首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Triggering receptor expressed by myeloid cells (TREM-1) is an amplifier of inflammatory responses triggered by bacterial or fungal infection. Soluble TREM-1 (sTREM-1) expression was found to be upregulated in sepsis-associated acute kidney injury (SA-AKI) and predicted to be a potential biomarker. However, the mechanism remains unclear. The human kidney-2 (HK-2) cell line was treated with lipopolysaccharide (LPS) and used to examine the potential roles of TREM-1 in apoptosis and autophagy. A cell viability assay was employed to assess the number of viable cells and as a measure of the proliferative index. The concentrations of sTREM-1, interleukin (IL)-1β, tumor necrosis factor-α (TNFα) and IL-6 in cell-free culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to analyze apoptosis, autophagy and the relevant signaling pathways. The results suggested that TREM-1 overexpression after LPS treatment decreased proliferation and increased apoptosis. The concentrations of sTREM-1, IL-1β, TNFα and IL-6 in cell-free culture supernatants were increased in the TREM-1 overexpression group after LPS treatment. Expression of the antiapoptotic gene Bcl-2 was downregulated in the TREM-1 overexpression group, while that of the proapoptotic genes Bax, cleaved caspase-3 and cleaved caspase-9 was upregulated. Overexpression of TREM-1 downregulated expression of the autophagy genes Beclin-1, Atg-5 and LC3b and increased the gene expression of p62, which inhibits autophagy. Conversely, treatment with TREM-1-specific shRNA had the opposite effects. The nuclear factor-κB (NF-κB) signaling pathway (P-p65/p65 and P-IκBα/IκBα) in LPS-induced HK-2 cells was regulated by TREM-1. In summary, TREM-1 promoted apoptosis and inhibited autophagy in HK-2 cells in the context of LPS exposure potentially through the NF-κB pathway.  相似文献   

3.
Klebsiella pneumoniae (strain 43816, K2 serotype) induces interleukin-1β (IL-1β) secretion, but neither the bacterial factor triggering the activation of these inflammasome-dependent responses nor whether they are mediated by NLRP3 or NLRC4 is known. In this study, we identified a capsular polysaccharide (K1-CPS) in K. pneumoniae (NTUH-K2044, K1 serotype), isolated from a primary pyogenic liver abscess (PLA K. pneumoniae), as the Klebsiella factor that induces IL-1β secretion in an NLRP3-, ASC-, and caspase-1-dependent manner in macrophages. K1-CPS induced NLRP3 inflammasome activation through reactive oxygen species (ROS) generation, mitogen-activated protein kinase phosphorylation, and NF-κB activation. Inhibition of both the mitochondrial membrane permeability transition and mitochondrial ROS generation inhibited K1-CPS-mediated NLRP3 inflammasome activation. Furthermore, IL-1β secretion in macrophages infected with PLA K. pneumoniae was shown to depend on NLRP3 but also on NLRC4 and TLR4. In macrophages infected with a K1-CPS deficiency mutant, an lipopolysaccharide (LPS) deficiency mutant, or K1-CPS and LPS double mutants, IL-1β secretion levels were lower than those in cells infected with wild-type PLA K. pneumoniae. Our findings indicate that K1-CPS is one of the Klebsiella factors of PLA K. pneumoniae that induce IL-1β secretion through the NLRP3 inflammasome.  相似文献   

