首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McPherson  J; Brownlea  S; Zucker  MB 《Blood》1987,70(2):546-550
The platelet retention test provides a measure of the number of platelets retained in a column of glass beads and is one of the few in vitro platelet function tests that is abnormal in von Willebrand's disease (vWd). In a two-stage test, 1 mL of blood (designated A) was passed through the column, followed by 5 mL of isotonic saline and then 5 mL of blood (B) in which platelet retention was measured. With normal blood as A and B, retention is very high in all 5 mL of blood B. In the first stage, platelets adhere to the glass beads; this requires fibrinogen but not von Willebrand factor (vWf). The platelet-platelet adhesion in the second stage requires vWf, is dependent on release of ADP, and fails to occur if thrombasthenic platelets are tested. Retention was normal when blood from a patient with afibrinogenemia was used as blood B. We have now used monoclonal antibodies to elucidate further the mechanism of platelet retention. Five antibodies to different epitopes on vWf essentially abolished retention in the one- stage test and in the second stage of the two-stage test, but had no effect on the first stage. Thus, the entire vWf molecule must be free of antibody to function in the platelet-platelet adhesion of the second stage of this test. Binding of the antigen-antibody complex to the platelet Fc receptor was not responsible, as Fab and F(ab')2 fragments of one of the antibodies were as effective as intact antibody, and as neither heat-aggregated IgG nor a polyclonal antibody to plasma factor IX inhibited retention. F(ab')2 fragments of 6D1, an antibody to platelet GP Ib that prevents binding of vWf to platelets, also inhibited the second phase of retention. An antibody that inhibits binding of fibrinogen and vWf to GP IIb/IIIa (LJ-CP8) inhibited both the first and second stages of retention, whereas LJ-P5, an antibody that inhibits only the binding of vWf to GP IIb/IIIa, caused slight inhibition of retention when normal or afibrinogenemic blood was used as blood B and was reported to cause only partial inhibition of ADP- induced platelet aggregation in this afibrinogenemic patient. The results suggest that vWf is altered during rapid passage of blood through the glass-bead column so that it attaches to GP Ib, exposing GP IIb/IIIa, which then binds the altered vWf or fibrinogen, either of which can induce platelet aggregation (platelet-platelet adhesion) and thus retention in the column.  相似文献   

2.
Platelet activation altered the binding of three monoclonal antibodies (monovalent Fab' fragment) directed against the glycoprotein (GP) IIb/IIIa complex. An increased binding of two- to threefold occurred after stimulation with thrombin or phorbol myristate acetate (PMA), with slight but significant increase in the dissociation constants (Kd) of two antibodies (LJ-CP8 and LJ-P9). In contrast, no statistically significant changes were observed with ADP-stimulated platelets. The increased binding of LJ-CP3, but not of the other two antibodies, to activated platelets decreased by 30% to 40% in the presence of EDTA at 22 to 25 degrees C. Platelets stimulated by thrombin or PMA bound more fibrinogen than did those stimulated by ADP, and significant differences in the extent but not in the affinity of fibrinogen binding were observed with various platelet agonists. When the pool of GP IIb/IIIa molecules exposed on the surface of unstimulated platelets was reacted with the monoclonal antibody LJ-CP3 to block ADP-induced fibrinogen binding and platelet aggregation, stimulation with thrombin or PMA still induced substantial binding of antibody and fibrinogen, and aggregation ensued. Therefore, platelets exposed to "strong" agonists exhibit an increased number of surface-oriented epitopes associated with GP IIb/IIIa. The GP IIb/IIIa molecules bearing these newly exposed epitopes are functional in that they can bind fibrinogen and mediate platelet aggregation.  相似文献   

