首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic treatment with imipramine increased the locomotor response to quinpirole, a selective D2 receptor agonist. This effect was blocked by minute doses of prazosin (0.1-1 mg/kg), a selective alpha 1 receptor blocker, in a dose-dependent manner. Conversely, in control rats the locomotor response to quinpirole was enhanced by the stimulation of alpha 1 receptors with the selective agonist St 587. The results suggest that alpha 1 receptor stimulation plays a permissive role in the supersensitivity of D2 receptors following chronic treatment with imipramine.  相似文献   

2.
The lateral septal area was used as a model to study the interaction between acetylcholine (Ach) and bradykinin on arterial blood pressure, since both mediators are present in this region. In the lateral septal area, the administration of the peptide or Ach produced a long-lasting, sympathetic-mediated increase of arterial blood pressure which was blocked by atropine. Pretreatment of the lateral septal area with hemicholinium-3, which depletes stores of acetylcholine, partially blocked the pressor effect of bradykinin but not that of Ach. Captopril—an inhibitor of kininase II—enhanced the pressor effects of bradykinin and Ach. Synaptosomal studies showed that bradykinin increased sodium-dependent, high-affinity uptake of choline and the conversion of [3H]choline to [3H]acetylcholine. Competition experiments using the highly specific muscarinic antagonist [3H]quinuclidinyl benzilate, demonstrated that bradykinin displaced the muscarinic antagonist from its receptor-ligand complexes. These results suggest that in the lateral septal area acetylcholine and bradykinin interact in a positive feed-back which amplifies pressor responses.  相似文献   

3.
The infusion of acetylcholine, bradykinin, angiotensin II, norepinephrine and serotonin into the lateral septal area produced a dose-dependent increase of arterial blood pressure and heart rate. A pattern of inhibition of these cardiovascular responses, produced by pretreatment of the lateral septal area with phentolamine, 6-hydroxydopamine, methysergide and 5,7-dihydroxytryptamine was disclosed. These results suggest that the effects of acetylcholine, bradykinin and partially of angiotensin II, depend on the release of norepinephrine and the actions of this neurotransmitter in turn depend on the integrity of the serotonergic system in the lateral septal area.  相似文献   

4.
The treatment of Alzheimer's disease attempts to correct cholinergic deficiency in the brain. In addition to the established, but restricted, efficacy of acetylcholinesterase inhibitors, attempts are being made to develop agents which will stimulate muscarinic receptors directly. This approach is logical and was found efficacious in several animal models of the disease; however none of these agents succeeded in clinical studies. Several reasons might account for this failure, which are discussed, as well as the prospects for the future.  相似文献   

5.
The concentration-dependence of the negative and positive inotropic effect of choline esters and of oxotremorine was studied in isometrically contracting papillary muscles of the guinea-pig. The preparations were obtained from reserpine-pretreated animals and were electrically driven at a frequency of 0.2 Hz. In the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX, 100 mumol l-1), choline esters and oxotremorine produced concentration-dependent negative inotropic effects. Oxotremorine exhibited the highest negative inotropic potency (with a half-maximal effective concentration, EC50, of 20 nmol l-1) followed by carbachol (139 nmol l-1), methacholine (490 nmol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (1.36 mumol l-1) and bethanechol (10 mumol l-1). Atropine was a competitive antagonist of the negative inotropic effects. Carbachol and oxotremorine decreased Vmax, overshoot and duration of slow Ca2+-dependent action potentials which had been elicited in the presence of 100 mumol l-1 IBMX. Choline esters produced a concentration-dependent positive inotropic effect. With an EC50 of 32 mumol l-1, carbachol was the most potent compound, followed by methacholine (35 mumol l-1), acetylcholine in the presence of 10 mumol l-1 physostigmine (46 mumol l-1) and bethanechol (142 mumol l-1). Compared to carbachol and methacholine which increased force by 100% of control, the increase induced by acetylcholine and bethanechol was only 64 and 58%, respectively. Atropine shifted the concentration-effect curves of all choline esters to higher concentrations. Choline esters caused intracellular Na+ activity to increase in the quiescent papillary muscle. This effect was reversed by atropine. Oxotremorine produced a small concentration-dependent positive inotropic effect (about 30% of the maximal effect of carbachol) which was resistant to atropine. Oxotremorine was a potent inhibitor of the positive inotropic effect of choline esters, and did not cause an increase in intracellular Na+ activity in the quiescent papillary muscle. The results show that muscarinic receptors of the ventricular myocardium mediate two inotropic effects, which are opposite in direction and differ in their concentration-dependence by a factor of 100. Although agonists differentiate between both inotropic effects, it is unknown whether the receptors involved represent receptor states or separate receptor subpopulations. The negative inotropic effect of choline esters and of oxotremorine can be best explained by adenylate cyclase inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Pretreatment of the guinea-pig ileum with capsaicin resulted consistently in depression of the neurogenic cholinergic contractions induced by the GABAA receptor agonists 3-aminopropane sulphonic acid (3-APS) and muscimol. Since capsaicin acts mainly by releasing and depleting substance P from its stores in intestinal nerves, it is likely that substance P plays a role in the response caused by GABAA-mimetic compounds, On the whole, our results suggest that excitatory responses to 3-APS and muscimol result from both direct and indirect activation of intrinsic intestinal cholinergic neurons innervating smooth muscle cells.  相似文献   

