首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the CA1 hippocampal region low-frequency (1-2 Hz) afferent activation leads to a long-term depression of excitatory synaptic potentials that is induced by calcium influx through postsynaptic N -methyl- d -aspartate receptor channels. In the present experiments using 2- to 3-week-old rats, long-term depressions of field excitatory postsynaptic potentials mediated by amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and by N -methyl- d -aspartate receptor channels were examined in parallel, using a perfusion solution containing low concentrations of an AMPA receptor antagonist and of magnesium (0.1 mM). These experiments revealed that long-term depression was associated with equal relative changes in the two components of the field potential, compatible with a presynaptic location of the expression mechanism for the long-term depression.  相似文献   

2.
The recent discovery of a large latent population of precursor cells in the dentate gyrus of adult mice led us to investigate whether activation of this population is regulated by synaptic activity, thereby explaining the observation that environmental signals can affect neurogenesis. Using a variety of stimulation protocols, we found that only a long-term potentiation (LTP)-inducing protocol activated the latent precursor pool, leading to increased neurogenesis in the dentate gyrus. LTP induced by high-frequency stimulation (HFS) of the perforant pathway in vivo produced a two-fold increase in the number of neurospheres cultured from the stimulated hippocampus, compared with the unstimulated hippocampus. No increase in neurosphere number or neurogenesis was observed when the HFS failed to induce LTP. These results show that LTP can activate latent neural precursor cells in the adult mouse dentate gyrus, thereby providing a direct mechanism for regulating activity-driven neurogenesis. In the future, it may be possible to utilize such learning- or stimulation-induced neurogenesis to overcome disorders characterized by neuronal loss.  相似文献   

3.
Previous experiments have shown that long-term potentiation (LTP) generally lasts for only a few days or weeks. The LTP phenomenon would be more attractive as a memory model if it were more enduring. The experiments reported in this paper were designed to test the effects of repeated induction of LTP on the duration of LTP. Three groups of animals received 5 LTP-inducing stimulation sessions. In one group of animals, the stimulation sessions were administered every 24 h. In the 2nd group, the sessions were administered after the LTP effects had decayed to 50% of the peak values. In the 3rd group, the sessions were administered only after the response amplitudes had completely returned to pre-LTP baseline levels. None of the LTP measures were altered, in any group, as a result of repeated induction of LTP. The thresholds, the asymptotic levels of potentiation, and the decay rates were the same after each session. Other treatments may alter the duration of LTP effects, but repeated induction of LTP does not appear to have any lasting effects.  相似文献   

4.
An important factor in the induction and maintenance of long-term potentiation (LTP) is the tetanization paradigm. This paper presents the changes associated with the induction and maintenance of hippocampal LTP in the freely moving adult male rat, subjected to three different tetanization paradigms. These results indicate that specific LTP measures including (1) synaptic activation, as measured by the slope of the dentate granule cell population excitatory postsynaptic potential, and (2) cellular response, as measured by the dentate population spike amplitude, evoked by single-pulse stimulation of the medial perforant pathway are dependent on the interburst interval of the bursting paradigm commonly used in LTP studies.  相似文献   

5.
Moga DE  Shapiro ML  Morrison JH 《Hippocampus》2006,16(11):990-1003
Long-term potentiation (LTP) in vitro reveals dynamic regulation of synaptic glutamate receptors. AMPA receptors may be inserted into synapses to increase neurotransmission, whereas NMDA receptors may redistribute within the synapse to alter the probability of subsequent plasticity. To date, the only evidence for these receptor dynamics in the hippocampus is from the studies of dissociated neurons and hippocampal slices taken from young animals. Although synaptic plasticity is induced easily, the extent of AMPA and NMDA receptor mobility after LTP is unknown in the adult, intact hippocampus. To test whether AMPA or NMDAR subunits undergo activity-dependent modifications in adult hippocampal synapses, we induced LTP at perforant path-dentate gyrus (DG) synapses in anesthetized adult rats, using high frequency stimulation (HFS), verified layer-specific Arc induction, and analyzed the distribution of postsynaptic AMPA and NMDAR subunits, using immunogold electron microscopy. The number of synapses with AMPA receptor labeling increased with LTP-inducing HFS in the stimulated region of the dendrite relative to the nonstimulated regions. The opposite trend was noted with low frequency stimulation (LFS). Moreover, HFS increased and LFS decreased the ratio of synaptic to extrasynaptic AMPA receptor labeling in the postsynaptic membrane. In contrast, HFS did not significantly alter NMDAR labeling. Thus, LTP in the adult hippocampus in vivo selectively enhanced AMPA but not NMDAR labeling specifically in synapses undergoing activity-dependent plasticity relative to the remainder of the dendritic tree. The results suggest a mechanism by which rapid adjustments in synaptic strength can occur through localized AMPA receptor mobility and that this process may be competitive across the dendritic tree.  相似文献   

