首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinergic disturbances have been implicated in schizophrenia. In a recent study we found that intracerebroventricular (i.c.v.) delivery of the immunotoxin 192 IgG-saporin, that effectively destroys cholinergic projections from the basal forebrain to hippocampus and cortex cerebri, leads to a marked facilitation of amphetamine-induced locomotor activity in adult rats. The aim of the present experiments was to evaluate the contribution of the septohippocampal versus the basalocortical cholinergic projections for the amphetamine hyper-response seen previously in i.c.v. 192 IgG-saporin injected rats. Since i.c.v. delivery of 192 IgG-saporin also destroys a population of Purkinje neurons in cerebellum, this cell loss needs to be taken into consideration as well. Cortex cerebri and hippocampus were selectively cholinergically denervated by intraparenchymal injections of 192 IgG-saporin into nucleus basalis magnocellularis and the medial septum/diagonal band of Broca, respectively. Selective loss of Purkinje cells in cerebellum was achieved by i.c.v. delivery of OX7 saporin. Possible effects of these three lesions on spontaneous and amphetamine-induced locomotor activity were assessed in locomotor activity cages. We find that selective cholinergic denervation of cortex cerebri, but not denervation of hippocampus or damage to cerebellum can elicit dopaminergic hyper-reactivity similar to that seen in previous i.c.v. 192 IgG-saporin experiments. Our data are compatible with the hypothesis that disturbances of cholinergic neurotransmission in cortex cerebri may be causally involved in forms of schizophrenia.  相似文献   

2.
Oral administration of ethanol (20% v/v) to male Sprague-Dawley rats for different periods of time up to 28 weeks resulted in profound reductions of acetylcholine content, in vitro synthesis and release of acetylcholine, choline uptake, activities of choline acetyltransferase, acetylcholinesterase and pyruvate decarboxylase, content of noradrenaline, serotonin and, to a lesser extent, dopamine throughout the brain. Changes were fully and partially reversible by a 4 weeks' ethanol-free period following a treatment of 8 and 18 weeks, respectively. They remained persistent, however, after 28 weeks of treatment. Performance in an eight arm-radial maze revealed a severe impairment in both spatial and non-spatial reference and working memory. A similar pattern of memory impairment was obtained after ibotenate lesion of the cholinergic basal forebrain projection system. In order to test whether this memory impairment depends on cholinergic deafferentation of the cortex, cholinergic-rich fetal basal forebrain cell suspensions were transplanted into cortex, hippocampus or both these sites in ethanol treated rats. Cholinergic-rich transplants, but not cholinergic-poor transplants, were effective in ameliorating impaired memory function and measures of cholinergic activity in the basal forebrain projection system. The behavioural efficacy of the basal forebrain grafts was well correlated with measures of both transplant volume and the degree to which they restored acetylcholine content at the transplant site; these transplants had no effect, however, on brain monoamine levels. The effects of the cholinergic-rich transplants into cortical and hippocampal sites were additive in their amelioration of performance in the radial maze. Similarly, ibotenate lesions of the sites of origin of the cholinergic projections to neocortex (in the region of the nucleus basalis magnocellularis) and hippocampus (the medial septal areas and nucleus of the diagonal band), respectively, were additive in their deleterious effects on maze performance. There were no qualitative differences in the susceptibility of the four different types of memory performance measured (spatial and non-spatial reference and working memory) to the effects of ethanol, ibotenate lesions of the cholinergic projection system, or cholinergic-rich brain tissue transplants. Thus, overall, the results indicate that the forebrain cholinergic system acts as a whole, without major functional differences between the projections originating in the medial septal area/diagonal band complex and the basal nucleus, and that it discharges a very general function in cognitive processes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A topic of high current interest and controversy is the basis of the homeostatic sleep response, the increase in non-rapid-eye-movement (NREM) sleep and NREM-delta activity following sleep deprivation (SD). Adenosine, which accumulates in the cholinergic basal forebrain (BF) during SD, has been proposed as one of the important homeostatic sleep factors. It is suggested that sleep-inducing effects of adenosine are mediated by inhibiting the wake-active neurons of the BF, including cholinergic neurons. Here we examined the association between SD-induced adenosine release, the homeostatic sleep response and the survival of cholinergic neurons in the BF after injections of the immunotoxin 192 immunoglobulin G (IgG)-saporin (saporin) in rats. We correlated SD-induced adenosine level in the BF and the homeostatic sleep response with the cholinergic cell loss 2 weeks after local saporin injections into the BF, as well as 2 and 3 weeks after i.c.v. saporin injections. Two weeks after local saporin injection there was an 88% cholinergic cell loss, coupled with nearly complete abolition of the SD-induced adenosine increase in the BF, the homeostatic sleep response, and the sleep-inducing effects of BF adenosine infusion. Two weeks after i.c.v. saporin injection there was a 59% cholinergic cell loss, correlated with significant increase in SD-induced adenosine level in the BF and an intact sleep response. Three weeks after i.c.v. saporin injection there was an 87% cholinergic cell loss, nearly complete abolition of the SD-induced adenosine increase in the BF and the homeostatic response, implying that the time course of i.c.v. saporin lesions is a key variable in interpreting experimental results. Taken together, these results strongly suggest that cholinergic neurons in the BF are important for the SD-induced increase in adenosine as well as for its sleep-inducing effects and play a major, although not exclusive, role in sleep homeostasis.  相似文献   

