首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study tests the hypothesis that invasion of partially transformed keratinocytes is initiated by diffusible, proinvasive signals provided by species-specific fibroblasts. In vitro organotypic cultures of neoplastic human oral mucosa were constructed by growing a partially transformed, nontumorigenic keratinocytic cell line isolated from a dysplastic human oral lesion (DOK-ECACC94122104) on top of various types of connective tissue equivalents. Cultured tissues were analyzed by histomorphometry (depth and area of invasion: Dinv, Ainv) and immunohistochemistry. Presence of human fibroblasts in the matrix induced a local invasion of DOK (Dinv = 95.6 +/- 7.1 microm, Ainv = 45.8 +/- 3.5%). Minimal invasion (P < 0.05) was observed when DOK grew on simple collagen matrix (Dinv = 14.1 +/- 2.1 microm, Ainv = 3.7 +/- 0.8%) or matrices containing fibroblasts from mouse (Dinv = 11.5 +/- 4.0 microm, Ainv = 4.3 +/- 1.0%) or rat (Dinv = 15.6 +/- 1.2 microm, Ainv = 6.1 +/- 0.5%). In these cultures, local invasion could be induced by the presence of human fibroblasts in a bottom layer of the collagen matrix (P < 0.05) or by conditioned medium from organotypic cultures of DOK on human fibroblast-containing matrix (P < 0.05) but not by conditioned medium from human fibroblast monocultures (P > 0.05). Deposition of human collagen IV was observed at epithelial-matrix interface only when DOK behaved invasively. In conclusion, invasion of partially transformed oral keratinocytes was triggered by keratinocyte-induced fibroblast-derived diffusible factor(s) in a species-specific manner and associated with de novo synthesis of collagen IV.  相似文献   

2.
3.
The paraventricular nucleus of the hypothalamus (PVH) plays a central role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Medial parvocellular neurons of the PVH (mpPVH) integrate sensory and humoral inputs to maintain homeostasis. Humoral inputs include glucocorticoids secreted by the adrenals, which down-regulate HPA activation. A primary glucocorticoid target is the population of mpPVH neurons that synthesize and secrete corticotropin-releasing factors, the most potent of which is corticotropin-releasing hormone (CRH). Although CRH gene (crh) expression is known to be down-regulated by glucocorticoids, the mechanisms by which this process occurs are still poorly understood. To begin this study we postulated that glucocorticoid repression of crh involves HDAC recruitment to the region of the crh proximal promoter. To evaluate this hypothesis, we treated hypothalamic cells that express CRH with the HDAC inhibitor trichostatin A (TSA). As predicted, treatment with TSA led to increased CRH mRNA levels and crh promoter activity. Although co-treatment with Dex (10−7 M) reduced the TSA effect on mRNA levels, it failed to reduce promoter activity; however co-transfection of HDAC1 but not 3 restored Dex inhibition. A distinction between HDAC1 and 3 was also apparent with respect to crh promoter occupancy. Dex led to increased HDAC1 but not HDAC3 occupancy. In vivo studies revealed that CRH-immunoreactive (-ir) neurons contained HDAC1- and HDAC3-ir. Collectively, these data point to a role for HDAC1 in the physiologic regulation of crh.  相似文献   

4.
The aim of this study was to investigate fatty acid synthase (FAS) and ErbB2 expression in nonmalignant oral epithelium and oral or head and neck squamous cell carcinomas (OSCC/HNSCC). Morphologically normal, hyperkeratotic, and dysplastic oral epithelium as well as well-differentiated and poorly differentiated OSCC were immunohistochemically evaluated for FAS, ErbB2, and Ki-67. These proteins were also analyzed in a tissue microarray with 55 HNSCC. SCC-9 cells were used to study FAS and ErbB2 during differentiation. FAS expression was higher in hyperkeratosis, dysplasias, and OSCC than in normal epithelium. Well-differentiated OSCC/HNSCC were more positive for FAS than the poorly differentiated tumors. ErbB2 was observed at the surface of nonmalignant and well-differentiated OSCC/HNSCC keratinocytes and in the cytoplasm of poorly differentiated cells. Ki-67 index was progressively higher from normal oral epithelium to OSCC, inversely correlated with cell surface ErbB2, and positively correlated with intracytoplasmic ErbB2. Finally, SCC-9 cell cultures were enriched in membrane ErbB2-positive cells after differentiation by anchorage deprivation. In conclusion, FAS is overexpressed in OSCC/HNSCC and hyperkeratotic oral epithelium and ErbB2 is found at the cell surface of differentiating keratinocytes and in the cytoplasm of poorly differentiated tumor cells. Ki-67 index is higher in epithelial dysplasias and OSCC than in morphologically normal oral epithelium.  相似文献   