4.
Acute kidney injury (AKI) is a systemic inflammatory response syndrome associated with poor clinical outcomes. No treatments effective for AKI are currently available. Thus, there is an urgent need of development of treatments effective for AKI. Autophagy, an intracellular proteolytic system, is induced in renal cells during AKI. However, whether autophagy is protective or injurious for AKI needs to be clearly clarified. We addressed this question by pharmacological inhibition of autophagy using a mouse model of lipopolysaccharide (LPS) induced-AKI. We found that autophagy was induced in renal cortex of mice during LPS-induced AKI as reflected by a dose-and time-dependent increased accumulation of light chain 3-II (LC3-II), the common marker of autophagy, compared to that of control group; 2) the occurrence of intensive, punctate and increased immunohistochemical staining image of LC3-II in renal cortex; 3) the significant increase in the expression levels of Beclin-1, another key marker of autophagy; 4) the significantly increased levels of plasma urea and serum creatinine and 5) the significant increase in autophagagosome area ratio. We observed that 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy, blocked autophagy flux, alleviated AKI and protected against LPS-induced AKI. LPS triggered kidney inflammation by activation of the canonical NF-κB pathway. This route can be modulated by autophagy. Activation of the canonical NF-κB pathway was reduced in 3-MA+LPS as compared to that in LPS-treated group of mice. Mice pretreated with 3-MA before exposure to LPS showed a reduction in p65 phosphorylation, resulting in the accumulation of ubiquitinated IκB. In conclusion, impairment of autophagy ameliorates LPS-induced inflammation and decreases kidney injury. The accumulation of ubiquitinated IκB may be responsible for this effect.  相似文献   

5.
Assembly of the inflammasome has recently been identified to be a critical event in the initiation of inflammation. However, its role in bacterial killing remains unclear. Our study demonstrates that Pseudomonas aeruginosa infection induces the assembly of the NLRP3 inflammasome and the sequential secretion of caspase1 and interleukin-1β (IL-1β) in human macrophages. More importantly, activation of the NLRP3 inflammasome reduces the killing of P. aeruginosa in human macrophages, without affecting the generation of antimicrobial peptides, reactive oxygen species, and nitric oxide. In addition, our results demonstrate that P. aeruginosa infection increases the amount of the LC3-II protein and triggers the formation of autophagosomes in human macrophages. The P. aeruginosa-induced autophagy was enhanced by overexpression of NLRP3, ASC, or caspase1 but was reduced by knockdown of these core molecules of the NLRP3 inflammasome. Treatment with IL-1β enhanced autophagy in human macrophages. More importantly, IL-1β decreased the macrophage-mediated killing of P. aeruginosa, whereas knockdown of ATG7 or Beclin1 restored the IL-1β-mediated suppression of bacterial killing. Collectively, our study explores a novel mechanism employed by P. aeruginosa to escape from phagocyte killing and may provide a better understanding of the interaction between P. aeruginosa and host immune cells, including macrophages.  相似文献   

6.
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.  相似文献   

7.
In the present study, we investigated whether CVVH can reduce HMGB1, TLR4, NF-κB and other serum cytokine levels, preventing organ injury in a dog sepsis model. A total of 10 dogs were injected with LPS and treated with either CVVH group (n = 5) or nothing (Control, n = 5) for 24 h. EILSA was used for examining the concentration of TNF-α, IL-6, HMGB 1 and TLR4. The histological change of lung, liver and kidney tissues was determined. The mRNA expression of HMGB1, TLR4 and NF-κB was examined by RT-PCR. The protein of HMGB1 and phosphated NF-κB was examined by Western-blot. The levels of serum HMGB1 came to the peak at 8 h, 16 h and then declined. The LPS-induced increase in HMGB1 level was suppressed by CVVH compared with Control. Likewise, serum TNF-α and IL-6 levels decreased with CVVH along with a significant improvement in the function of main organs. Histologic examination revealed significant reduction in inflammation in lung; liver and kidney tissues harvested 24 h after CVVH compared with Control. The mRNA of HMGB1, TLR4 and NF-κB in the kidney was expressed at high level after LPS administration, which was significantly decreased by CVVH. The increased protein expression of HMGB1 and phosphated NF-κB was reduced after CVVH compared with control. CVVH by reducing the level of HMGB1, TLR4, NF-κB and other cytokines could weaken the cascade of cytokines and restore the immune system, and reduce the damage of important organs in sepsis.  相似文献   

8.
Amyloids are proteins with cross-β-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer''s disease, Parkinson''s disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1β (IL-1β). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1β via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1β. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid β of Alzheimer''s disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1β as a product of this interaction.  相似文献   