3.
Miller  JL; Kupinski  JM; Hustad  KO 《Blood》1986,68(3):743-751
With the exception of the major platelet glycoproteins IIb/IIIa and Ib, which function as receptors for fibrinogen and von Willebrand factor, little is presently known regarding the possible role of other platelet surface proteins in mediating platelet aggregation. We report the production of a murine monoclonal antibody (AG-1) recognizing human platelet membrane surface protein of relatively low molecular weight (mol wt) that may be involved in this process. AG-1 added to human platelet-rich plasma induces dense granule secretion and aggregation, with lag phase and maximal extent of aggregation dependent on antibody concentration. Aggregation induced by AG-1 is inhibited by AG-1 Fab fragments, indicating that the response is not Fc receptor-mediated. Although AG-1 continues to produce platelet shape change in the presence of EDTA, aggregation is fully inhibited and appears to be mediated by fibrinogen binding to glycoproteins IIb/IIIa. AG-1 is a potent stimulus of thromboxane formation, but full inhibition of thromboxane production by 30 mumol/L indomethacin does not significantly inhibit platelet aggregation induced by 25 micrograms/mL AG-1, indicating that aggregation induced by AG-1 may proceed by way of an endoperoxide-independent pathway. Quantitation of AG-1 Fab binding to platelets reveals approximately 65,000 binding sites per platelet. When intact platelets are radioiodinated, immunoprecipitation of NP-40 lysates by AG-1 reveals an intensely labeled protein with an apparent mol wt of approximately 21,000 daltons, and several additional bands in the mol wt range of 22,000 to 28,000 daltons, all sharing the AG-1 epitope. These bands appear to be distinct from glycoprotein IX or from the beta-chains of glycoprotein Ib or IIb. Finally, studies with platelets labeled by the periodate-[3H]borohydride procedure suggest the possibility of complex formation between subpopulations of glycoprotein Ib and the low-mol-wt glycoproteins recognized by AG-1.  相似文献   

4.
The mechanism of heparin-induced platelet aggregation   总被引:2,自引:0,他引:2  
When heparin was added to platelet-rich plasma, mild but irreversible platelet aggregation was demonstrated. This platelet response was not accompanied by release of alpha-granules and dense body constituents, nor by prostaglandin biosynthesis. It did, however, require metabolic energy and divalent cations as metabolic inhibitors (anti-mycin A and 6-deoxyglucose) and EDTA blocked the reaction. Bernard-Soulier syndrome platelets, which lack glycoprotein (GP) Ib, but not Glanzmann's Thrombasthenia platelets, which lack GP IIb/IIIa, were aggregated by heparin. Monoclonal antibody (mAb) against GP IIb/IIIa, but not mAb against GP Ib, strongly inhibited the reaction. These combined results suggest the participation of GP IIb/IIIa but not GP Ib in heparin-induced platelet aggregation. Fibrinogen was a cofactor in the reaction as gel-filtered platelets were unreactive to heparin but addition of fibrinogen restored their reactivity. Antithrombin III and fibronectin inhibited platelet response to heparin, suggesting that these proteins may protect platelets from aggregation by heparin.  相似文献   

5.
A major challenge in the use of artificial materials for implant devices, artificial organs, and extra-corporeal circulation systems, is the adhesion of platelets and the subsequent formation of platelet aggregates on the non-biological surface. The mechanism of platelet attachment to artificial surfaces is not completely understood. Using an enzyme immunoassay, we examined platelet deposition to the polystyrene plastic of microtiter plate wells under static conditions. Following thrombin stimulation, platelets adhered to the wells. This adhesion process was suppressible by the use of different substances known to interfere with the function of the platelet surface glycoprotein IIb/IIIa complex (GPIIb/IIIa). The substances we used were ethylenediaminetetraacetic acid (EDTA), tetrapeptide RGDS (Arg-Gly-Asp-Ser), and a monoclonal antibody directed against the IIIa moiety of the GPIIb/IIIa complex. Our results indicate that the GPIIb/IIIa complex is the platelet receptor which mediates platelet adhesion to polystyrene plastic under such static conditions. The GPIIb/IIIa complex should consequently be regarded as a multifunctional platelet regulator which, depending on the circumstances, may support platelet adhesion as well as platelet aggregation. By contrast, a monoclonal antibody directed against the platelet surface glycoprotein complex Ib/IX (GPIb/IX) did not under the same static conditions inhibit platelet deposition to the polystyrene plastic. In the microtiter wells, platelet alpha-granular proteins were detected either on the surface of adherent platelets or, when platelet deposition was inhibited by EDTA directly on the polystyrene plastic. In the latter case, fibrinogen and thrombospondin were definitely the dominating proteins. The presence of platelet-derived proteins in the microtiter wells significantly enhanced the adhesion of thrombin-stimulated platelets but not of non-stimulated platelets.  相似文献   

6.
Summary The binding of fibrinogen to platelets requires the agonist activation of platelet membrane glycoprotein IIb/IIIa. We have now found an anti-fibrinogen polyclonal antibody (YCU-R3) that increases the fibrinogen affinity of GPIIb/IIIa-binding function (activation) and subsequent platelet aggregation. The addition of intact IgG, F(ab)2 fragments or Fab fragments induced platelet aggregation. The antibody-mediated fibrinogen binding was specific and saturable. This binding was inhibited by native fibrinogen, the RGDS peptide, the peptide of the C-terminus γ chain of fibrinogen (γ397–411), and the anti-GPIIb/IIIa monoclonal antibody (LJ-CP8). The antibody-dependent fibrinogen binding was similar to that induced by ADP. Moreover, after pretreatment with the anti-fibrinogen antibody and fibrinogen, formalin-fixed platelets bound to fibrinogen saturably. These results suggest that this anti-fibrinogen antibody may function as partial agonist.  相似文献   

