首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
It is commonly presumed, though not well established, that the prefrontal cortex exerts top-down control of sensory processing. One aspect of this control is thought to be a facilitation of sensory pathways in anticipation of such processing. To investigate the possible involvement of prefrontal cortex in anticipatory top-down control, we studied the statistical relations between prefrontal activity, recorded while a macaque monkey waited for presentation of a visual stimulus, and subsequent sensory and motor events. Local field potentials were simultaneously recorded from prefrontal, motor, occipital and temporal cortical sites in the left cerebral hemisphere. Spectral power and coherence analysis revealed that during stimulus anticipation three of five prefrontal sites participated in a coherent oscillatory network synchronized in the beta-frequency range. Pre-stimulus network power and coherence were highly correlated with the amplitude and latency of early visual evoked potential components in visual cortical areas, and with response time. The results suggest that synchronized oscillatory networks in prefrontal cortex are involved in top-down anticipatory mechanisms that facilitate subsequent sensory processing in visual cortex. They further imply that stronger top-down control leads to larger and faster sensory responses, and a subsequently faster motor response.  相似文献   

2.
The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).  相似文献   

3.
The present study examined the role of the prefrontal cortex in retrieval processing using functional magnetic resonance imaging in human subjects. Ten healthy subjects were scanned while they performed a task that required retrieval of specific aspects of visual information. In order to examine brain activity specifically associated with retrieval, we designed a task that had retrieval and control conditions that were perfectly matched in terms of depth of encoding, decision making and postretrieval monitoring and differed only in terms of whether retrieval was required. In the retrieval condition, based on an instructional cue, the subjects had to retrieve either the particular stimulus that was previously presented or its location. In the control condition, the cue did not instruct retrieval but shared with the instructional cues the function of alerting the subjects of the impending test phase. The comparison of activity between the retrieval and control conditions demonstrated a significant and selective increase in activity related to retrieval processes within the ventrolateral prefrontal cortical region, more specifically within area 47/12. These activity increases were bilateral but stronger in the right hemisphere. The present study by strictly controlling the level of encoding, postretrieval monitoring, and decision making has demonstrated a specific increase in the ventrolateral prefrontal region that could be clearly related to active retrieval processing, i.e. the active selection of particular stored visual representations.  相似文献   

4.
Previous studies on the neural correlates of perceptual awareness implicate sensory-specific regions and higher cortical regions such as the prefrontal cortex (PFC) in this process. The specific role of PFC regions is, however, unknown. PFC activity could be bottom-up driven, integrating signals from sensory regions. Alternatively, PFC regions could serve more active top-down processes that help to define the content of consciousness. To compare these alternative views of PFC function, we used functional magnetic resonance imaging and measured brain activity specifically related to conscious perception of items that varied in ease of identification (by being presented 0, 12, or 60 times previously). A bottom-up account predicts that PFC activity would be largely insensitive to stimulus difficulty, whereas a top-down account predicts reduced PFC activity as identification becomes easier. The results supported the latter prediction by showing reduced activity for previously presented compared to novel items in the PFC and several other regions. This was further confirmed by a functional connectivity analysis showing that the interaction between frontal and visual sensory regions declined as a function of ease of identification. Given the attribution of top-down processing to PFC regions in combination with the marked decline in PFC activity for easy items, these findings challenge the prevailing notion that the PFC is necessary for consciousness.  相似文献   

5.
The ability to precisely coordinate motor control to regularly-paced sensory stimuli requires an ability often called ‘mental timekeeping’, a distinct form of cognitive function. A consistent feature among conceptual models of the internal clock mechanism is an element of ‘top-down’ cognitive control. Although lesion and fMRI studies have provided indirect evidence supporting the role of the prefrontal cortex in exerting top-down influence over lower-level sensory and motor regions, little direct evidence exists. We investigated changes in Dynamic Causal Modeling (DCM)-measured top-down control of sensorimotor timing during different phases of a unimanual, auditory-paced finger-tapping task in a cohort of healthy adults and adolescents. The brain regions examined were organized into a network of excitatory connections between bilateral dorso- and ventrolateral prefrontal cortices and motor and auditory cortices. This baseline connectivity changed depending on whether participants listened passively to the pacing cue, synchronized their regular interval finger tapping with the cue, or continued tapping in absence of the cue. Subjects who performed better at maintaining the prescribed tapping pace in the absence of the auditory cue relied more on top-down control of the motor and sensory regions, while those with less accurate performance relied more on sensory driven, bottom-up control of the motor cortex. No significant maturational effects were observed in either the behavioral or DCM path weight data. Both right and left prefrontal cortex were found to exert control over timing behavioral accuracy, but there were distinctly lateralized roles with respect to optimal performance.  相似文献   