4.
It has recently been shown that hippocampal neurogenesis can be modulated either directly or indirectly by ascending cholinergic inputs from the basal forebrain. In the present work, we sought to address whether extended training in a spatial navigation task would affect hippocampal neurogenesis in the presence of a severe and selective cholinergic depletion. Young female rats received stereotaxic injections of the immunotoxin 192 IgG-saporin into the basal forebrain nuclei and/or the cerebellar cortex. Starting from 4 to 5 weeks post-lesion, and for the subsequent 2 weeks, the animals were trained on paradigms of reference and working memory in the water maze and received single daily i.p. injections of bromodeoxyuridine (BrdU) at the end of each testing session. In line with previous observations, a dramatic 80% decrease in neuron proliferation was seen in the dentate gyrus of lesioned animals, as compared to vehicle-injected or intact controls. Interestingly, however, rats subjected to maze training over 2 weeks, irrespective of their learning success, exhibited significantly fewer newborn neurons than matched controls with no maze exposure. Thus, at least for the type of task used here, which has previously been shown to impose a certain degree of stress, extended training and learning does not appear to affect proliferation in the dentate gyrus.  相似文献   

5.
Intraventricular injections of 192 IgG-saporin in the neonatal rat caused severe loss of basal forebrain cholinergic neurons and ectopic hippocampal ingrowths. These were evident at 24 months of age and thus, were lifelong consequences of the 192 IgG-saporin treatment. When tested as young adults on a novel water-escape radial arm maze, the rats with this lesion were slower to learn the task, committing significantly more working and reference memory errors before they achieved control level of performance. It is unlikely that this was a result of attentional impairment as the lesioned rats performed as vigilantly as controls in a five choice serial reaction time task. When tested in the Morris water maze at 22 months of age, they were slower at learning the hidden platform location. This contrasts with previous studies which have repeatedly shown that they normally acquire this task as young adults. It was concluded that this neonatal cholinergic lesion has modest but discernable effects on problem solving in young adulthood that are consistent with the reported effects of the lesion on cortical pyramidal neurons. The cognitive effects of the lesion may become more severe in aging, perhaps as a result of the added effects of aging on these neurons.  相似文献   