5.
Inferences about the role and location of phosphorylated histone H3 are derived primarily from biochemical studies. A few direct observations at chromosome level have shown that phosphorylation begins at the site of heterochromatin and spreads throughout the chromosome. However, a comparative study of chromosomes of mouse (L929 cells), Chinese hamster (CHO 9 cells) and the Indian muntjac (male cells) reveals some distinguishable details among mammalian species. Whereas the L929 cells exhibit the typical pattern of phosphorylation at the region of centromeric heterochromatin associated with the active centromere, the heterochromatin blocks associated with the inactive centromeres also show label of about equivalent intensity. Throughout the cell cycle, heterochromatin exhibits sharper (denser) and better defined label than does euchromatin which expresses somewhat diffuse label. The centromere constriction on biarmed chromosomes, originating in Robertsonian translocations, appears phosphorylated in some, if not all chromosomes. A similar situation was found for the CHO 9 cells indicating that phosphorylation does include the region in which H3 is supposedly replaced by CENP-A. An interesting feature of the CHO cell line was the dense label at and near the telomeres; this feature was not observed in either the mouse or the Indian muntjac. The centromere regions of the Indian muntjac chromosomes showed three sites of label in the multicentric X chromosome and two each on chromosome pair number 1 and Y2; the sites coinciding with the reaction sites of antikinetochore antibodies. Also, the X and Y1 chromosomes of Indian muntjac show intense phosphorylation at the sites of secondary constrictions.The chromosomes of all three species were phosphorylated throughout the cell cycle. As the chromosomes started to decondense during anaphase, heavy phosphorylation was observed in the form of discontinuous beaded structures indicating partial despiralization of the chromosome. Interestingly, when cells had completed karyokinesis and resolved into two independent nuclei, the phosphorylation was observed at the midbody. At this stage, the cytoplasm appeared to be again phosphorylated.  相似文献   

6.
Histone H1(0) mapping using monoclonal antibodies   总被引:1,自引:0,他引:1  
Monoclonal antibodies (mAb) to ox liver histone H1 degree were produced and characterized. Two sets of mice were immunized either with pure H1(0) or with an H1(0)-yeast tRNA complex. Eleven hybridomas of various clonal origin were selected. Typing of the antibodies indicated that all but three IgM belonged to the IgG1 class and contained kappa light chains. Immunoblotting experiments using peptides derived from H1(0) or H5 treated by various proteolytic agents (trypsin, N-bromosuccinimide, cyanogen bromide, acetic acid), revealed that nine of the mAb reacted with the globular part of H1(0). More advanced characterization of the antigenic determinants allowed us to determine distinct regions within this globular part which are involved in the antigenic recognition. The peptopes could be subdivided into two groups. Three mAb bound to residues 24-27 and were specific for H1(0). Six mAb bound to residues 27-30 and were specific for H1(0) except one of them which strongly cross-reacted with H5 and GH5. Two mAb reacted with the entire histone H1(0) but failed to react with any of the peptides, suggesting that the corresponding epitope is a conformational antigenic determinant. In order to confirm the localization of the two distinct regions which are involved in the antigenic recognition, a synthetic decapeptide corresponding to the beginning of human H1(0) globular part (from residue 19 to residue 28) was synthesized. Inhibition experiments of the reaction between H1(0) and the various IgG1 mAb by increasing amounts of peptide-bovine serum albumin conjugates were then performed.  相似文献   

7.
BACKGROUND: Malignant transformation is frequently associated with altered behavior of cells, a phenomenon that also suggests changes in cell-matrix interactions. We have studied expression of syndecan, a cell surface proteoglycan that binds extracellular matrix components and growth factors, in various chemically transformed mouse keratinocyte cell lines that differ in their morphology and tumorigenicity. EXPERIMENTAL DESIGN: A monoclonal antibody, specific for mouse syndecan, and a cDNA clone for mouse syndecan, were used to detect syndecan in seven different keratinocyte cell lines. The glycosaminoglycan composition of syndecan was studied using differential digestions of heparan sulfate and chondroitin sulfate chains. RESULTS: In general, the tumorigenic cells were found to express lower amounts of syndecan, both at protein and mRNA levels, than the nontumorigenic cells. The most tumorigenic cell line CarC revealed barely detectable syndecan expression. Also, molecular polymorphism of syndecan was observed, as three forms of syndecan with different molecular weights appeared on the surfaces of different keratinocytes. The highly tumorigenic cells, that expressed low amounts of syndecan, expressed syndecan with the largest molecular weight. The different molecular weights were shown to reflect an increased amount of both heparan and chondroitin sulfate chains attached to the core protein. An increased shedding of syndecan ectodomain from the membrane-associated domain was observed in cells that express high amounts of mutated Ha-ras p21. CONCLUSIONS: The results suggest, that transformed epithelial cells can modulate the appearance of syndecan on the cell-surface by at least two ways: (a) by altering its glycosylation or (b) by increasing its shedding from the cell surface. These modulations, together with overall suppression of syndecan expression, could be associated with malignant transformation of keratinocytes.  相似文献   