6.
A suggestive hypothesis proposed that the lateral prefrontal cortex (LPFC) may be identified as the site of emotion-memory integration, since it was shown to be sensitive to the encoding and retrieval of emotional content. In the present research we explored the role of the dorsolateral prefrontal cortex (DLPFC) in memory retrieval of positive vs. negative emotional stimuli. This effect was analyzed by using an rTMS paradigm that induced a cortical activation of the left DLPFC. Subjects were required to perform a task consisting of two experimental phases: an encoding phase, where some lists composed by positive and negative emotional words were presented to the subjects; a retrieval phase, where the old stimuli and the new stimuli were presented for a recognition performance. The rTMS stimulation was provided during the retrieval phase over the left DLPFC. We found that the rTMS stimulation over this area affects the memory retrieval of positive emotional material, with higher memory efficiency (reduced RTs). This result suggested that left DLPFC activation promotes the memory retrieval of emotional information. Secondly, the valence model of emotional cue processing may explain decreasing of RTs, by pointing out the distinct role the left hemisphere has in positive emotional cue processing.  相似文献   

7.
A distributed cortical network for auditory sensory memory in humans   总被引:1,自引:0,他引:1  
Auditory sensory memory is a critical first stage in auditory perception that permits listeners to integrate incoming acoustic information with stored representations of preceding auditory events. Here, we investigated the neural circuits of sensory memory using behavioral and electrophysiological measures of auditory processing in patients with unilateral brain damage to dorsolateral prefrontal cortex, posterior association cortex, or the hippocampus. We used a neurophysiological marker of an automatic component of sensory memory, the mismatch negativity (MMN), which can be recorded without overt attention. In comparison with control subjects, temporal-parietal patients had impaired auditory discrimination and reduced MMN amplitudes with both effects evident only following stimuli presented in the ear contralateral to the lesioned hemisphere. This suggests that auditory sensory memories are predominantly stored in auditory cortex contralateral to the ear of presentation. Dorsolateral prefrontal damage impaired performance and reduced MMNs elicited by deviant stimuli presented in either ear, implying that dorsolateral prefrontal cortices have a bilateral facilitatory effect on sensory memory storage. Hippocampal lesions did not affect either performance or electrophysiological measures. The results provide evidence of a temporal-prefrontal neocortical network critical for the transient storage of auditory stimuli.  相似文献   

8.
Attention often requires maintaining a stable mental state over time while simultaneously improving perceptual sensitivity. These requirements place conflicting demands on neural populations, as sensitivity implies a robust response to perturbation by incoming stimuli, which is antithetical to stability. Functional specialization of cortical areas provides one potential mechanism to resolve this conflict. We reasoned that attention signals in executive control areas might be highly stable over time, reflecting maintenance of the cognitive state, thereby freeing up sensory areas to be more sensitive to sensory input (i.e., unstable), which would be reflected by more dynamic attention signals in those areas. To test these predictions, we simultaneously recorded neural populations in prefrontal cortex (PFC) and visual cortical area V4 in rhesus macaque monkeys performing an endogenous spatial selective attention task. Using a decoding approach, we found that the neural code for attention states in PFC was substantially more stable over time compared with the attention code in V4 on a moment-by-moment basis, in line with our guiding thesis. Moreover, attention signals in PFC predicted the future attention state of V4 better than vice versa, consistent with a top-down role for PFC in attention. These results suggest a functional specialization of attention mechanisms across cortical areas with a division of labor. PFC signals the cognitive state and maintains this state stably over time, whereas V4 responds to sensory input in a manner dynamically modulated by that cognitive state.SIGNIFICANCE STATEMENT Attention requires maintaining a stable mental state while simultaneously improving perceptual sensitivity. We hypothesized that these two demands (stability and sensitivity) are distributed between prefrontal and visual cortical areas, respectively. Specifically, we predicted attention signals in visual cortex would be less stable than in prefrontal cortex, and furthermore prefrontal cortical signals would predict attention signals in visual cortex in line with the hypothesized role of prefrontal cortex in top-down executive control. Our results are consistent with suggestions deriving from previous work using separate recordings in the two brain areas in different animals performing different tasks and represent the first direct evidence in support of this hypothesis with simultaneous multiarea recordings within individual animals.  相似文献   