7.
Peerschke  EI; Coller  BS 《Blood》1984,64(1):59-63
We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.  相似文献   

8.
Because thrombin aggregates afibrinogenemic platelets and platelets from patients with the gray platelet syndrome and because antibodies to fibrinogen inhibit thrombin-induced aggregation only at low concentrations of thrombin, the role of fibrinogen in the formation of thrombin-induced aggregates was investigated further with human platelets washed and resuspended in Tyrode-albumin solution containing apyrase, either with or without added Ca2+ (2 mmol/L). Samples for immunocytochemical assessment of fibrinogen distribution were taken at several times (up to five minutes) after aggregation induced by 0.5 U/mL of thrombin. Glutaraldehyde-fixed samples were embedded in Lowicryl K4M, sectioned, incubated with goat antihuman fibrinogen, washed, reacted with gold-labeled antigoat IgG, and prepared for electron microscopy. By 10 seconds, small aggregates formed, and granules were centralized; alpha granules were heavily labeled with immunogold, but the platelet surface was not. As large aggregates formed, granule swelling or fusion occurred, and in some areas granule material seemed to be in contact with the exterior. In these experiments with no added fibrinogen, there were some clusters of gold particles on the platelet surfaces remote from sites of granule discharge, but there were large areas where platelets were in close contact with little or no fibrinogen detectable between them. No fibrin was visible up to five minutes after the addition of thrombin, which indicated that fibrinogen from the granules does not readily become available for fibrin formation in the ambient fluid. Similar results were obtained in media with and without added Ca2+. Thus at least some aggregation in response to thrombin can occur without the participation of released fibrinogen, and much of the granule fibrinogen appears to remain localized at sites where granules fuse with the plasma membrane or the open canalicular system. Incubation of unstirred samples with thrombin for ten minutes resulted in the formation of small aggregates, extensive gold label in regions connected to the exterior of the platelets, but very little gold labeling of the platelet membrane and no visible fibrin formation. When the platelets were aggregated in the presence of external fibrinogen, the morphological changes within the platelets were the same, but fibrinogen rapidly became associated with the entire platelet surface, and visible fibrin formed within 30 seconds in the medium containing 2 mmol/L Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The effect of vitronectin on platelet aggregation has been investigated. Vitronectin inhibited both thrombin- and ADP-induced platelet aggregation in a dose-dependent manner. A monoclonal antibody (MoAb) to vitronectin increased thrombin-induced platelet aggregation. This effect of the MoAb was not mediated via the platelet Fc-receptor, suggesting that the antibody directly counteracted the inhibitory effect of vitronectin on platelet aggregation. Like some other adhesive proteins such as fibrinogen, fibronectin, and von Willebrand factor, vitronectin contains the amino-acid sequence Arg-Gly-Asp (RGD) which enables binding to the platelet membrane glycoprotein complex IIb/IIIa (GPIIb/IIIa). The results of this study indicate that vitronectin can modulate the function of fibrinogen on platelet aggregation by interfering with the binding of fibrinogen to GPIIb/IIIa in activated platelets.  相似文献   

10.
The F(ab')2 fragment of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor (7E3) is a potent inhibitor of both in-vitro platelet aggregation and in-vivo platelet thrombus formation in animal studies. As a first step in assessing the potential of 7E3-F(ab')2 as an antithrombotic agent for use in humans, we administered 7E3-F(ab')2 intravenously at increasing doses to a person who had just died and was being maintained on a respirator (neomort). At 0.1 and at 0.2 mg/kg body weight, 74% and 92% of the glycoprotein IIb/IIIa receptors were blocked, respectively; adenosine-diphosphate-induced platelet aggregation was inhibited by 84% and 100% at these same doses. Platelet glycoprotein Ib function remained intact, even at 0.6 mg/kg. Acute hemodynamic or hemorrhagic toxicity was not noted. This antibody fragment, a potent, immediate-acting inhibitor of platelet aggregation, may be of benefit in vaso-occlusive and thromboembolic disorders.  相似文献   