6.
Three-month-old Long-Evans rats were subjected to intraseptal infusions of 0.8 microg of 192 IgG-saporin followed, 2 weeks later, by intrahippocampal suspension grafts containing fetal cells from the medial septum and the diagonal band of Broca. The suspensions were implanted in the dorsal or the ventral hippocampus. Sham-operated and lesion-only rats were used as controls. Between 18 and 32 weeks after grafting, all rats were tested in a water maze (using protocols placing emphasis on reference memory or on working memory) and an eight-arm radial maze. The lesion produced extensive cholinergic denervation of the hippocampus, as evidenced by reduced acetylcholinesterase-positivity and acetylcholine content. Depending upon their implantation site, the grafts restored an acetylcholinesterase-positive reinnervation pattern in either the dorsal or the ventral hippocampus. Nevertheless, the grafts failed to normalize the concentration of acetylcholine in either region. The cholinergic lesion impaired working memory performance in both the water maze and the radial maze. To a limited degree, reference memory was also altered. Grafts placed in the ventral hippocampus had no significant behavioral effect, whereas those placed in the dorsal hippocampus normalized working memory performance in the water maze. Our data show that infusion of 192 IgG-saporin into the septal region deprived the hippocampus of its cholinergic innervation and altered spatial working memory more consistently than spatial reference memory. Although the cholinergic nature of the graft-induced reinnervation remains to be established more clearly, these results further support the idea of a functional dissociation between the dorsal and the ventral hippocampus, the former being preferentially involved in spatial memory.  相似文献   

7.
目的建立大鼠阿尔茨海默病(Alzheimer′sdisease,AD)动物模型,并观察其学习记忆能力及基底前脑胆碱能神经元改变。方法采用SD大鼠侧脑室注射192-IgG-saporin(2.5μg/5μl),21d后行Y迷宫检测,28d后处死大鼠,免疫组化观察基底前脑神经生长因子受体(NGFR)阳性神经元细胞数的变化。结果Y迷宫检测显示模型组大鼠的学习次数、记忆能力(107.38±9.34、3.75±0.71)较正常组明显下降(P<0.01)。免疫组化显示模型组损伤侧在内侧隔核(MS)和斜角带垂直支(VDB)的NGFR阳性神经元细胞数(7.50±1.77、15.00±2.27)与正常组对应侧比较分别减少81.96%和84.23%(P<0.01),MS和VDB的NGFR阳性神经元面积和周长降低(P<0.05),灰度值升高(P<0.05)。结论免疫毒素192-IgG-saporin侧脑室注射可以模拟AD行为学改变和部分病理学特征。  相似文献   

8.
侧脑室注射192-IgG-saporin致痴呆动物模型的实验研究   总被引:1,自引:0,他引:1  
建立老年性痴呆模型大鼠,并观察其学习记忆能力及基底前脑胆碱能神经元数目的变化。在成年SD大鼠左侧侧脑室注射免疫毒素192-IgG-saporin(2.5μg/5μl),3周后行Y迷宫检测其学习和记忆能力;4周后处死大鼠,采用免疫组化结合图像分析技术观察各组大鼠基底前脑ChAT阳性神经元数目的变化。结果显示:模型组大鼠的学习记忆能力与正常组相比明显下降(P<0.01);模型组基底前脑的内侧隔核(MS)和斜角带垂直部(VDB)胆碱能神经元数目分别减少至正常组的9.70%和14.09%,与正常组相比均明显下降(P<0.01);学习、记忆能力与基底前脑胆碱能神经元数目密切相关。上述结果表明应用192-IgG-saporin免疫毒素能成功建立AD大鼠动物模型,该模型可用于抗痴呆药物的筛选及药效的评价。  相似文献   

9.
The involvement of the basal forebrain cholinergic system has been extensively investigated in instrumental learning but little is known of its participation in social memory, especially in the memorization of individual traits of a conspecific.The present study tested in sheep its contribution to both instrumental learning and individual offspring recognition. Six weeks before parturition, ewes received injections of a specific cholinergic immunotoxin (ME20.4 IgG-saporin) into the lateral ventricles (150 microg) and in some cases additional immunotoxin injections into the nucleus basalis (11 microg/side). After 3 weeks of recovery, ewes were trained on a classical instrumental visual discrimination task known to be sensitive to cholinergic deficits. The formation of memory of offspring was assessed through both olfactory and visual/auditory recognition tasks. Olfactory recognition was tested by presenting at suckling successively an alien and the familiar lamb at 2 and 4 h after parturition. Visual/auditory recognition of the lamb was performed using a non-olfactory discrimination test between the familiar and an alien lamb after 12 h of mother-young contact. The lesion extent was assessed by counting choline acetyltransferase-immunopositive neurons in the basal forebrain and measuring the density of acetylcholinesterase fibers in different target areas. Results showed that immunotoxic lesions delayed acquisition of the instrumental visual discrimination. Moreover, olfactory recognition of the lamb was severely impaired while visual/auditory lamb recognition was marginally altered. There was no evidence for sensorimotor or motivational deficits. Importantly, impairment was observed in animals for which loss of basal forebrain cholinergic neurons and their efferent fibers was higher than 75%, while striatal cholinergic neurons and Purkinje cells were unaffected.This study provides evidence that the basal forebrain cholinergic system contributes not only to instrumental but also to social learning. In addition, the cholinergic modulation seems of importance for processing visual and olfactory modalities. However, since only extensive lesions affect performance, this indicates that the basal forebrain cholinergic system possesses substantial reserve capacity to sustain cognitive functions.  相似文献   

