(-1), P<0.05; noradrenaline baseline 407+/-120.2 pg x ml(-1), ischemia 1267+/-422.2 pg x ml(-1), P <0.05) than in high-dose S(+)-ketamine-treated animals (adrenaline baseline 71+/-79.5 pg x ml(-1), ischemia 237 +/-131.9; noradrenaline baseline 317.9+/-310.5 pg x ml(-1), ischemia 310.5+/-85.7 pg x ml(-1)). CONCLUSION: Neurological outcome is improved following incomplete cerebral ischemia with S(+)-ketamine. Decreases in neuronal injury may be related to suppression of sympathetic discharge.  相似文献   

17.
OBJECTIVE: To study the changes of excitatory amino acids (EAAs) and intracellular calcium ([Ca2+]i), and the protective effect of EAAs receptor antagonists in the tissues of rabbit lumbar spinal cord after 40-minues ischemia and 4-hours reperfusion. METHODS: Thirty healthy rabbits were divided into six groups: sham-operation, 40-minues ischemia, 4-hour reperfusion, ketamine and MgSO4 treatment, ketamine treatment, and saline treatment groups. The contents of EAAs (glutamate and aspartate) and [Ca2+]i were measured. RESULTS: The contents of glutamate and aspartate were decreased to 15.18 micromol/g+/-2.33 micromol/g and 9.99 micromol/g+/-0.69 micromol/g, respectively; 13.75 micromol/g+/-2.58 micromol/g and 6.49 micromol/g+/-1.39 micromol/g after reperfusion. In the ischemia group, the [Ca2+]i was elevated to 221.2 microg/g+/-4.27 microg/g, and elevated further to 298.3 microg/g+/-9.26 microg/g after reperfusion, being significantly higher than that of ischemia and control groups. Ketamine could obviously increase the level of glutamate and aspartate and decrease the level of [Ca2+]i during the ischemia and reperfusion injury. CONCLUSIONS: The excitotoxicity of EAAs and the overload of calcium induced by EAAs play a harmful role in ischemia and reperfusion injury. Ketamine has an effective inhibitory effect.  相似文献   

18.
BACKGROUND: The spinal administration of some N-methyl-d-aspartate receptor antagonists results in antinociception and potentiates the effects of opioids and alpha2-adrenoceptor agonists, but ketamine and its enantiomers have not been examined. The present study investigated the interactions of racemic ketamine, R(-)-ketamine and S(+)-ketamine with morphine and with dexmedetomidine. METHODS: Intrathecal catheters were implanted into male Wistar rats. Three days later, the acute nociceptive sensitivity was assessed using the tail-flick test. Analgesic latencies were converted to the percentage maximum possible effect. The dose that yielded 50% of the maximum possible effect (ED50) and dose-response and time-course curves were determined for the ketamines (30-300 microg), morphine (0.1-3.0 microg), dexmedetomidine (0.3-10.0 microg), and mixtures of two doses of ketamines (30 or 100 microg) with different doses of morphine or dexmedetomidine for fixed-dose analysis. RESULTS: Neither racemic ketamine nor its enantiomers alone had a significant effect on the tail-flick test, with the exception of the highest dose of racemic ketamine, which caused motor impairment. Morphine and dexmedetomidine each produced dose-dependent antinociception, with ED50 of 1.7 microg (95% confidence interval: 1.04-2.32) and 4. 85 microg (3.96-5.79), respectively. A low dose (30 microg) of racemic ketamine or its enantiomers did not influence the ED50 of morphine significantly. Coadministration of 100 microg racemic ketamine or S(+)-ketamine, but not R(-)-ketamine, significantly enhanced and prolonged the antinociceptive effect of morphine. Both doses of racemic ketamine or its isomers significantly decreased the ED50 value for dexmedetomidine, although the higher dose of racemic or S(+)-ketamine had the highest potency. One-hundred micrograms of racemic ketamine or S(+)-ketamine also prolonged the effects of dexmedetomidine. CONCLUSIONS: These data indicate that racemic ketamine and S(+)-ketamine, but not R(-)-ketamine, exhibit similar effectiveness in potentiating the antinociceptive effects of both morphine and dexmedetomidine.  相似文献   