11.
This study characterizes a congenital hemorrhagic disorder caused by a platelet function defect with the following features: (1) severely impaired platelet aggregation and fibrinogen or von Willebrand factor (vWF) binding induced by adenosine diphosphate (ADP); (2) defective aggregation, release reaction, and fibrinogen or vWF binding induced by other agonists; (3) normal aggregation and release reaction induced by high concentrations of thrombin or collagen; (4) no further inhibition by ADP scavengers of aggregation, release reaction, and fibrinogen or vWF binding, comparable with those observed for normal platelets in the presence of ADP scavengers; (5) normal membrane glycoprotein (GP) composition and normal binding of the anti-GP IIb/IIIa monoclonal antibody 10E5; (6) no acceleration by ADP of binding of the anti-GP IIb/IIIa monoclonal antibody 7E3; (7) normal platelet-fibrin clot retraction if induced by thrombin or reptilase plus epinephrine, absent if induced by reptilase plus ADP; (8) no inhibition by ADP of the prostaglandin E1-induced increase in platelet cyclic adenosine monophosphate, but normal inhibition by epinephrine; (9) defective mobilization of cytoplasmic Ca2+ by ADP; (10) normal binding of 14C-ADP to fresh platelets, but defective binding of [2-3H]-ADP to formalin-fixed platelets. This congenital platelet function defect is characterized by selective impairment of platelet responses to ADP, caused by either decreased number of platelet ADP receptors or abnormalities of the signal-transduction pathway of platelet activation by ADP.  相似文献   

12.
Weber AA  Schrör K 《Blood》2001,98(5):1619-1621
The exposure of internal glycoprotein (GP) IIb/IIIa receptors has been proposed to explain the incomplete inhibition of aggregation of thrombin receptor-activating peptide (TRAP)-stimulated platelets by abciximab. However, a marked and rapid externalization of GPIIb/IIIa was also observed upon stimulation with 30 microM adenosine diphosphate (ADP). ADP-induced fibrinogen binding was completely inhibited by 10 microg/mL abciximab, 30 nM tirofiban, or 3 microg/mL eptifibatide, while fibrinogen binding induced by 100 microM TRAP was inhibited only by 50%. Interestingly, striking differences in fibrinogen binding kinetics in ADP- versus TRAP-stimulated platelets were observed. ADP-induced fibrinogen binding was much slower than that of abciximab. These differences in the fibrinogen binding rate were due to differential GPIIb/IIIa activation kinetics because the actual fibrinogen binding rate (measured by adding fibrinogen after platelet activation) was similar in ADP- and TRAP-stimulated platelets. Thus, the TRAP-induced GPIIb/IIIa activation rate would allow significant amounts of fibrinogen to occupy externalized GPIIb/IIIa receptors even in the presence of the inhibitor.  相似文献   

13.
E I Peerschke 《Blood》1992,79(8):2028-2033
Progressive decreases in platelet-bound fibrinogen accessibility to antibody and enzymes were recently reported to occur after adenosine diphosphate (ADP)-induced fibrinogen binding. Because previous studies also indicated that platelets that are activated but not aggregated by ADP in the presence of fibrinogen lose their ability to aggregate in a time-dependent manner despite negligible changes in fibrinogen binding, the present study examined the relationship between platelet aggregation and accessibility of platelet-bound fibrinogen to specific polyclonal antibody F(ab')2 fragments over a 60-minute time course. Although 125I-fibrinogen binding remained virtually unchanged, comparison of antifibrinogen antibody F(ab')2 binding and platelet aggregation 5 minutes and 60 minutes after platelet stimulation with ADP or thrombin showed decreases in F(ab')2 binding of 62% +/- 13% and 73% +/- 7% (mean +/- SD, n = 5), respectively, and decreases of 65% +/- 16% and 60% +/- 10% in platelet aggregation. In contrast, platelets stimulated with A23187 or chymotrypsin retained 87% +/- 16% and 76% +/- 12% of their ability to aggregate over the same time course, and lost only 39% +/- 14% and 36% +/- 12% of their ability to bind antifibrinogen antibody F(ab')2 fragments, respectively. Pretreatment of ADP-stimulated platelets with chymotrypsin largely prevented the progressive loss of platelet aggregability and the accompanying decreased recognition of bound fibrinogen by antifibrinogen F(ab')2 fragments. Preincubation of platelets with cytochalasin D (30 micrograms/mL) also inhibited the decrease in platelet aggregation after exposure of ADP-treated platelets to fibrinogen over a 60-minute time course. This was accompanied by only a 25% +/- 18% decrease in antifibrinogen antibody F(ab')2 binding. Present data support the hypothesis that qualitative changes in platelet-bound fibrinogen correlate with loss of the ability of platelets to aggregate, and implicate both the platelet cytoskeleton and chymotrypsin-sensitive surface membrane structures in modulating qualitative changes in bound fibrinogen on the platelet surface.  相似文献   