7.
Intracerebroventricular (i.c.v.) injection of bradykinin (0.1–10 μg) or angiotensin II (0.01–10 μg) in conscious, freely moving rats evoked dose-related increases in arterial pressure. The pressor response to bradykinin (BK) was accompanied by an increase in heart rate while angiotensin II (ANG II) decreased heart rate. Pretreatment with hemicholinium-3 to deplete brain acetylcholine levels produced a choline-reversible blockade of the cardiovascular response to BK. In contrast, the pressor response to ANG II was only weakly inhibited by hemicholinium-3 and the bradycardia was unaffected. Central pretreatment with the nicotinic antagonist, hexamethonium (50 μg) was more effective than the muscarinic antagonist atropine (20 μg) at blocking the cardiovascular responses to i.c.v. injection of BK. Both blocking agents produced a weaker inhibitory effect on the pressor response to ANG II although no anticholinergic pretreatment significantly inhibited the fall in heart rate. These results are consistent with the possibility of a peptidergic-cholinergic interaction in the central cardiovascular actions of BK and perhaps for a component of the pressor response to ANG II.  相似文献   

8.
Responses of single dorsal lateral geniculate neurons to iontophoretic noradrenaline, serotonin, and carbachol were studied following acute or chronic administration of tricyclic antidepressants. Long-term (15-20 day) treatment of rats with a variety of clinically effective tricyclics, including the atypical iprindole, significantly enhanced alpha 1-adrenoceptor mediated activations induced by noradrenaline. This change appears to require chronic treatment, since acute and short term (6-8 day) tricyclic regimens fail to consistently affect noradrenaline's action. Long term antidepressant treatment was also effective in enhancing geniculate neuron sensitivity to serotonin, in accord with previous studies, but failed to modify responses to the cholinergic agonist carbachol. It is suggested that the modulation of noradrenaline and serotonin receptor activity may represent a slowly developing action of tricyclic antidepressants which correlates with their delayed clinical effects.  相似文献   

9.
Summary We used a combination of radioreceptor binding and autoradiographic techniques to study the pharmacological characteristics and anatomical localization of [3H]-quinuclidinyl benzilate (QNB) binding sites in the human right coronary artery. The ligand was bound to sections of the human right coronary artery in a manner consistent with the labelling of muscarinic receptors. The addition of pirenzepine or of carbachol to the incubation medium to generate displacement curves was indicative of the presence of M1 and M2 receptors in the right coronary artery. Autoradiography showed the localization of M1 sites primarily in the medial layer of the right coronary artery. M2 sites were located primarily in the adventitia. No [3H]-QNB binding sites were observed in the endothelium. A possible role of muscarinic receptors in the pathogenesis of coronary vasospasm is discussed.  相似文献   