8.
9.
Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance the expression of immunologically important molecules in tumor cells and HDACi treated tumor cells are able to induce immune responses in vitro and in vivo. Systemic HDACi are in clinical trails in cancer and also being used in several autoimmune disease models. To date, 18 HDACs have been reported in human cells and more than thirty HDACi identified, although only a few immune targets of these inhibitors have been identified. Here, we discuss the molecular pathways employed by HDACi and their potential role in inducing immune responses against tumors. We review data suggesting that selection of target specific HDACi and combinations with other agents and modalities, including those that activate stress pathways, may further enhance the efficacy of epigenetic therapies.  相似文献   

10.
The expression of ccn3(nov) gene in musculoskeletal tumors   总被引:10,自引:0,他引:10  
The CCN3(NOV) protein belongs to the CCN [cysteine-rich CYR61, connective tissue growth factor (CTGF), nephroblastoma overexpressed gene (Nov)] family of growth regulators, sharing a strikingly conserved multimodular organization but exhibiting distinctive functional features. Although previous studies have revealed an expression of CCN3 protein in several normal tissues, including kidney, nervous system, lung, muscle, and cartilage, less is known about its expression in tumors. In this study, we analyzed the expression of CCN3 in musculoskeletal tumors, using a panel of human cell lines and tissue samples. An association between CCN3 expression and tumor differentiation was observed in rhabdomyosarcoma and cartilage tumors, whereas, in Ewing's sarcoma, the expression of this protein seemed to be associated with a higher risk to develop metastases. CCN3 expression was found in 15 of 45 Ewing's sarcoma tissue samples. In particular, we did not observe any expression of CCN3 in the 15 primary tumors that did not develop metastases. In contrast, 15 of the 30 primary tumors that developed lung and/or bone metachronous metastases showed a high expression of the protein (P < 0.001, Fisher's test). Our studies indicate that CCN3 is generally expressed in the cells of the musculoskeletal system. This protein may play a role both in normal and pathological conditions. However, the regulation of CCN3 expression varies in the different neoplasms and depends on the type of cells. Thus, as reported for other CCN genes, the biological properties and regulation of expression of CCN3 are dependent on the cellular context and the nature of the cells in which it is produced. Further studies will help to clarify the biological role of this protein in musculoskeletal neoplasms.  相似文献   

11.
Histone H1, one of the histone superfamilies, is known to determine chromatin structure and alter gene expression. It also contributes to regulation of cell proliferation in breast cancer. We hypothesized a similar association in prostate cancer, and therefore examined relationships between histone H1 expression and Gleason pattern, Ki-67 and androgen receptor levels in a series of prostate cancer tissues and cell lines. Histone H1 positive cancer cells increased with the Gleason pattern. Gleason pattern 3 tumors were divided into two groups, one with high histone H1 positivity (H1-high cases, 60-100% positivity) and the other with low histone H1 positivity (H1-low cases, 0-20% positivity). Ki-67 or androgen receptor positivity in H1-high cases was significantly higher than in H1-low cases. PC3 cells demonstrated more frequent histone H1 and Ki-67 positivity as compared to LNCaP cells. Silencing of histone H1 by siRNA transfection significantly reduced cell proliferation in LNCaP and PC3. These findings suggest that histone H1 expression is associated with the Gleason pattern, cell proliferation and androgen receptor expression in prostate cancers.  相似文献   

12.
H3F3A mutations are seen in ~30% of pediatric glioblastoma (GBMs) and involve either the lysine residue at position 27 (K27M) or glycine at position 34 (G34R/V). Sixteen genes encode histone H3, each variant differing in only a few amino acids. Therefore, how mutations in a single H3 gene contribute to carcinogenesis is unknown. H3F3A K27M mutations are predicted to alter methylation of H3K27. H3K27me3 is a repressive mark critical to stem cell maintenance and is mediated by EZH2, a member of the polycomb‐group (PcG) family. We evaluated H3K27me3 and EZH2 expression using immunohistochemistry in 76 pediatric brain tumors. H3K27me3 was lowered/absent in tumor cells but preserved in endothelial cells and infiltrating lymphocytes in six out of 20 GBMs. H3K27me3 showed strong immunoreactivity in all other tumor subtypes. Sequencing of GBMs showed H3F3A K27M mutations in all six cases with lowered/absent H3K27me3. EZH2 expression was high in GBMs, but absent/focal in other tumors. However, no significant differences in EZH2 expression were observed between H3F3A K27M mutant and wild type GBMs, suggesting that EZH2 mediated trimethylation of H3K27 is inhibited in GBM harboring K27M mutations. Our results indicate that H3F3A K27M mutant GBMs show decreased H3K27me3 that may be of both diagnostic and biological relevance.  相似文献   