6.
Using the phosphatase inhibitor calyculin A, we have examined the influence of phosphorylation on synaptic transmission and plasticity in rat CA1 hippocampal slices. Bath application of 0.5 – 1 μM of calyculin A resulted in an increase of 42.6 ±2.9% in synaptic responses. The effect produced by calyculin A was not accompanied by changes in fibre volley, was not associated with changes in paired-pulse facilitation, and could be reproduced by intracellular injection of the compound, thereby indicating a postsynaptic action. Also, the synaptic enhancement produced by calyculin A was expressed only by potentials mediated by amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not by the NMDA responses recorded in the presence of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and low magnesium. The effect of calyculin A could be prevented by KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II. Long-term potentiation could still be induced in the presence of calyculin A, but the effect of the compound was slightly reduced on potentiated compared with control pathways. These results indicate that calyculin A can selectively increase the efficacy of AMPA receptor-mediated synaptic transmission at excitatory synapses.  相似文献   

7.
The entorhinal cortex projects monosynaptically to the granule cells in the dentate gyrus via the lateral and medial perforant paths. These two subdivisions of the perforant path differ with respect to synaptic properties, and recent studies suggest that they also differ with respect to long-term potentiation (LTP). In the present study, using the in vitro slice preparation of the guinea-pig hippocampus, field excitatory postsynaptic potentials (EPSPs) and LTP in the lateral and medial perforant paths were compared. The two pathways were distinguished on the basis of their different termination in the dendritic layer, their different pharmacology and short-term synaptic facilitation. The field EPSP [obtained in the presence of γ-aminobutyric acid (GABA) A and B receptor antagonists] consisted of a non- N -methyl- d -aspartate (NMDA) component with different time characteristics in the two pathways, the decay being monoexponential in the lateral perforant path and biexponential in the medial one. In addition, the field EPSP in both pathways contained a small NMDA-mediated component that could also be observed after complete blockade of the non-NMDA one. LTP induction in both lateral and medial perforant paths was facilitated by blockade of GABAA inhibition, showed associative properties, and was blocked by NMDA receptor antagonists. Following the induction event, LTP in both pathways developed to a peak value within 30–40 s, and the stability of LTP was correlated with the amount of postsynaptic, but not presynaptic, activity during the induction event. During blockade of GABAA inhibition the opioid receptor antagonist naloxone and the β-adrenergic antagonist timolol had no effect on the magnitude or stability of LTP. It is concluded that LTP in the lateral and medial perforant paths does not differ with respect to induction mechanisms and early temporal characteristics.  相似文献   

8.
Performance in hippocampus-dependent and other tasks can be improved by exposure to an enriched environment (EE), but the physiological changes in neural function that may mediate these effects are poorly understood. To date, there have been conflicting reports regarding potential mechanisms, such as an increase in basal synaptic transmission, an increase in cell excitability, or altered synaptic plasticity. Here, we reexamined in freely moving animals the conditions under which varying degrees of EE exposure might lead to increases in synaptic or neural function in the dentate gyrus of the hippocampus. Adult male Sprague-Dawley rats were chronically implanted with stimulating and recording electrodes in the perforant path and dentate gyrus, respectively, and housed singly in standard cages. After stable recordings were established for field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs), the effects of various degrees of periodic novel environment exposure for 19 days were assessed. Exposure to an EE increased fEPSPs, but only when animals were kept in nominally low-stress housing conditions. An increase in granule-cell excitability, as evidenced by PS increases, was induced by all environmental treatments with the greatest effect being induced by overnight EE exposure. EE exposure did not change the level of long-term potentiation (LTP) induced by a moderate high-frequency tetanus, but continued EE exposure post-tetanus produced a significantly faster decay of LTP relative to control animals. These results suggest that, in adult animals, EE exposure may augment hippocampal information processing, but may also speed turnover of information in the hippocampus during the maintenance period.  相似文献   