10.
11.
The effects of melanotropin release-inhibiting factor, a tripeptide (Pro-Leu-Gly-NH2) derived from the hypothalamus, and its enzymatically stable analog, cyclo(Leu-Gly) on the supersensitivity of dopamine receptors in brain induced by chronic administration of haloperidol to male Sprague-Dawley rats was determined. Oral administration of haloperidol (1.5 mg/kg per day) for 21 days induced supersensitivity of dopamine receptors as shown by enhanced locomotor activity in response to apomorphine, and an increase in the number of binding sites for [3H]spiroperidol in the striatum. Subcutaneous administration of Pro-Leu-Gly-NH2 or cyclo(Leu-Gly) in doses of 2 mg/kg per day, given prior to the injection of haloperidol, inhibited both the enhanced response to apormorphine as well as the increase in the number of binding sites for [3H]spiroperidol in the striatum. Chronic administration of either of the peptides alone did not modify either the apomorphine-induced response or the binding of [3H]spiroperidol in the striatum. These studies suggest that the hypothalamic peptide, Pro-Leu-Gly-NH2 and its long-acting analog, cyclo (Leu-Gly) can prevent the development of both behavioral and biochemical supersensitivity of dopamine receptors in brain induced by neuroleptic drugs and that these peptides may be useful in preventing the development of neuroleptic-induced tardive dyskinesia.  相似文献   

12.
Summary The effects of kainic acid lesions and chronic haloperidol treatment on rat striatal dopaminergic presynaptic receptors were studied. Following the -butyrolactone-induced inhibition of dopaminergic impulse flow, and after dopa decarboxylase inhibition, dopa accumulation and its reversal by dopamine agonists was measured in vivo.3H-apomorphine (a dopamine receptor ligand with purported presynaptic specificity) was used for in vitro binding experiments. Presynaptic dopamine receptors, as assessed by both methods, were unaffected by intrastriatal kainic acid injection 5–6 days before sacrifice. Seven days after termination of chronic haloperidol treatment (28 days, 0.5 mg/kg/day s.c.) both an increased apomorphine response using the dopa accumulation method and an increase in3H-apomorphine binding were observed, indicating the development of presynaptic dopamine receptor supersensitivity.  相似文献   

13.
1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.  相似文献   

14.
We compared the binding characteristics of muscarinic receptors labeled by [3H]oxotremorine-M ([3H]oxo-M) in homogenates of brain cortex and heart from rat. In both tissues [3H]oxo-M bound, with the same KD (6.5 nM), to a fraction of the receptors labeled by [3H]-N-methylscopolamine ([3H]NMS). This [3H]oxo-M receptor population represented, respectively, 15-20% and 35-40% of the total number of [3H]NMS receptors in cortex and heart. The three unlabeled agonists oxotremorine, carbamylcholine, and pilocarpine, when tested in competition with [3H]oxo-M, displayed a homogeneous super high affinity toward [3H]oxo-M-labeled receptors, and were unable to discriminate between brain and heart receptors labeled by [3H]oxo-M. By contrast, selective muscarinic antagonists showed some selectivity for either brain or heart [3H]oxo-M-labeled receptors. We analyzed competition curves between [3H]oxo-M and secoverine, pirenzepine, AF-DX 116, dicyclomine, or gallamine, assuming the existence of one or two receptor subclasses. Heart muscarinic receptors labeled by [3H]oxo-M were homogeneous M2 receptors of the C type with very low affinity for pirenzepine (Ki = 400 nM). Brain [3H]oxo-M-labeled receptors were heterogeneous receptors, with 30% (the B type) having a higher affinity for dicyclomine and a lower affinity for AF-DX 116 and gallamine than cardiac receptors, whereas the remaining 70% (the C type) showed "cardiac-like" binding properties. Both [3H]oxo-M-labeled subtypes in cortex homogenates had a low affinity for pirenzepine, indicating that [3H]oxo-M labeled only B and C (M2) receptors in this tissue. GTP inhibited completely [3H]oxo-M binding in heart homogenates with an IC50 at 300 nM. In cortex homogenates, GTP showed the same potency, but its efficacy was much lower (with only 30% maximal inhibition). [3H]oxo-M dissociation kinetics were monophasic in heart homogenates and biphasic in cortex homogenates. [3H]oxo-M dissociation from both tissues was slowed by gallamine and d-tubocurarine and accelerated by GTP. We found no correlation between B versus C [3H]oxo-M receptors, GTP-sensitive versus GTP-insensitive receptors, and rapidly versus slowly dissociating receptors, suggesting that [3H] oxo-M labeled a large variety of muscarinic receptor-regulatory protein complexes, all having an SH affinity for agonists.  相似文献   