10.
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.  相似文献   

11.
The importance of cholinergic neurons projecting from the medial septum (MS) of the basal forebrain to the hippocampus in memory function has been controversial. The aim of this study was to determine whether loss of cholinergic neurons in the MS disrupts object and/or object location recognition in male Sprague-Dawley rats. Animals received intraseptal injections of either vehicle, or the selective cholinergic immunotoxin 192 IgG-saporin (SAP). 14 days later, rats were tested for novel object recognition (NOR). Twenty-four hours later, these same rats were tested for object location recognition (OLR) (recognition of a familiar object moved to a novel location). Intraseptal injections of SAP produced an 86% decrease in choline acetyltransferase (ChAT) activity in the hippocampus, and a 31% decrease in ChAT activity in the frontal cortex. SAP lesion had no significant effect on NOR, but produced a significant impairment in OLR in these same rats. The results support a role for septo-hippocampal cholinergic projections in memory for the location of objects, but not for novel object recognition.  相似文献   

12.
Amyloid beta fragment 25-35 (Aβ25-35) is the neurotoxic domain of the full-length Aβ1-42 and causes memory impairments in rodents. Recent research suggests that agmatine, decarboxylated arginine, has a neuroprotective role. This study investigated the effects of a single bilateral i.c.v. infusion of aggregated Aβ25-35 (30 nmol) in a battery of behavioural tests conducted during the period 4–6 (Experiment 1) and 4–14 (Experiment 2) weeks post-Aβ25-35 infusion, and evaluated the protective effect of agmatine (40 mg/kg) administered i.p. 30 min prior to Aβ25-35 infusion and once daily for a further nine consecutive days. In Experiment 1, Aβ25-35 rats with saline treatment were not impaired in the elevated plus maze and open field and mildly impaired in the reference memory version of the water maze task, but performed poorly in the working memory version of the water maze task and the object recognition memory task, relative to the control rats that received the i.c.v. infusion of Aβ35-25 (inactive peptide) and saline treatment. By contrast, Aβ25-35 rats with agmatine treatment did not show performance impairments in the working memory version of the water maze task and the object recognition memory task. In Experiment 2, Aβ25-35 rats with saline treatment were significantly impaired in the standard radial arm maze task, but only displayed no or very mild impairments in the delayed non-match to position and reference memory versions of the radial arm maze task, T-maze, object recognition memory task, both the reference and working memory versions of the water maze task, elevated plus maze and open field. By contrast, Aβ25-35 rats with agmatine treatment were not impaired in the standard radial arm maze and performed even better than the controls in the reference memory version of the task. These results demonstrate that agmatine is able to protect against Aβ25-35-induced memory deficits.  相似文献   

13.
Although loss of cholinergic neurons in the basal forebrain is considered a key initial feature in Alzheimer's disease (AD), changes in other transmitter systems, including serotonin and 5-HT2A receptors, are also associated with early AD. The aim of this study was to investigate whether elimination of the cholinergic neurons in the basal forebrain directly affects 5-HT2A receptor levels. For this purpose intraventricular injection of the selective immunotoxin 192 IgG-Saporin was given to rats in doses of either 2.5 or 5 μg. The rats were sacrificed after 1, 2, 4 and 20 weeks. 5-HT2A protein levels were determined by western techniques in frontal cortex and hippocampus. A significant 70% downregulation in frontal cortex and a 100% upregulation in hippocampus of 5-HT2A receptor levels were observed 20 weeks after the cholinergic lesion when using the highest dose of 192 IgG-Saporin. Our results show that cholinergic deafferentation leads to decreased frontal cortex and increased hippocampal 5-HT2A receptor levels. This is probably a consequence of the interaction between the serotonergic and the cholinergic system that may vary depending on the brain region.  相似文献   