9.
Epidermal keratinocytes provide protective role against external stimuli by barrier formation. In addition, kertinocytes exerts their role as the defense cells via activation of innate immunity. Disturbance of keratinocyte functions is related with skin disorders. Psoriasis is a common skin disease related with inflammatory reaction in epidermal cells. We attempted to find therapeutics for psoriasis, and found that Paeonia lactiflora Pallas extract (PE) has an inhibitory potential on poly (I:C)-induced inflammation of keratinocytes. PE significantly inhibited poly (I:C)-induced expression of crucial psoriatic cytokines, such as IL-6, IL-8, CCL20 and TNF-α, via down-regulation of NF-κB signaling pathway in human keratinocytes. In addition, PE significantly inhibited poly (I:C)-induced inflammasome activation, in terms of IL-1β and caspase-1 secretion. Finally, PE markedly inhibited poly (I:C)-increased NLRP3, an important component of inflammasome. These results indicate that PE has an inhibitory effect on poly (I:C)-induced inflammatory reaction of keratinocytes, suggesting that PE can be developed for the treatment of psoriasis.  相似文献   

10.
It has been reported that HMGB1 participated in various types of lung injury. In this study, we explored whether blocking HMGB1 has a preventive effect on the early radiation-induced lung injury and investigate the mechanism. Mice model of radiation-induced lung injury were accomplished by a single dose irradiation (15 Gy) to the whole thorax. Irradiated mice were treated with HMGB1-neutralizing antibody intraperitoneally dosed 10 μg, 50 μg, 100 μg/mouse respectively and were sacrificed after one week post-irradiation. Lung tissue slices were stained by H&E, and alveolitis was quantified by Szapiel scoring system. The level of cytokines TNF-γ in bronchoalveolar lavage fluid was detected by ELISA method. And p65NF-κB, p50NF-κB protein expression in mice lung tissues was detected by Western blot analysis. The results showed that blocking HMGB1 inhibited the inflammatory response, and thereby decreased the degree of alveolitis of irradiated lung tissue. In addition, HMGB1 antagonist can restrain the expression of type Th2 or Th17 derived inflammatory cytokines TNF-α, IL-6 and IL-17A, promote the expression of Th1 type cytokines INF-γ, and inhibit p65 NF-κB but promote p50 NF-κB activation, which promoted the resolution of the radiation-induced inflammatory response. In conclusion, blocking HMGB1 can reduce the degree of early radiation-induced lung injury, and its mechanism may be related to the promotion of p50NF-κB activation and its downstream molecules expression. Inhibiting HMGB1 may be a new target to deal with early radiation-induced lung injury.  相似文献   

11.

Objective

Monocytes/macrophages, proinflammatory cytokines and chemokines are important in the pathogenesis of glomerulonephritis. Interleukin (IL) -13 has been shown to exert potent anti-inflammatory properties. This study was designed to investigate the effect of IL-13 on the expression of proinflammatory cytokines, chemokines and profibrogenic cytokines and the involved molecular mechanism in cultured human mesangial cells (HMCs).

Methods

The expressions of proinflammatory cytokines, chemokines and profibrogenic cytokines were determined by ribonuclease protection assay (RPA). Activity of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) was examined by electrophoretic mobility shift assay (EMSA). NF-κB subunit p65 nuclear transportation and c-Jun N-terminal kinase (JNK) activity were assayed by immunoblot.

Results

Recombinant IL-13 inhibited tumor necrosis factor-α (TNF-α), IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), IL-8, and transforming growth factor-β1 (TGF-β1) mRNA expressions in a dose-dependent manner. Lipopolysacchorides (LPS) dramatically increased NF-κB DNA binding activity of HMCs, which was inhibited by IL-13 in a dose-dependent manner. LPS-activated NF-κB contained p50 and p65 dimers, but not c-Rel subunit. IL-13 blocked LPS-induced NF-κB subunit p65. LPS stimulated JNK/AP-1 activation, which was inhibited by IL-13 in a dose-dependent manner.