15.
Rats were treated with lead via the mother's milk from birth to weaning. After a lead-free period of approximately 4 months, responses to norepinephrine were tested. Neither the pressor effect nor the enhancement of myocardial cAMP accumulation caused by norepinephrine was altered by prior lead treatment. However, norepinephrine caused significantly more cardiac arrhythmias in lead-treated animals than in controls. Even doses of norepinephrine which caused no significant ECG abnormalities in control animals were arrhythmogenic in lead-treated rats. It is concluded that lead treatment causes changes in cardiac conduction which are not readily reversed by termination of lead exposure.  相似文献   

16.
Histamine receptors on guinea-pig ileum submucosal arterioles (outside diameter 40-80 microns) were studied in vitro using a computer-assisted videomicroscopy system (Diamtrak). Histamine receptor agonists investigated in this study were histamine, the H1 receptor-selective compound, 2-[2-(3-fluorophenyl)-4-imidazolyl]ethanamine (VZ 20), the H2 receptor-selective compounds, dimaprit, impromidine, (+/-)-N1-[3-(4-fluorophenyl)-3-(pyridin-2-yl)propyl]- N2-[3-(1H-imidazol-4-yl)propyl]guanidine (arpromidine) and (+/-)-N1-[3-(3,4-difluorophenyl)-3-(pyridin-2-yl)propyl]- N2-[3-(1H-imidazol-4-yl)propyl]guanidine (BU-E-75), as well as the H3 receptor-selective drug, (R)-alpha-methylhistamine ((R)-alpha-MeHA). Applied to vessels at resting tone, the agonists (1 nM-300 microM) did not change arteriolar diameter. Vessels preconstricted by 10 microM noradrenaline showed similar concentration-dependent vasodilations with histamine and VZ 20 (pD2 = 5.38 and 5.36, respectively). This histamine-induced vasodilation was not affected by tetrodotoxin (0.5 microM) or indomethacin (1 microM), but was completely abolished in the presence of 1 microM of the H1 receptor antagonist, mepyramine. Calculation of the antagonist affinity of mepyramine for the histamine receptors in submucosal arterioles yielded a pA2 of 9.46. In contrast to histamine and VZ 20, the H2 receptor agonist, dimaprit, and the H3 receptor agonist, (R)-alpha-MeHA, were ineffective at preconstricted arterioles. The guanidine-type H2 receptor agonists, impromidine, apromidine and BU-E-75, produced vasodilation at noradrenaline-preconstricted arterioles (-log EC50 = 4.47, 5.30 and 5.39, respectively) but, in contrast to histamine, were ineffective at arterioles preconstricted by U-46619 (300 nM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chronic administration of practolol to the pithed rat produced a reduction in the pressor responses to electrical stimulation of the spinal cord and potentiation of pressor responses to high doses of (—)-noradrenaline compared to control animals. Acute administration of practolol caused an increase in the pressor responses to both electrical stimulation and high doses of noradrenaline. Heart rate responses to both forms of stimulation were less than control values after both acute and chronic dosage with practolol. It is possible that practolol reduces the release of noradrenaline at the sympathetic nerve ending after chronic administration.  相似文献   