9.
The mechanism of action of norepinephrine (NE)-induced potentiation of the population spike in the dentate gyrus of hippocampal slices was examined and compared with NE effects in field CA1. NE-induced potentiation was confined to the dentate gyrus, where slices perfused for 30 min with concentrations of NE as low as 5 microM exhibited potentiation of the perforant path evoked population spike. Potentiation began within 15 min, and lasted many hours after NE was washed out. Experiments where slices were pre-incubated with the protein synthesis inhibitor emetine indicated that there are two distinct phases to NE-induced potentiation. The initial short-term NE-induced potentiation (NEP) seen during NE application was not affected by a 30 min pre-incubation with emetine, whereas the long-lasting potentiation (NELLP) which persists after NE washout was completely blocked by emetine at a concentration which we have previously shown to be effective in blocking hippocampal long-term potentiation (LTP). Additional experiments indicated that both phases of NE-induced potentiation were completely blocked by the beta-antagonist propranolol and the beta 1-antagonist metoprolol. Furthermore, pre-incubation of slices with the direct-acting adenylate cyclase stimulant forskolin shifted the dose-response curves for both phases of NE-induced potentiation to the left. These results suggest that NE-induced potentiation is probably mediated by beta 1-receptor stimulation of adenylate cyclase. We have previously shown an importance for beta 1-receptor stimulation of adenylate cyclase in the production of LTP in the dentate. Thus, these results demonstrate a number of similarities between hippocampal LTP and NELLP in the dentate gyrus.  相似文献   

10.
We have independently in our two laboratories re-examined the report by Stanton and Sejnowski ( Nature , 339 , 215 – 218, 1989) that single stimuli to a test pathway in area CA1 of the hippocampal slice, when delivered between short bursts of stimuli to a second, convergent pathway, produce an associative long-term depression (LTD) in the test pathway. While robust associative LTP was observed when stimuli to the two inputs were correlated in time, the anti-correlation procedure failed to induce LTD; rather, a trend towards potentiation was observed. This result was obtained using both submerged and interface chambers, and in two different strains of rat. A transient depression lasting for a few minutes could usually be elicited by strong tetanic stimulation; this depression was not restricted to activated pathways.  相似文献   

11.
Correct function of glutamate receptors in the postsynaptic density is crucial to synaptic function and plasticity. SorCS3 (sortilin‐related receptor CNS expressed 3) is a sorting receptor which previously has been shown to interact with the key postsynaptic proteins; PSD‐95 and PICK1. In this study, we employed electrophysiological analyses of acute brain slices combined with immunohistochemistry to define the role of SorCS3 in hippocampal synapses in CA1 and the dentate gyrus. We analyzed a juvenile (P17‐21) and a young adult (P55‐65) group of animals from a Sorcs3 knockout mouse model. We show that the basal synaptic transmission is severely affected in SorCS3‐deficient neurons in CA1, while only slightly reduced in the dentate gyrus. Specifically, input/output curves of CA1 synapses revealed a 20% reduction of fEPSP (field excitatory postsynaptic potential) slopes at the highest stimulation intensity in knockouts of the juvenile group, which developed to a 33% decrease in young adult animals. These impairments may be a result of changes in the postsynaptic AMPA receptors. Interestingly, repetitive afferent stimulation demonstrated that SorCS3‐deficient slices respond with an enhanced synaptic facilitation and reduced synaptic depression. These changes also developed with age. A molecular mechanism underlying this relative increase during repetitive stimulations is compatible with enhanced mobility of postsynaptic AMPA receptors resulting in faster exchange of desensitized receptors in the postsynaptic density. The altered response during repetitive stimulation was characteristic for CA1 but not the dentate gyrus. Immunohistochemical analyses of parvalbumin positive neurons combined with paired‐pulse tests of network inhibition and patch‐clamp recordings only showed minute inhibitory changes in SorCS3‐deficient slices. Our results suggest that SorCS3 serves an important role in the postsynaptic protein network, which is more pronounced in CA1 compared to the dentate gyrus. These data support a role for SorCS3 in controlling proper positioning and mobility of glutamate receptors in the postsynaptic density. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
NMDA receptor (NMDAR) dependent forms of synaptic plasticity are thought to play critical roles in many aspects of CNS function and dysfunction, from learning and memory to addiction. NMDARs are heteromeric tetramers principally comprised of two NR1 subunits and two of four varieties of NR2 subunits (NR2A-2D). Recently, it has been proposed that specific NR2 subtypes subserve distinct roles in NMDAR-dependent long-term potentiation (LTP) and long-term depression (LTD). Here, we will review this literature, and describe an existing countervailing hypothesis, the charge-transfer hypothesis, which postulates that the total charge transfer through NMDARs, rather than specific subunits, dictates the polarity of synaptic plasticity. We will propose that a modification of the charge-transfer hypothesis, to include the possible involvement of protein-protein interactions imparted by distinct NR2 subunits, best fits the existing data.  相似文献   

