首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.  相似文献   

2.
It is well established that the injection of normal myoblasts or of muscle-derived stem cells (MDSCs) into the muscle of dystrophin-deficient mdx mice results in the incorporation of a number of donor myoblasts into the host muscle. However, the effect of the injected exogenous cells on mdx muscle mass and functional capacity has not been evaluated. This study evaluates the mass and functional capacity of the extensor digitorum longus (EDL) muscles of adult, male mdx mice that received intramuscular injections of primary myoblasts or of MDSCs (isolated by a preplating technique; Qu, Z., Balkir, L., van Deutekom, J.C., Robbins, P.D., Pruchnic, R., and Huard, J., J. Cell Biol. 1998;142:1257-1267) derived from normal mice. Evaluations were made 9 weeks after cell transplantation. Uninjected mdx EDL muscles have a mass 50% greater than that of age-matched C57BL/10J (normal) EDL muscles. Injections of either primary myoblasts or MDSCs have no effect on the mass of mdx EDL muscles. EDL muscles of mdx mice generate 43% more absolute twitch tension and 43% less specific tetanic tension then do EDL muscles of C57BL/10J mice. However, the absolute tetanic and specific twitch tension of mdx and C57BL/10J EDL muscles are similar. Injection of either primary myoblasts or MDSCs has no effect on the absolute or specific twitch and tetanic tensions of mdx muscle. Approximately 25% of the myofibers in mdx EDL muscles that received primary myoblasts react positively with antibody to dystrophin. There is no significant difference in the number of dystrophin-positive myofibers when MDSCs are injected. Regardless of the source of donor cells, dystrophin is limited to short distances (60-900 microm) along the length of the myofibers. This may, in part, explain the failure of cellular therapy to alter the contractile properties of murine dystrophic muscle.  相似文献   

3.
Duchenne's muscular dystrophy (DMD) is a lethal muscle disease caused by a lack of dystrophin expression at the sarcolemma of muscle fibers. We investigated retroviral vector delivery of dystrophin in dystrophin-deficient DMD(mdx) (hereafter referred to as mdx) mice via an ex vivo approach using mdx muscle-derived stem cells (MDSCs). We generated a retrovirus carrying a functional human mini-dystrophin (RetroDys3999) and used it to stably transduce mdx MDSCs obtained by the preplate technique (MD3999). These MD3999 cells expressed dystrophin and continued to express stem cell markers, including CD34 and Sca-1. MD3999 cells injected into mdx mouse skeletal muscle were able to deliver dystrophin. Though a relatively low number of dystrophin-positive myofibers was generated within the gastrocnemius muscle, these fibers persisted for up to 24 weeks postinjection. The injection of cells from additional MDSC/Dys3999 clones into mdx skeletal muscle resulted in varying numbers of dystrophin-positive myofibers, suggesting a differential regenerating capacity among the clones. At 2 and 4 weeks postinjection, the infiltration of CD4- and CD8-positive lymphocytes and a variety of cytokines was detected within the injected site. These data suggest that the transplantation of retrovirally transduced mdx MDSCs can enable persistent dystrophin restoration in mdx skeletal muscle; however, the differential regenerating capacity observed among the MDSC/Dys3999 clones and the postinjection immune response are potential challenges facing this technology.  相似文献   

4.
Muscle precursor cell (myoblasts) transplantation is considered as a potential approach to restore dystrophin expression in Duchenne muscular dystrophy (DMD) patients. The study purpose was to verify the implication of hypoxia in the myoblast death observed after their transplantation and also to evaluate the potential beneficial effects of vascular endothelial growth factor (VEGF) overexpression on myoblast engraftment in a murine model. Pimonidazole hydrochloride (hypoxyprobe-1) was used to mark selectively myoblasts to evaluate their hypoxia in vivo. In vitro, hypoxia was induced by culturing human myoblasts in hypoxic environment. In vitro effects of VEGF(165) on survival of human cells was assessed by Hoescht-PI labeling. Tibialis anterior (TA) female mouse muscles were electroporated with a plasmid containing the VEGF(165) or with an empty vector. Circulating VEGF concentration was assessed by ELISA. After 2 weeks of electroporation, severe combined immunodeficient (SCID) mice were transplanted with 800 000 human male myoblasts labeled with radioactive thymidine. Mouse muscles were harvested 2 and 4 days later and myoblast survival and proliferation were evaluated by scintigraphy and Y chromosome quantitative PCR. The long-term graft success was evaluated using gamma-radiograph imaging and by counting the dystrophin positive muscle fibers. Hypoxyprobe labeling has shown that most of the transplanted myoblasts were hypoxic. The transplantation of radioactive male myoblasts in female mice electroporated with the VEGF(165) plasmid demonstrated that VEGF reduced their death by 10% but did not improve their proliferation. VEGF(165) enhanced human myoblast survival in vitro under hypoxic conditions. Electroporation of TA muscles of SCID mouse with the vector coding for VEGF(165) promoted angiogenesis and improved by 1.5-fold the success of myoblast transplantation in comparison with the control mice that were electroporated with the empty vector. These results indicate that hypoxia is partially responsible for the death of the transplanted myoblasts. VEGF can be used to improve myoblast survival and the graft success.  相似文献   