Conclusion

IL-13 inhibits proinflammatory cytokines, chemokines, and profibrogenic cytokines synthesis by blocking NF-κB and JNK/AP-1 activation. These observations point to the importance of IL-13 in the modulation of inflammatory processes in the renal glomerulus.  相似文献   

12.
Increasing evidences suggest that PI3K/AKT pathway plays an important role in the pathogenesis of inflammatory diseases such as acute pancreatitis. However, the exact effect of PI3K/AKT on thyroid injury associated with acute pancreatitis has not been investigated. This study aimed to investigate the protective effects of wortmannin, PI3K/AKT inhibitor, on thyroid injury in a rat model of severe acute pancreatitis (SAP). Sixty male SD rats were randomly divided into four groups: sham operating group (SO), SAP group, wortmannin treatment (WOR) group and drug control (WOR-CON) group. Serum amylase (AMY), lipase (LIP) and thyroid hormone levels were evaluated. The morphological change of thyroid tissue was analyzed under the light and transmission electron microscopy. AKT, P38MAPK and NF-κB expression in the thyroid tissue was evaluated by immunohistochemical staining. Oxidative stress and inflammatory cytokines were detected. Results showed that wortmannin attenuated the following: (1) serum AMY, LIP and thyroid hormone (2) pancreatic and thyroid pathological injuries (3) thyroid MDA, (4) thyroid ultrastructural change, (5) serum TNF-α, IL-6 and IL-1β (6) AKT, MAPKP38 and NF-κB expression in thyroid tissues. These results suggested that wortmannin attenuates thyroid injury in SAP rats, presumably because of its role on prevent ROS generation and inhibits the activation of P38MAPK, NF-κB pathway. Our findings provide new therapeutic targets for thyroid injury associated with SAP.  相似文献   

13.
Cervical cancer is a malignancy with high morbidity and mortality among women. Interleukin (IL)-1β, chemokine (C-C motif) ligand 2 (CCL-2), and activation of NF-κB have been proven to be closely related to the progression of various tumors. However, their role in cervical cancer remains unclear. Cell proliferation, migration, and invasion were detected using MTT, wound healing, and transwell assays. Western blotting and qRT-PCR were used to measure expression of target genes. IL-1β greatly promoted the release of CCL-2 from HeLa cells. Activation of NF-κB and phosphorylated NF-κB (p65) nuclear translocation were accelerated by IL-1β. TPCA-1, a blocker of NF-κB, significantly inhibited the release of CCL-2 from HeLa cells. TPCA-1 markedly reversed the promotional effect of IL-1β on viability of HeLa cells. IL-1β increased the cell migration, proliferation, and invasion of HeLa cells through targeting the NF-κB/CCL-2 pathway. IL-1β/NF-κB/CCL-2 might be a promising treatment target for cervical cancer treatment and prevention.  相似文献   

14.
Liver plays an important role in the pathogenesis of sepsis by releasing various cytokines and producing acute phase proteins. Heat shock preconditioning is reported to be effective in protection of lung and liver from injury in sepsis and in endotoxemia models, but the exact mechanism is still not fully understood. We report here on the effects of the heat shock response (HSR) induced by sodium arsenite on endotoxemia-induced liver injury as well as hepatic NF-κB activation and proinflammatory cytokine expression. Prior induction of HSR significantly attenuated endotoxemia-induced histological changes, inhibited hepatic NF-κB activation and IκBα degradation and decreased mortality. Expression of mRNA coding for TNF-α and IL-6 in liver was significantly lower in arsenite-pretreated animals. We conclude that attenuation of endotoxin-induced hepatic NF-κB activation and subsequent proinflammatory cytokine production may be one of the mechanisms of the beneficial effect of the heat shock response.  相似文献   