13.
14.
Long-term potentiation (LTP) at hippocampal CA3–CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N -methyl- d -aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit ( Gria1 −/− mice) to investigate GluA1-independent mechanisms of LTP at CA3–CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3–CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC.  相似文献   

15.
Individuals with schizophrenia display a number of structural and cytoarchitectural alterations in the hippocampus, suggesting that other functions such as synaptic plasticity may also be modified. Altered hippocampal plasticity is likely to affect memory processing, and therefore any such pathology may contribute to the cognitive symptoms of schizophrenia, which includes prominent memory impairment. The current study tested whether prenatal exposure to infection, an environmental risk factor that has previously been associated with schizophrenia produced changes in hippocampal synaptic transmission or plasticity, using the maternal immune activation (MIA) animal model. We also assessed performance in hippocampus‐dependent memory tasks to determine whether altered plasticity is associated with memory dysfunction. MIA did not alter basal synaptic transmission in either the dentate gyrus or CA1 of freely moving adult rats. It did, however, result in increased paired‐pulse facilitation of the dentate gyrus population spike and an enhanced persistence of dentate long‐term potentiation. MIA animals displayed slower learning of a reversed platform location in the water maze, and a similarly slowed learning during reversal in a spatial plus maze task. Together these findings are indicative of reduced behavioral flexibility in response to changes in task requirements. The results are consistent with the hypothesis that hippocampal plasticity is altered in schizophrenia, and that this change in plasticity mechanisms may underlie some aspects of cognitive dysfunction in this disorder. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Novel spatially restricted genetic manipulations can be used to assess contributions made by synaptic plasticity to learning and memory, not just selectively within the hippocampus, but even within specific hippocampal subfields. Here we generated genetically modified mice (NR1(deltaDG) mice) exhibiting complete loss of the NR1 subunit of the N-methyl-D-aspartate receptor specifically in the granule cells of the dentate gyrus. There was no evidence of any reduction in NR1 subunit levels in any of the other hippocampal subfields, or elsewhere in the brain. NR1(deltaDG) mice displayed severely impaired long-term potentiation (LTP) in both medial and lateral perforant path inputs to the dentate gyrus, whereas LTP was unchanged in CA3-to-CA1 cell synapses in hippocampal slices. Behavioural assessment of NR1(deltaDG) mice revealed a spatial working memory impairment on a three-from-six radial arm maze task despite normal hippocampus-dependent spatial reference memory acquisition and performance of the same task. This behavioural phenotype resembles that of NR1(deltaCA3) mice but differs from that of NR1(deltaCA1) mice which do show a spatial reference memory deficit, consistent with the idea of subfield-specific contributions to hippocampal information processing. Furthermore, this pattern of selective functional loss and sparing is the same as previously observed with the global GluR-A L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate receptor subunit knockout, a mutation which blocks the expression of hippocampal LTP. The present results show that dissociations between spatial working memory and spatial reference memory can be induced by disrupting synaptic plasticity specifically and exclusively within the dentate gyrus subfield of the hippocampal formation.  相似文献   