19.
Haeseler G  Tetzlaff D  Bufler J  Dengler R  Münte S  Hecker H  Leuwer M 《Anesthesia and analgesia》2003,96(4):1019-26, table of contents
Besides its general anesthetic effect, ketamine has local anesthetic-like actions. We studied the voltage- and use-dependent interaction of S(+)- and R(-)-ketamine with two different isoforms of voltage-operated sodium channels, with a special emphasis on the difference in affinity between resting and inactivated channel states. Rat brain IIa and human skeletal muscle sodium channels were heterologously expressed in human embryonic kidney 293 cells. S(+)- and R(-)-ketamine reversibly suppressed whole-cell sodium inward currents; the 50% inhibitory concentration values at -70 mV holding potential were 240 +/- 60 microM and 333 +/- 93 microM for the neuronal isoform and 59 +/- 10 microM and 181 +/- 49 microM for the skeletal muscle isoform. S(+)-ketamine was significantly more potent than R(-)-ketamine in the skeletal muscle isoform only. Ketamine had a higher affinity to inactivated than to resting channels. However, the estimated difference in affinity between inactivated and resting channels was only 8- to 10-fold, and the time course of drug equilibration between inactivated and resting channels was too fast to cause use-dependent block at 10 Hz up to a concentration of 300 microM. These results suggest that ketamine is less effective than lidocaine-like local anesthetics in stabilizing the inactivated channel state. IMPLICATIONS: Blockade of sodium channels by ketamine shows voltage dependency, an important feature of local anesthetic action. However, ketamine is less effective than lidocaine-like local anesthetics in stabilizing the inactivated state. Because it does not elicit phasic blockade at small concentrations, its ability to reduce the firing frequency of action potentials may be small.  相似文献   

20.
G Kunst  E Martin  B M Graf  S Hagl  C F Vahl 《Anesthesiology》1999,90(5):1363-1371
BACKGROUND: Ketamine has a species-dependent inotropic effect on myocardium. The authors' aim was to investigate the direct inotropic effect and the corresponding intracellular Ca2+ transients of ketamine and its isomers on human myocardium. METHODS: Right auricular myocardial strips obtained during open heart surgery were exposed to increasing concentrations (73 microM, 360 microM, and 730 microM) of racemic ketamine (n = 12), S(+)-ketamine (n = 12), or R(-)-ketamine (n = 11). Isometric force, isotonic shortening, contractility, relaxation, and time to maximal isotonic and isometric force were assessed. Ten muscle strips in each group were loaded with the calcium-sensitive fluorescent dye FURA-2/AM for simultaneous measurements of calcium transients. RESULTS: Compared with the initial control maximal isometric developed force, maximal isotonic shortening amplitude, contractility, and relaxation increased by 12.5-22.4% after perfusion with S(+)-ketamine at the concentration of 73 microM (P < 0.05). In contrast, no changes were seen after addition of 73 microM R(-)-ketamine. The effect of racemic ketamine (73 microM) was between that of the two isomers. At the highest concentration (730 microM) ketamine and its isomers decreased maximal isometric developed force, maximal shortening amplitude, contractility, and relaxation by 26.8-57.4% (P < 0.05), accompanied by a significant decrease of the intracellular calcium transient (by 21.0-32.2%, P < 0.05). CONCLUSIONS: In contrast to R(-)-ketamine, S(+)-ketamine increased isometric force, isotonic shortening, contractility, and relaxation at low concentrations (73 microM) compared with the initial control. At higher concentrations (730 microM) a direct negative inotropic action was observed after perfusion with ketamine and its isomers, which was accompanied by a decreased intracellular Ca2+ transient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号