5.
6.
Antisense oligonucleotides (AOs) with 2-O-methyl modifications can circumvent dystrophin mutations via exon skipping and, it is hoped, can become drugs for treatment of Duchenne muscular dystrophy (DMD). However, AO-based approaches are hindered by a lack of effective carriers to facilitate delivery of AOs to myonuclei. We examined whether copolymers composed of cationic poly(ethylene imine) (PEI) and polyethylene glycol (PEG) can enhance AO transfection in skeletal muscle of mdx mice. Single intramuscular injections of AO complexed with low Mw PEI2000(PEG550) copolymers into TA muscles of mdx mice resulted in widespread distribution of dystrophin-positive fibers at 3 weeks after injection, with no apparent cytotoxicity. Overall, injections of these low Mw polyplexes, which formed 250-nm aggregate particles, resulted in about sixfold more dystrophin-positive fibers than AO alone. Western analysis confirmed the dystrophin expression in these muscles. Surprisingly, injections of AO complexed with high Mw PEI25000(PEG5000) copolymers, which formed smaller nonaggregated particles, produced about threefold fewer dystrophin-positive fibers than injections of the low Mw polyplexes. We conclude that low Mw PEI2000(PEG550) copolymers function as high-capacity, nontoxic AO carriers suitable for in vivo transfection of skeletal muscle and are promising compounds for potential use in molecular therapy of DMD.  相似文献   

7.
Dystrophin gene transfer using helper-dependent adenoviral vectors (HDAd) deleted of all viral genes is a promising option to treat muscles in Duchenne muscular dystrophy (DMD). Previously, we reported high-level dystrophin expression and functional correction of dystrophin-deficient (mdx) mouse muscle 60 days after gene transfer with an HDAd encoding two full-length murine dystrophin cDNAs (referred to as HDCBDysM). In the present study, we tested the long-term efficacy of HDCBDysM by examining muscle contractility parameters and the stability of dystrophin expression 1 year after injection into neonatal mdx muscles. At this point, HDCBDysM-treated muscles averaged 52% dystrophin-positive fibers. Treated muscles also displayed significantly greater isometric force production as well as greater resistance to the force deficits and damage caused by eccentric contractions. The level of protection against eccentric contraction-induced force deficits correlated with the percentage of dystrophin-positive fibers. Furthermore, HDCBDysM treatment restored the dystrophin-glycoprotein complex (DGC) to the sarcolemma and improved other aspects of mdx muscle histopathology examined (central nucleation, muscle hypertrophy, and mononuclear [phagocytic] cell infiltration). These improvements occurred despite the induction of a humoral response against murine dystrophin. Our results indicate that major therapeutic benefits of HDCBDysM are maintained for a long period of the animals' lifespan and suggest that HDCBDys holds promise for treating DMD by gene therapy.  相似文献   

8.
Antisense-induced exon skipping can restore the open reading frame, and thus correct the dystrophin deficiency that causes Duchenne muscular dystrophy (DMD), a lethal muscle wasting condition. Successful proof-of-principle in preclinical models has led to human clinical trials. However, it is still not known what percentage of dystrophin-positive fibers and what level of expression is necessary for functional improvement. This study directly address these key questions in the mdx mouse model of DMD. To achieve a significant variation in dystrophin expression, we locally administered into tibialis anterior muscles various doses of a phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 from the mRNA of murine dystrophin. We found a highly significant correlation between the number of dystrophin-positive fibers and resistance to contraction-induced injury, with a minimum of 20% of dystrophin-positive fibers required for meaningful improvement. Furthermore, our results also indicate that a relatively low level of dystrophin expression in muscle fibers may have significant clinical benefits. In contrast, improvements in muscle force were not correlated with either the number of positive fibers or total dystrophin levels, which highlight the need to conduct appropriate functional assessments in preclinical testing using the mdx mouse.  相似文献   