18.
1. Under voltage-clamp dissociated adult and foetal rat superior cervical ganglion (s.c.g.) cells exhibited a non-inactivating voltage- and time-dependent component of K+ current termed the M-current (IM). IM was detected and measured from the current decay during hyperpolarizing voltage steps applied from potentials where IM was pre-activated. 2. Neither the resting membrane current nor the amplitude of these current decay relaxations were reduced by omitting Ca from the bathing fluid, showing that the M-current was not a 'Ca-activated' K-current dependent on a primary Ca-influx. Concentrations of (+)-tubocurarine sufficient to block the slow Ca-activated K-current IAHP did not inhibit IM or antagonize the effect of muscarinic agonists on IM, showing that IM was not contaminated by IAHP. Tetraethylammonium (1 mM), which blocks the fast Ca-activated K-current IC, produced a small inhibition of IM. This was not due to contamination of IM by IC since muscarinic agonists did not consistently block IC. 3. The muscarinic agonists muscarine, oxotremorine, McN-A-343 and methacholine reversibly suppressed IM, resulting in an inward (depolarizing) current. The rank order of potency was: oxotremorine greater than or equal to muscarine greater than McN-A-343 greater than methacholine. 4. The suppression of IM by muscarine was similar in cultured cells derived from adult and foetal tissue to that seen in the intact ganglia. 5. IM-suppression by muscarine was inhibited by pirenzepine (Pz) and AF-DX 116 with mean pKB values of 7.53 +/- 0.13 (n = 3) and 6.02 +/- 0.13 (n = 4) respectively. 6. The suppression of IM by muscarinic agonists was not affected by gallamine (10-30 microM). 4-Diphenylacetoxy-N-methylpiperidine methiodide inhibited the response at 300 nM. 7. Pirenzepine inhibited the contractions of the guinea-pig isolated ileum produced by muscarine with a mean pKB of 6.37 +/- 0.03 (n = 8). 8. These results suggest that the receptors mediating suppression of the M-current accord with those designated pharmacologically as M1 and that these receptors reach maturity at a very early stage in the development of the rat s.c.g.  相似文献   

19.
Apelin receptors (APJ) cross‐talk with other G‐protein‐coupled receptors. However, the role of APJ interaction with opioid receptors (OPR) on the cardiovascular effects of apelin in hypertension is not clear. Renovascular hypertension was induced by placing a Plexiglas clip on the left kidney of rats. After 16 weeks, F13A (an APJ antagonist), naloxone (a general OPR inhibitor), and nor‐binaltorphimine dihydrochloride (nor‐BNI; a selective inhibitor of KOR) were given prior to injections of apelin at doses of 40 and 60 μg/kg. The arterial systolic/diastolic blood pressure and left ventricular contractility responses were then evaluated. The arterial systolic/diastolic blood pressure in sham and 2K1C rats was 110/71 mm Hg and 171/124 mm Hg, respectively. The hypotensive effects of apelin at both doses were inhibited by F13A and naloxone. Nor‐BNI completely inhibited the effects of apelin 40 on arterial pressure, and decreased the effects of 60 μg/kg. KOR inhibition also prevented the compensation for the decrease in the left ventricle +dp/dt max and ?dp/dt max caused by apelin 60. The simultaneous inhibition of OPR and APJ reduced arterial pressure and increased cardiac contractility. Findings showed that the OPR, particularly KOR, mediate the inotropic, lusitropic, and depressor effects of apelin. The interaction of the OPR and APJ augments the inotropic and vasodepressor effects of apelin. This interaction may have potential clinical applications in cardiac failure since opioids are currently used in the treatment of myocardial infarction and stroke, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.  相似文献   

20.
The effect of selective dopamine receptor blockade on epileptic activity was tested in rats, using the lithium-pilocarpine seizure model. One day after lithium pretreatment, systemic administration of the dopamine D1 antagonist, SCH 23390, prevented the convulsive activity induced by either 10 or 15 mg/kg of pilocarpine in a dose-dependent manner as revealed by behavioral and electroencephalographic alterations. No anticonvulsant effect was observed when SCH 23390 was injected at the same time as lithium and 24 h prior to pilocarpine. Furthermore, the D2 antagonists, raclopride and haloperidol, potently reduced the threshold for convulsions induced by 10 mg/kg of pilocarpine, following lithium pretreatment. Neither dopamine D1 nor D2 antagonists altered the limbic stereotypies induced by pilocarpine, supporting the view that the dopamine system is primarily involved in the mechanisms of convulsion generation and seizure spreading. These results indicate that dopamine receptor subtypes exert opposite functions on the regulation of convulsive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号