14.
The present experiment was designed to study changes in behavior following immunolesioning of the basal forebrain cholinergic system. Rats were lesioned at 3 months of age by injection of the 192 IgG-saporin immunotoxin into the medial septum area and the nucleus basalis magnocellularis, and then tested at different times after surgery (from days 7-500) on a range of behavioral tests, administered in the following order: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. The results revealed a two-way interaction between post-lesion behavioral testing time and memory demands. In the nonmatching-to-position task, memory deficits appeared quite rapidly after surgery, i.e. at a post-lesion time as short as 1 month. In the object-recognition test, memory impairments appeared only when rats were tested at late post-lesion times (starting at 15 months), whereas in the object-location task deficits were apparent at early post-lesion times (starting from 2 months). Taking the post-operative time into account, one can hypothesize that at the shortest post-lesion times, behavioral deficits are due to pure cholinergic depletion, while as the post-lesion time increases, one can speculate the occurrence of a non-cholinergic system decompensation process and/or a gradual degeneration process affecting other neuronal systems that may contribute to mnemonic impairments. Interestingly, when middle-aged rats were housed in an enriched environment, 192 IgG-saporin-lesioned rats performed better than standard-lesioned rats on both the nonmatching-to-position and the object-recognition tests. Environment enrichment had significant beneficial effects in 192 IgG-saporin-lesioned rats, suggesting that lesioned rats at late post-lesion times (over 1 year) still have appreciable cognitive plasticity.  相似文献   

15.
The neuropeptide galanin coexists with acetylcholine (ACh) in the basal forebrain cholinergic neurons and modulates cholinergic activity in the forebrain. The cholinergic forebrain neurons appear to play a significant role in learning and memory, as suggested by a severe loss of these neurons in Alzheimer's disease. The involvement of endogenous galanin in learning is demonstrated here by the use of the recently synthesized high-affinity galanin antagonist M35 [galanin(1-13)-bradykinin(2-9) amide] (Kd = 0.1 nM). Intracerebroventricular (i.c.v.) administration of M35 (6 but not 3 nmol) produced a significant (P < 0.025) facilitation of acquisition in a spatial learning test (Morris swim maze) without any increase in swim speed. Thus, M35 (6 nmol) shortened the escape latency, reduced the number of failures to reach the platform, and shortened the path length to reach the hidden platform. M35 (3 and 6 nmol) tended to enhance retention performance seven days after the last training session. Receptor autoradiographic studies on the distribution of [125I]M35 following i.c.v. administration show that it binds preferentially in the periventricular regions including the hippocampus. These results suggest that galanin may modulate spatial learning and memory and that galanin antagonists may provide a new principle in the treatment of Alzheimer's disease.  相似文献   

16.
Rats received bilateral injections of the excitotoxin, N-methyl-D,L aspartate, which resulted in degeneration of basal forebrain cholinergic (BFC) neurons in the nucleus basalis magnocellularis. Most tests of general neurological function revealed no differences between control rats and those with BFC lesions and where differences were found they appeared to be due to hyperemotionality. Rats with BFC lesions demonstrated significant deficits in working memory, as evaluated in an 8-arm radial maze. In addition, these rats showed a severe impairment in tactile discrimination learning, an effect of BFC lesions not previously demonstrated. We propose that cholinergic deafferentation of the somatosensory cortex with consequent disruption in somatosensory information processing might account at least in part for this effect.  相似文献   

17.

Purpose

Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer''s disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer''s disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits.

Materials and Methods

We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography.

Results

During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex.