9.
OBJECTIVE: Sensory cortical activity can be jointly governed by bottom-up (e.g. stimulus features) and top-down (e.g. memory, attention) factors. We tested the hypothesis that auditory sensory cortical activity is affected by encoding and retrieval of spatial information. METHODS: Auditory event-related potentials (ERPs) were recorded during working memory and passive listening conditions. Trials contained three noise bursts (two "items" at different locations, followed by a "probe"). In the working memory task subjects determined if the probe matched an item location. The influence of long-term memory was evaluated by training to one location that was always a non-match. Auditory ERPs were analyzed to items and probes (N100, P200, late positive wave-LPW). RESULTS: Reaction times varied significantly among probes (trained non-match相似文献   

10.
Memory retrieval is to bring the remembered information on-line or to reactivate the information. The critical determinant of memory retrieval mechanisms is whether the information has been maintained on-line or off-line, regardless of whether it is long-term memory or short-term, working memory. Similar reactivation processes occur during retrieval from long-term memory and from working memory when online maintenance has been interrupted. The reactivation is achieved by interactions between the posterior association areas, medial temporal lobe and prefrontal cortex. Posterior association areas maintain the representations of remembered information and are reactivated at retrieval. The medial temporal lobe is primarily involved in retrieval from off-line memory and triggers the reactivation by associating a whole set of features and episodes during encoding of the information. The prefrontal cortex is involved in retrieval from both on-line and off-line memory. It controls reactivation by setting up retrieval mode, starting retrieval attempt, and monitoring the contents of reactivated information. The prefrontal cortex also controls the selection of task-relevant information from information maintained on-line.  相似文献   

11.
Early studies of rest cerebral metabolism and perfusion reported no association with intellectual capacity. We revisit this issue using a larger sample (N=146) and a continuous arterial spin labeling technique to measure perfusion, and working memory capacity as a measure of intellectual capacity. In the cortex, working memory capacity correlated diffusely and negatively with perfusion. This negative association was more marked in the prefrontal and temporal cortex of the left hemisphere. However, there were also weak positive correlations in the auditory areas, accompanied by analogous correlations in all other areas associated with sensory modalities, with a preference for right lateralization. These findings are discussed in terms of the cortical and vascular organization of the brain.  相似文献   

12.
Lesion studies have suggested that the prefrontal cortex is involved in memory for contextual details surrounding the prior observation of objects or events, but it is unknown whether it is crucial for encoding details about the location at which cues are experienced, or for recall of that information. We used intracranial infusions of the GABA(A) receptor agonist muscimol in rodents to directly assess the role of the medial prefrontal cortex (mPFC) during incidental encoding and retrieval of information about the location of a cue during a spatial sensory preconditioning procedure. Rats experienced a single, discrete, sensory cue as they explored an open platform, and then were tested after a 24 h delay on recollection of the prior location of the cue. Activity in the mPFC was suppressed with muscimol during either encoding or retrieval of the information, with a control group receiving saline infusions before both phases. We found that mPFC suppression during the encoding phase blocked the formation of incidental memory about the cues but mPFC suppression during retrieval had no effect. Moreover, animals with suppressed frontal cortical activity in the encoding phase expressed smaller cue-directed orienting responses, indicating they attended less to the cue. These results suggest that the frontal cortex may be required to sustain attention to incidental cues in order to later recollect the location in which they have been previously experienced, but that once the location information is encoded the frontal cortex is not required for retrieval of that information.  相似文献   