15.
Little is known about the role of isorhamnetin on endothelial cell apoptosis and inflammation when insulted by TNF-α injury. In our study, HUVECs were treated with TNF-α for 6 hours. HUVECs apoptosis were detected using flow cytometry. The expressions of ICAM-1, VCAM-1, E-selectin, NF-κB, AP-1 and eNOS were determined with western blotting or flow cytometry. The results showed TNF-α increased of apoptosis and the expression of ICAM-1, VCAM-1 and E-selectin in HUVECs, accompanied by significant augmentation of NF-κB and AP-1 expression. Pretreatment with isorhamnetin significantly reduced apoptosis in TNF-α-treated HUVECs. Moreover, isorhamnetin significantly attenuated TNF-α-induced upregulation of ICAM-1, VCAM-1, AP-1, E-selectin and NF-κB expression. Meanwhile, isorhamnetin also increased the expression of eNOS. So, isorhamnetin could suppress TNF-α-induced apoptosis and inflammation by blocking NF-κB and AP-1 signaling in HUVECs, which might be one of the underlying mechanisms for treatment of coronary heart disease.  相似文献   

16.
In this study, we aim to investigate the effects of electroacupuncture on the TLR4/NF-κB signaling pathway in microglia. Male Wistar rat of SPF grade (weighing 200±20 g) were randomly divided into (i): sham control group, which was subjected to sham operation (ii) vehicle group, which underwent the occlusion of middle cerebral artery; (iii-v): acupuncture groups, which were subjected to the occlusion of middle cerebral artery and treated with acupuncture on the Neiguan acupoint (P6), Quchi acupoint (LI11), and Diji acupoint (SP8), respectively. HE staining was performed to detect the necrotic rate of neurons. Mediators of inflammation were measured using ELISA. Immunofluorescence was performed to measure the expression of TLR4, HMGB1, TRAF6, IKKβ and NF-κB p65 in microglia. Severe decrease was noticed in the neurological score, necrotic rates of neuron, expression of IL-1β, IL-6, TLR4, HMGB1, TRAF6, IKKβ and NF-κB p65 in microglia. Compared with the vehicle group, significant decrease was revealed in the neurological score, necrotic rate, IL-1β, TLR4, TRAF6, IKKβ and NF-κB p65 in Neiguan group and Quchi group, respectively. In addition, remarkable decrease was observed in the expression of TNF-α and IL-6 in Quchi group. Compared with the Diji group, the necrotic rate of neurons in hippocampus region was significantly decreased in the Quchi group (P < 0.05). In Neiguan group, the expression of TLR4 and IKKβ was significantly attenuated (P < 0.05). The expression of TRAF6 was remarkably decreased in the Neiguan group and Quchi group, respectively. Electroacupuncture on Neiguan and Quchi could improve the neurological injury, attenuate the inflammation, and inhibit the activity of TLR4/NF-κB signaling pathway in microglia.  相似文献   

17.
In this study, by using vivo and vitro model, we assessed whether interleukin (IL)-1beta gene polymorphisms influence on the risk of myocardial infarction and ischemic stroke at young age. 147 patients (age < 45 years) with a first episode of MI and 56 patients (age < 45 years) with first-ever cerebral ischemia consecutively were admitted to this study from the Department of Chinese PLA General Hospital. Meanwhile, 91 normal volunteers without MI or stroke were deeded as control group and greed to give blood samples for DNA analysis and biochemical measurements by written informed consent. IL-1β-511 wild type (WT, CC) and SNP (TT) were established and transfected into Rat myocardial H9c2 cell and Mouse brain endothelial bEND.3 cells. In Young Age MI or stroke patients, the IL-1β levels of patients with 511CC are higher than that of patients with 511TT. In our study, NF-κB miRNA, iNOS activity, NF-κB, iNOS and Bax protein expressions of MI-induced H9c2 cell or stroke-induced bEND.3 cells in IL-1β-511TT group were lower than those of IL-1β-511CC. Additionally, the protein expression of MMP-2 of MI-induced H9c2 cell or stroke-induced bEND.3 cells in IL-1β-511TT group were higher than that of IL-1β 511CC group. In conclusion, our data indicate that IL-1β-511TT/CC influence on the risk of myocardial infarction and ischemic stroke at young age through NF-κB, iNOS, MMP-2 and Bax.  相似文献   