17.
G.B. Robinson  R.J. Racine   《Brain research》1985,325(1-2):71-78
The chronic rat preparation was utilized to study the effects of noradrenaline (NA) depletion on field potentials recorded from the hilus of the fascia dentata. Both single pulses and high-frequency trains were applied to the perforant path (PP). The effects of NA depletion on baseline responses as well as on long-term potentiation (LTP) were examined. Reduced NA levels resulted in an increase in the population spike amplitude and a depression of the population excitatory postsynaptic potential (EPSP). Depleted animals showed significantly higher levels of LTP of the population EPSP, but reduced levels of population spike LTP (measured 13-15 min after tetanization). There were, however, no differences in LTP levels 1 week after the potentiation tests. These results demonstrate that NA levels do not affect that component of LTP which can persist for several weeks.  相似文献   

18.
Long-term potentiation (LTP) was induced in the commissural pathway to CA3 in vivo. Tissue slices were prepared from potentiated and control hippocampi and preloaded with [14C]glutamate ([14C]glu). K+-stimulated release of [14C]glu from these slices was compared in the absence and presence of extracellular Ca2+. High-affinity uptake and Ca2+-independent release of [14C]glu were not affected by the induction of LTP, but Ca2+-dependent release from potentiated tissue was significantly greater than that from control tissue. These results demonstrate that LTP induced in vivo in the commissural pathway to CA3 is associated with enhanced release of preloaded glutamate in vitro.  相似文献   

19.
The mechanisms underlying the induction of synaptic plasticity and the formation of long-term memory involve activation of cell-signalling cascades and protein modifications such as phosphorylation and dephosphorylation. Based on a protein candidate strategy, studies have identified several protein kinases and their substrates, which show an altered phosphorylation state during the early phases of long-term potentiation (LTP), yet only a limited number of synaptic phosphoproteins are known to be implicated in LTP. To identify new phosphoproteins associated with LTP, we have undertaken a proteomic study of phosphoproteins at different time points following the induction of LTP in the dentate gyrus in vivo (0, 15 and 90 min). For each time point, proteins from the dentate gyrus were separated by two-dimensional gel electrophoresis and stained with Pro−Q® Diamond, a fluorescent stain specific for phosphoproteins. Fourteen proteins whose phosphorylation state varied significantly following LTP were identified using matrix-assisted laser desorption ionization/time of flight mass spectrometry and electrospray ionization-Orbitrap tandem mass spectrometry (MS/MS). They are involved in various cellular functions implicated in synaptic plasticity, such as intracellular signalling, axonal growth, exocytosis, protein synthesis and metabolism. Our results highlight new proteins whose phosphorylation or dephosphorylation is associated with LTP induction or maintenance. Further studies focusing on the regulation of specific phosphorylation sites will lead to greater understanding of the individual implications of these proteins in LTP as well as of their molecular interactions.  相似文献   

20.
The calcium-calmodulin-dependent protein kinase II (CaMKII) subserves activity-dependent plasticity in central neurons. To examine in vivo the implication of CaMKII activity in synaptic plasticity, we used an animal model characterized by developmentally induced targeted neuronal ablation within the cortex and the hippocampus, and showing, at presynaptic level, molecular alterations leading to facilitation of glutamate release in hippocampal synapses (methylazoxymethanol-treated rats, MAM-rats). We report here that at the postsynaptic side, the activity of CaMKII is markedly decreased in MAM-rats when compared to controls, although the concentration of the enzyme in Post Synaptic Density (PSD) is not altered. This effect is confined to PSD-associated CaMKII, as enzyme activity tested in the soluble fraction is unchanged in MAM-rats. In addition, the decreased activity is not due to inhibition by autophosphorylation in specific sites within the calmodulin-binding domain, as preincubation with purified phosphatases 1 and 2A failed to restore CaMKII activity in PSD of MAM-rats. The CaMKII-dependent phosphorylation of NR2A/B subunits of NMDA receptor is lower in MAM-rats when compared to controls (51.77 ± 7.39% of controls level), as revealed in back-phosphorylation experiments. In addition, a treatment able to restore long-term potentiation (LTP) in hippocampal slices from MAM-rats, e.g. exposure to d -serine, is able to restore CaMKII activity to the control value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号