13.
Electroencephalogram (EEG) alpha (around 10 Hz) is the dominant rhythm in the human brain during conditions of mental inactivity. High amplitudes as observed during rest usually diminish during cognitive effort. During retention of information in working memory, however, power increase of alpha oscillations can be observed. This alpha synchronization has been interpreted as cortical idling or active inhibition. The present study provides evidence that during top-down processing in a working memory task, alpha power increases at prefrontal but decreases at occipital electrode sites, thereby reaching a state in which alpha power and frequency become very similar over large distances. Two experimental conditions were compared. In the first, visuospatial information only had to be retained in memory whereas the second condition additionally demanded manipulation of the information. During the second condition, stronger alpha synchronization at prefrontal sites and larger occipital alpha suppression was observed as compared to that for pure retention. This effect was accompanied by assimilation of prefrontal and occipital alpha frequency, stronger functional coupling between prefrontal and occipital brain areas, and alpha latency shifts from prefrontal cortex to primary visual areas, possibly indicating the control of posterior cortical activation by anterior brain areas. An increase of prefrontal EEG alpha amplitudes, which is accompanied by a decrease at posterior sites, thus may not be interpreted in terms of idling or "global" inhibition but may enable a tight functional coupling between prefrontal cortical areas, and thereby allows the control of the execution of processes in primary visual brain regions.  相似文献   

14.
Slotnick SD  Moo LR 《Neuropsychologia》2006,44(9):1560-1568
During visual spatial perception of multiple items, the left hemisphere has been shown to preferentially process categorical spatial relationships while the right hemisphere has been shown to preferentially process coordinate spatial relationships. We hypothesized that this hemispheric processing distinction would be reflected in the prefrontal cortex during categorical and coordinate visual spatial memory, and tested this hypothesis using functional magnetic resonance imaging (fMRI). During encoding, abstract shapes were presented in the left or right hemifield in addition to a dot at a variable distance from the shape (with some dots on the shape); participants were instructed to remember the position of each dot relative to the shape. During categorical memory retrieval, each shape was presented centrally and participants responded whether the previously corresponding dot was 'on' or 'off' of the shape. During coordinate memory retrieval, each shape was presented centrally and participants responded whether the previously corresponding dot was 'near' or 'far' from the shape (relative to a reference distance). Consistent with our hypothesis, a region in the left prefrontal cortex (BA10) was preferentially associated with categorical visual spatial memory and a region in the right prefrontal cortex (BA9/10) was preferentially associated with coordinate visual spatial memory. These results have direct implications for interpreting previous findings that the left prefrontal cortex is associated with source memory, as this cognitive process is categorical in nature, and the right prefrontal cortex is associated with item memory, as this process depends on the precise spatial relations among item features or components.  相似文献   

15.
It is now widely accepted that visual cortical areas are active during normal tactile perception, but the underlying mechanisms are still not clear. The goal of the present study was to use functional magnetic resonance imaging (fMRI) to investigate the activity and effective connectivity of parietal and occipital cortical areas during haptic shape perception, with a view to potentially clarifying the role of top-down and bottom-up inputs into visual areas. Subjects underwent fMRI scanning while engaging in discrimination of haptic shape or texture, and in separate runs, visual shape or texture. Accuracy did not differ significantly between tasks. Haptic shape-selective regions, identified on a contrast between the haptic shape and texture conditions in individual subjects, were found bilaterally in the postcentral sulcus (PCS), multiple parts of the intraparietal sulcus (IPS) and the lateral occipital complex (LOC). The IPS and LOC foci tended to be shape-selective in the visual modality as well. Structural equation modelling was used to study the effective connectivity among the haptic shape-selective regions in the left hemisphere, contralateral to the stimulated hand. All possible models were tested for their fit to the correlations among the observed time-courses of activity. Two equivalent models emerged as the winners. These models, which were quite similar, were characterized by both bottom-up paths from the PCS to parts of the IPS, and top-down paths from the LOC and parts of the IPS to the PCS. We conclude that interactions between unisensory and multisensory cortical areas involve bidirectional information flow.  相似文献   

16.
Previous work has shown that unilateral sensorimotor cortex (SMC) lesions in newborn rats resulted in an apparent shift of the motor cortex map in the spared hemisphere, particularly of the hindlimb cortex. In view of such findings, the present study was initiated to determine if the visual cortex located both ipsilateral and contralateral to neonatal SMC, or contralateral to occipital cortical (OC) lesions, would show similar remodeling. Visual evoked potentials (VEPs) were used to map the visual cortex electrophysiologically. The results show an expansion of the visual cortex, in both the contralateral and ipsilateral hemisphere, into normally motor cortical areas in adult animals that had sustained unilateral neonatal unilateral SMC lesions. In contrast, similar changes were not seen within the spared visual cortex after unilateral occipital cortical lesions, suggesting that the shift in the visual map was specifically in response to the SMC lesion and was not a generalized response to neonatal cortical damage. Histological analysis showed a functional expansion in the rostral boundary of visual cortex with no corresponding cytoarchitectural alterations.  相似文献   