9.
10.
Skeletal myoblast transplantation is a potential treatment for congestive heart failure. To study the functional activity of both donor and host myocytes following transplantation, skeletal myoblasts expressing an enhanced green fluorescent protein (EGFP) transgene were transplanted into hearts of nontransgenic recipients, and changes in intracellular calcium concentration ([Ca2+]i) were monitored in donor and host cells. While the vast majority of donor-derived myocytes were observed to be functionally isolated from the host myocardium, a small population of donor myocytes exhibited action potential-induced calcium transients in synchrony with adjacent host cardiomyocytes. In many cases, the durations of these [Ca2+]i transients were heterogeneous compared with those in neighboring host cardiomyocytes. In other studies, EGFP-expressing donor myoblasts were transplanted into the hearts of adult transgenic recipient mice expressing a cardiomyocyte-restricted beta-gal reporter gene. A small population of myocytes was observed to express both reporter transgenes, indicating that the transplanted myoblasts fused with host cardiomyocytes at a very low frequency. These cells also expressed connexin43, a component of gap junctions. Thus engraftment of skeletal myoblasts generated spatial heterogeneity of [Ca2+]i signaling at the myocardial/skeletal muscle interface, most likely as a consequence of fusion events between donor myoblasts and host cardiomyocytes.  相似文献   

11.
The limited success of human myoblast transplantation has been related to immune rejection, poor survival, and limited spread of injected myoblasts after transplantation. An important issue that has received little attention, but is nevertheless of fundamental importance in myoblast transplantation protocols, is the proliferative capacity of human satellite cells. Previous studies from our laboratory have demonstrated that the maximum number of divisions that a population of satellite cells can make decreases with age during the first two decades of life then stabilizes in adulthood. These observations indicate that when satellite cells are used as vectors in myoblast transplantation protocols it is important to consider donor age and the number of divisions that the cells have made prior to transplantation as limiting factors in obtaining an optimal number of donor derived muscle fibers. In this study, myoblasts derived from donors of different ages (newborn, 17 years old, and 71 years old) were isolated and amplified in culture. Their potential to participate in in vivo muscle regeneration in RAG2(-/-)/gamma(c)/C5 triple immunodeficient hosts after implantation was evaluated at 4 and 8 weeks postimplantation. Our results demonstrate that prolonged amplification in culture and the approach to replicative senescence are both important factors that may condition the success of myoblast transplantation protocols.  相似文献   

12.
Ferrer A  Wells KE  Wells DJ 《Gene therapy》2000,7(17):1439-1446
Introduction of dystrophin by gene transfer into the dystrophic muscles of Duchenne muscular dystrophy (DMD) patients has the possibility of triggering an immune response as many patients will not have been exposed to some (or all) of the epitopes of dystrophin. This could in turn lead to cytotoxic destruction of transfected muscle fibres. We assessed such concerns in the dystrophin-deficient mdx mouse using plasmid DNA as the gene transfer system. This avoids complications associated with the administration of viral proteins. Gene transfer of cDNAs encoding mouse full-length or a truncated minidystrophin did not evoke either a humoral or cytotoxic immune response. Mdx mice may be tolerant due to the presence of rare 'revertant' dystrophin-positive fibres in their skeletal muscles. In contrast, gene transfer of human full-length or minidystrophin provoked both humoral and cytotoxic responses leading to destruction of the transfected fibres. These experiments demonstrate the potential risk of deleterious effects following gene therapy in DMD patients and lead us to suggest that patients enrolled in gene therapy trials should ideally have small, preferably point, mutations and evidence of 'revertant' dystrophin-positive muscle fibres.  相似文献   

13.
Liang KW  Nishikawa M  Liu F  Sun B  Ye Q  Huang L 《Gene therapy》2004,11(11):901-908
Duchenne muscular dystrophy (DMD) is a lethal, X-linked, recessive disease caused by a defect in the dystrophin gene. No effective therapy is available. Dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. However, successful treatment for DMD requires restoration of dystrophin in the affected muscle fibers to at least 20% of the normal level. Current gene transfer methods such as intramuscular injection of viral vector or naked DNA can only transfect a small area of muscle, and therefore is of little clinical utility. We have developed a semisystemic method for gene transfer into skeletal muscle of mdx mice, an animal model for DMD. Naked DNA was injected through the tail artery or vein of mice, in which the aorta and the vena cava were clamped at the location just below the kidneys. The DNA solution was thus forced into the blood vessels of both legs. Luciferase gene expression was detected in all muscle groups in both legs. The effects of injection speed, injection volume, and ischemia time on gene expression were also optimized. LacZ staining was used to check the spread of gene expression in muscle. Although the percentage of transfected fibers was modest (approximately 10%), beta-galactosidase was found in all muscle groups of both legs. Finally, plasmid DNA encoding full-length dystrophin gene was injected into mdx mice and widespread restoration of dystrophin protein was observed in all muscles of both hind limbs. In conclusion, these results demonstrate that the semisystemic delivery of naked DNA is a potential approach towards the long-term goal of gene therapy for DMD.  相似文献   