18.
Pentoxifylline (PTX) is a non-selective phosphodiesterase inhibitor with the effects of antioxidation, anti-inflammation and anti-fibrosis that has been shown to induce damage in liver. The purpose of this study is to investigate the effects and possible mechanisms of PTX on thioacetamide (TAA)-induced acute liver injury in rats. Male Sprague-Dawley (SD) rats were divided into four groups: control, PTX, TAA and PTX+TAA treated groups. Rats were administrated TAA together with or without PTX for a week and sacrificed 24 h after the last intragastric administration of PTX. Histopathological analysis was carried out. The liver function, the indices of oxidative stress including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) in liver tissues, and pro-inflammatory cytokines expressions were examined. The mRNA level of NF-κB p65 in liver was also determined. PTX significantly attenuated TAA-induced liver injury. The serum transaminase and MDA levels were reduced while the levels of SOD and GSH were increased, as compared with the TAA-treated group. PTX also remarkably suppressed the secretions of pro-inflammatory cytokines and the nuclear factor-κB (NF-κB) activation induced by TAA. In addition, the histopathological analysis showed that the range and degree of liver tissue lesions were improved obviously in PTX treated group. Pentoxifylline could ameliorate the effects of thioacetamide-induced acute liver injury in rats by inhibiting oxidative stress, expressions of pro-inflammatory cytokines and NF-κB activation.  相似文献   

19.
Objectives: Mesenchymal stem cells (MSCs) have shown an obvious protective effect on systemic inflammation. The purpose of this study is to assess the effect and possible mechanism of bone marrow MSCs (bmMSCs) on acute pancreatitis (AP). Methods: BmMSCs of SD rats were isolated and cultured in vitro. L-Arginine-induced acute pancreatitis was used as AP model in vivo. Pancreatic injury was assessed by serum amylase, lipase, cytokines and pancreatic histology. RT-PCR was applied to investigate mRNA expression of pancreas tissue. Western-blot and immunohistochemistry (IHC) were applied to test the role of NF-κB p65 signaling pathway. Tracking and Positioning of CM-Dil labeled bmMSCs in vivo was further studied. Results: Treatment with bmMSCs attenuated acute pancreatic injury and AP-associated lung injury obviously, with decreased serum IL-1β, IL-6, TNF-α, down-regulated expressions of IL-1α, IL-6, TNFα in pancreas tissue and reduced nuclear translocation of NF-κB p65 in AP. Localization of bmMSCs in vivo was due to being passively trapped in related organs, but not actively homing to inflammatory sites of pancreas during the early phase of AP. Conclusions: Taken together, the results showed that bmMSCs played a protective role in AP in many aspects, which might protect against experimental pancreatitis partly by regulating release of inflammatory cytokines by an exocrine secretion.  相似文献   

20.
Inflammatory responses are a first line of host defense against a range of invading pathogens, consisting of the release of proinflammatory cytokines followed by attraction of polymorphonuclear neutrophils (PMNs) to the site of inflammation. Among the many virulence factors that contribute to the pathogenesis of infections, nucleoside diphosphate kinase (Ndk) mediates bacterially induced toxicity against eukaryotic cells. However, no study has examined how Ndk affects inflammatory responses. The present study examined the mechanisms by which Pseudomonas aeruginosa activates inflammatory responses upon infection of cells. The results showed that bacterial Ndk, with the aid of an additional bacterial factor, flagellin, induced expression of the proinflammatory cytokines interleukin-1α (IL-1α) and IL-1β. Cytokine induction appeared to be dependent on the kinase activity of Ndk and was mediated via the NF-κB signaling pathway. Notably, Ndk activated the Akt signaling pathway, which acts upstream of NF-κB, as well as caspase-1, which is a key component of inflammasome. Thus, this study demonstrated that P. aeruginosa, through the combined effects of Ndk and flagellin, upregulates the expression of proinflammatory cytokines via the Akt/NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号