17.
In human magnetoencephalogram, we have found gamma-band activity (GBA), a putative measure of cortical network synchronization, during both bottom-up and top-down auditory processing. When sound positions had to be retained in short-term memory for 800 ms, enhanced GBA was detected over posterior parietal cortex, possibly reflecting the activation of higher sensory storage systems along the hypothesized auditory dorsal space processing stream. Additional prefrontal GBA increases suggested an involvement of central executive networks in stimulus maintenance. The present study assessed spatial echoic memory with the same stimuli but a shorter memorization interval of 200 ms. Statistical probability mapping revealed posterior parietal GBA increases at 80 Hz near the end of the memory phase and both gamma and theta enhancements in response to the test stimulus. In contrast to the previous short-term memory study, no prefrontal gamma or theta enhancements were detected. This suggests that spatial echoic memory is performed by networks along the putative auditory dorsal stream, without requiring an involvement of prefrontal executive regions.  相似文献   

18.
The majority of the research related to visual recognition has so far focused on bottom-up analysis, where the input is processed in a cascade of cortical regions that analyze increasingly complex information. Gradually more studies emphasize the role of top-down facilitation in cortical analysis, but it remains something of a mystery how such processing would be initiated. After all, top-down facilitation implies that high-level information is activated earlier than some relevant lower-level information. Building on previous studies, I propose a specific mechanism for the activation of top-down facilitation during visual object recognition. The gist of this hypothesis is that a partially analyzed version of the input image (i.e., a blurred image) is projected rapidly from early visual areas directly to the prefrontal cortex (PFC). This coarse representation activates in the PFC expectations about the most likely interpretations of the input image, which are then back-projected as an "initial guess" to the temporal cortex to be integrated with the bottom-up analysis. The top-down process facilitates recognition by substantially limiting the number of object representations that need to be considered. Furthermore, such a rapid mechanism may provide critical information when a quick response is necessary.  相似文献   

19.
Using positron emission tomography (PET), we investigated the organisation of spatial versus object-based visual working memory in 11 normal human subjects. The paradigm involved a conditional colour-response association task embedded within two visual working memory tasks. The subject had to remember a position (spatial) or shape (object-based) and then use this to recover the colour of the matching element for the conditional association. Activation of the nucleus accumbens and the anterior cingulate cortex was observed during the conditional associative task, indicating a possible role of these limbic structures in associative memory. When the 2 memory tasks were contrasted, we observed activation of 2 distinct cortical networks: (1) The spatial task activated a dorsal stream network distributed in the right hemisphere in the parieto-occipital cortex and the dorsal prefrontal cortex, and (2) The non spatial task activated a ventral stream network distributed in the left hemisphere in the temporo- occipital cortex, the ventral prefrontal cortex and the striatum. These results support the existence of a domain-specific dissociation with dorsal and ventral cortical systems involved respectively in spatial and non spatial working memory functions.  相似文献   

20.
Although regional brain abnormalities underlying spatial working memory (SWM) deficits in schizophrenia have been identified, little is known about which brain circuits are functionally disrupted in the SWM network in schizophrenia. We investigated SWM-related interregional functional connectivity in schizophrenia using functional magnetic resonance imaging (fMRI) data collected during a memory task that required analysis of spatial information in object structure. Twelve schizophrenia patients and 11 normal control subjects participated. Patients had SWM performance deficits and deficient neural activation in various brain areas, especially in the high SWM load condition. Examination of the covariation of regional brain activations elicited by the SWM task revealed evidence of functional disconnection between prefrontal and posterior visual association areas in schizophrenia. Under low SMW load, we found reduced functional associations between dorsolateral prefrontal cortex (DLPFC) and inferior temporal cortex (ITC) in the right hemisphere in patients. Under high SWM load, we found evidence for further functional disconnection in patients, including additional reduced functional associations between left DLPFC and right visual areas, including the posterior parietal cortex (PPC), fusiform gyrus, and V1, as well as between right inferior frontal cortex and right PPC. Greater prefrontal-posterior cortical functional connectivity was associated with better SWM performance in controls, but not in patients. These results suggest that prefrontal-posterior functional connectivity associated with the maintenance and control of visual information is central to SWM, and that disruption of this functional network underlies SWM deficits in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号