14.
Myogenic cell transplantation is an experimental approach for the treatment of myopathies. In this approach, transplanted cells need to fuse with pre-existing myofibers, form new myofibers, and generate new muscle precursor cells (MPCs). The last property was fully reported following myoblast transplantation in mice but remains poorly studied with human myoblasts. In this study, we provide evidence that the intramuscular transplantation of postnatal human myoblasts in immunodeficient mice generates donor-derived MPCs and specifically donor-derived satellite cells. In a first experiment, cells isolated from mouse muscles 1 month after the transplantation of human myoblasts proliferated in vitro as human myoblasts. These cells were retransplanted in mice and formed myofibers expressing human dystrophin. In a second experiment, we observed that inducing muscle regeneration 2 months following transplantation of human myoblasts led to myofiber regeneration by human-derived MPCs. In a third experiment, we detected by immunohistochemistry abundant human-derived satellite cells in mouse muscles 1 month after transplantation of postnatal human myoblasts. These human-derived satellite cells may correspond totally or partially to the human-derived MPCs evidenced in the first two experiments. Finally, we present evidence that donor-derived satellite cells may be produced in patients that received myoblast transplantation.  相似文献   

15.
目的 研究骨髓间充质干细胞(MSCs)移植治疗Duchenne肌营养不良(DMD)模型鼠mdx鼠后肌电图改变及dystrophin蛋白表达变化。方法 分离培养正常小鼠MSCs局部肌肉注射移植入DMD模型鼠mdx鼠,数周后观察肌电图改变及dystrophin蛋白表达变化。结果 MSCs移植后mdx鼠肌电图明显改善,dystrophin蛋白阳性表达肌纤维增加明显。结论 MSCs局部骨骼肌肌肉内细胞移植治疗mdx鼠有一定效果。  相似文献   

16.
Intramuscular injection of plasmid is a potential alternative to viral vectors for the transfer of therapeutic genes into skeletal muscle fibers. The low efficiency of plasmid-based gene transfer can be enhanced by electroporation (EP) coupled with the intramuscular application of hyaluronidase. We have investigated several factors that can influence the efficiency of plasmid-based gene transfer. These factors include electrical parameters of EP, optimal use of hyaluronidase, age and strain of the host, and plasmid size. Muscles of very young and mature normal, mdx, and immunodeficient mice were injected with plasmids expressing beta-galactosidase, microdystrophin, full-length dystrophin, or full-length utrophin. Transfection efficiency, muscle fiber damage, and duration of transgene expression were analyzed. The best transfection level with the least collateral damage was attained at 175-200 V/cm. Pretreatment with hyaluronidase markedly increased transfection, which was also influenced by the plasmid size and the strain and the age of the mice. Even in immunodeficient mice, there was a significant late decline in transgene expression and plasmid DNA copies, although both still remained relatively high after 1 year. Thus, properly optimized EP-assisted plasmid-based gene transfer is a feasible, efficient, and safe method of gene replacement therapy for dystrophin deficiency of muscle but readministration may be necessary.  相似文献   

17.
Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD.  相似文献   

19.
Cell transplantation holds promise as a potential treatment for cardiac dysfunction. Our group has isolated populations of murine skeletal muscle-derived stem cells (MDSCs) that exhibit stem cell-like properties. Here, we investigated the fate of MDSCs after transplantation into the hearts of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy (DMD). Transplanted MDSCs generated large grafts consisting primarily of numerous dystrophin-positive myocytes and, to a lesser degree, dystrophin-negative non-myocytes that expressed an endothelial phenotype. Most of the dystrophin-positive myocytes expressed a skeletal muscle phenotype and did not express a cardiac phenotype. However, some donor myocytes, located at the graft-host myocardium border, were observed to express cardiac-specific markers. More than half of these donor cells that exhibited a cardiac phenotype still maintained a skeletal muscle phenotype, demonstrating a hybrid state. Sex-mismatched donors and hosts revealed that many donor-derived cells that acquired a cardiac phenotype did so through fusion with host cardiomyocytes. Connexin43 gap junctions were not expressed by donor-derived myocytes in the graft. Scar tissue formation in the border region may inhibit the fusion and gap junction connections between donor and host cells. This study demonstrates that MDSC transplantation warrants further investigation as a potential therapy for cardiac dysfunction in DMD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号