Conclusion

Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.  相似文献   

18.
After ibotenate (10.0 mg/ml) lesions to the nucleus basalis and medial septal regions, at the source of the cortical and hippocampal branches of the forebrain cholinergic projection system, rats displayed long-lasting stable impairment in reference and working memory in both spatial (place) and associative (cue) radial maze tasks. Cell suspension transplants of cholinergic-rich fetal basal forebrain tissue dissected at embryonic day 15 substantially improved all aspects of radial maze performance to a comparable degree whether sited in cortex, hippocampus, or both regions of the host brain. No additive effects were obtained with grafts in both terminal regions, but total graft volume, assessed stereologically, showed a significant negative correlation with error scores. Rats with behaviourally effective grafts, like controls, were disrupted in the place task when tested in dim light which obscured extra-maze spatial cues. Lesioned rats were not affected by change in lighting. Grafts of cholinergic-poor fetal hippocampal tissue did not improve radial maze performance; neither did grafts of cholinergic-rich tissue placed within the host basal forebrain lesion sites. In rats with cholinergic-rich terminal grafts, cortical and hippocampal choline acetyltransferase activity was restored to control level, commensurate with site of transplant, whereas it was significantly reduced in lesioned animals and those with functionally ineffective grafts. The indiscriminate error pattern and insensitivity to changes in lighting shown by lesioned rats suggested that lesioning primarily disrupted attention rather than short- or long-term spatial or associative memory processes. Since rats with cholinergic-rich grafts showed both reduced errors and recovery of stimulus control, the data indicated that grafts affected information processing, rather than changes in motor or motivational processes. Changes in choline acetyltransferase activity and the behavioural efficacy of cholinergic-rich grafts are consistent with the involvement of acetylcholine in the behavioural deficits and recovery displayed by lesioned and grafted groups, but do not rule out contributions from other factors. The equipotency of grafts within each terminal region suggests also that there may be a considerable degree of functional cooperation between the two branches of the forebrain cholinergic projection system. Functional recovery may involve local, nonspecific synaptic or paracrine mechanisms within the target regions, since grafts were efficacious only when placed in the terminal areas, but not when sited homotopically in the basal forebrain, indicating that they did not achieve any functionally significant structural repair to the host brain at that site.  相似文献   

19.
目的:建立侧脑室注射免疫毒素192-IgG-saporin致痴呆动物模型,观察其学习记忆能力和基底前脑一氧化氮合酶(NOS)阳性神经元的变化。方法:侧脑室注射免疫毒素192-IgG-saporin,行Y迷宫检测,采用NADPH-d组织化学法染色,结合图像分析技术观察大鼠基底前脑NOS阳性神经元数目和形态学参数的变化。结果:模型组大鼠的学习、记忆能力较正常组明显下降。模型组基底前脑内侧隔核(MS)和斜角带垂直支(VDB)NOS阳性神经元数分别减少到正常组的21.62%和17.70%;细胞周长和面积降低,灰度值升高,均有显著性差异。结论:应用192-IgG-saporin免疫毒素可使基底前脑NOS阳性神经元明显减少。  相似文献   

20.
Adult male Long-Evans rats were subjected to bilateral lesions of the cholinergic neurons in the nucleus basalis magnocellularis (NBM) by injection of 0.2 or 0.4 microg 192-IgG-saporin in 0.4 microl phosphate-buffered saline. Control rats received an equivalent amount of phosphate-buffered saline. Starting 2 weeks after surgery, all rats were tested for locomotor activity in their home cage, beam-walking performance, T-maze alternation rates (working memory), reference and working memory performance in a water-maze task, and memory capabilities in the eight-arm radial maze task using uninterrupted and interrupted (delay of 2 min, 2 h and 6 h after four arms had been visited) testing procedures. Histochemical analysis showed a significant decrease of acetylcholinesterase (AChE)-positive reaction products (30-66%) in various cortical regions at the 0.2-microg dose. At the dose of 0.4 microg, there was an additional, although weak, damage to the hippocampus (17-30%) and the cingulate cortex (34%). The behavioral results showed only minor impairments in spatial memory tasks, and only during initial phases of the tests (reference memory in the water maze, working memory in the radial maze). The behavioral effects of the dramatic cholinergic lesions do not support the idea of a substantial implication of cholinergic projections from the NBM to the cortex in the memory processes assessed in this study, but they remain congruent with an involvement of these projections in attentional functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号