13.
Analyses of mechanisms that regulate V(D)J recombination haverelied heavily on the use of transformed precursor lymphocytecell lines. We now show that such lines have highly variableand frequently low levels of recombination activating genes(RAG)–1 and –2 gene expression. We also show thatexpression levels of the RAG genes can vary > 100-fold betweendifferent subcloned cells of an individual pre-B line. We discussthese findings in the context of normal regulation of RAG geneexpression and the implication for the use of transformed pre-Bcell lines as models for studying control of V(D)J recombinationactivity.  相似文献   

14.
E Liboi  C Basilico 《Virology》1984,135(2):440-451
  相似文献   

15.
16.
To identify molecular events involved in the pathogenesis of oral squamous cell carcinoma (OSCC), genes differentially expressed in OSCC and non-cancerous matched tissue (NCMT) samples were analysed using a subtractive hybridization strategy. NCMT-enriching clones that have been linked to suppressor pathway in previous studies were subjected to advanced analyses. Complete absence of insulin-like growth factor binding protein-5 (IGFBP-5) expression at both the mRNA and the protein level was identified in nearly all (5/6) OSCC cell lines with the exception of the SCC25 cell line, which exhibited high IGFBP-5 expression. However, this protein is consistently present in cultured normal human oral keratinocytes (NHOKs). Immunohistochemistry revealed moderate to strong cytoplasmic immunoreactivity of IGFBP-5 in the stratum spinosum and stratum granulosum in the vast majority of NCMT samples. A remarkable reduction in IGFBP-5 immunoreactivity was detected in 56% (26/46) of OSCC samples, compared with the corresponding NCMT (p < 0.0001). Induction of differentiation in both NHOKs and SCC25 up-regulated IGFBP-5 expression. Administration of a green tea compound with anti-cancer properties, (-)-epigallocatechin 3-gallate, at a concentration of 5-20 micro g/ml also up-regulated IGFBP-5 expression in NHOKs in a dose-dependent manner. The findings suggest that IGFBP-5 may be an important factor in the differentiation of oral keratinocytes and that down-regulation of IGFBP-5 may be involved in the neoplastic transformation of oral keratinocytes.  相似文献   

17.
18.
19.
During cancer development, tumor suppressor genes were silenced by promoter methylation or histone deacetylation. Histone deacetylases (HDACs) are important to maintain histone deacetylation. HDAC inhibitors (HDACis) were thus proposed as a new therapeutic approach to cancer. The current study aims to understand the effect and molecular mechanisms of HDACis on gastric cancer cells. Trichostatin A (TSA) significantly inhibited the growth of gastric cancer cells by inducing apoptosis. Gene profiling results showed PUMA (p53 upregulated modulator of apoptosis) as one of 122 genes upregulated in TSA-treated gastric cancer cells. PUMA was downregulated in gastric cancer cell lines and primary gastric carcinoma tissues. Patients with low PUMA expression had significant decreases in overall survival (HR, 2.04; p?=?0.047). Ectopic PUMA expression inhibited the growth of gastric cancer cells while PUMA depletion promoted cellular growth. The knockdown of HDAC3 but not other HDACs upregulated PUMA expression. HDAC3 could bind to PUMA promoter, which was abrogated after TSA treatment. In contrast to TSA and SB, HDAC3 siRNA failed to upregulate p53 expression but promoted the interaction of p53 with PUMA promoter. In summary, proapoptotic PUMA was downregulated in gastric cancer and its mRNA expression level is a valuable prognosis factor for gastric cancer. HDAC3 is important to downregulate PUMA expression in gastric cancer and HDACis, like TSA, promoted PUMA expression through stabilizing p53 in addition to HDAC3 inhibition. In combination with chemotherapy, targeting HDAC3 might be a promising strategy to induce apoptosis of gastric cancer cells.  相似文献   

20.
CD4+ T cell priming under T helper type I (T(H)1) or T(H)2 conditions gives rise to polarized cytokine gene expression. We found that in these conditions human naive T cells acquired stable histone hyperacetylation at either the Ifng or Il4 promoter. Effector memory T cells showed polarized cytokine gene acetylation patterns in vivo, whereas central memory T cells had hypoacetylated cytokine genes but acquired polarized acetylation and expression after appropriate stimulation. However, hypoacetylation of the nonexpressed cytokine gene did not lead to irreversible silencing because most T(H)1 and T(H)2 cells acetylated and expressed the alternative gene when stimulated under opposite T(H) conditions. Such cytokine flexibility was absent in a subset of T(H)2 cells that failed to up-regulate T-bet and to express interferon-gamma when stimulated under T(H)1 conditions. Thus, most human CD4+ T cells retain both memory and flexibility of cytokine gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号