14.
E I Peerschke 《Blood》1992,79(4):948-953
Platelets contain a pool of endogenous adhesive proteins that can be released and may bind to surface membrane receptors under appropriate conditions. Because the binding of exogenous fibrinogen to platelets was shown previously to be accompanied by a time-dependent decrease in fibrinogen accessibility to antibody and enzymes, studies were performed to evaluate changes in the expression of endogenous fibrinogen released from thrombin-stimulated platelets using monospecific polyclonal and monoclonal antibody F(ab')2 fragments. Parallel studies were performed to compare the expression of released fibronectin and von Willebrand factor (vWF). Binding of polyclonal antibody F(ab')2 fragments directed against individual adhesive proteins was inhibited by EDTA or the 10E5 monoclonal antibody, suggesting that fibrinogen, fibronectin, and vWF expression was mediated, in large part, by divalent cation-dependent interactions with the glycoprotein IIb-IIIa complex. Interestingly, when polyclonal antibody F(ab')2 fragments were added to platelet suspensions at discrete times after thrombin stimulation, antifibrinogen F(ab')2 binding decreased by 72% +/- 15% (mean +/- SD, n = 22) over a 60-minute time course, whereas antifibronectin and anti-vWF antibody F(ab')2 fragment binding changed minimally (6% +/- 23%, n = 22 and 3% +/- 26%, n = 14, respectively). Similar observations were made with monoclonal antibodies. Parallel experiments using 125I-labeled fibrinogen as a marker indicated that the observed decrease in antifibrinogen F(ab')2 binding was not accompanied by fibrinogen dissociation. Moreover, antibody accessibility to platelet-bound fibrinogen could be restored after Triton X-100 platelet lysis. The data suggest that fibrinogen, fibronectin, and vWF are not coordinately expressed on thrombin-stimulated platelets. Rather, fibrinogen expression appears transient compared with the expression of fibronectin and vWF. The ability of platelets to secrete and organize adhesive proteins on their surface is likely to have important implications for hemostasis and thrombosis.  相似文献   

15.
S ummary. A monoclonal antibody, designated M148, produced by the hybridoma technique from spleen cells of mice immunized with human medulloblastoma, was found by indirect immunofluorescence to bind to normal human platelets (both PlAl positive and PlAl negative) and megakaryocytes, as well as to some medulloblastoma and neuroblastoma cells and cell lines and certain other solid tumours. No binding was observed to other marrow constituents, nor to any other normal tissue examined. The antibody bound to platelets from a patient with the Bernard-Soulier syndrome but not to thrombasthenic platelets. It immunoprecipitated glycoproteins IIb and IIIa from 125I-labelled normal platelet membranes, and completely inhibited ADP-induced fibrinogen binding and aggregation of platelets. Aggregation was also inhibited in response to adrenaline, collagen, thrombin, sodium arachidonate and the ionophore A23187; clot retraction was partially inhibited. The antibody was without effect on thromboxane formation or 5-hydroxytryptamine (5HT) secretion in response to thrombin, but inhibited 5HT secretion in response to arachidonate. It did not inhibit factor VIII binding or agglutination in response to ristocetin, but completely inhibited factor VIII binding in response to thrombin. These findings suggest that the epitopes are close to the fibrinogen and factor VIII binding sites on glycoproteins IIb/IIIa, and that the lack of these glycoproteins is sufficient explanation for the pattern of dysfunction observed in thrombasthenic platelets, without invoking any other membrane abnormality.  相似文献   

16.
To investigate the suggestion that von Willebrand factor (vWf) can substitute for fibrinogen in supporting ADP-induced aggregation of human platelets, we studied platelet reactions in two media: (1) a high calcium medium, Tyrode-albumin solution containing calcium ions in the physiological range of 2 mmol/L, and (2) a low calcium medium, modified Tyrode-albumin solution from which calcium salt was omitted (calcium ion concentration approximately 20 mumol/L). In the high calcium medium vWf even at concentrations up to six times as high as physiological, showed little or no potentiation of ADP-induced platelet aggregation, whereas fibrinogen strongly potentiated reversible aggregation without thromboxane formation or release of granule contents. In the low calcium medium, either vWf or fibrinogen supported biphasic aggregation in response to ADP, with thromboxane formation and release of granule contents. Aspirin and the thromboxane receptor blocker BM 13.177 inhibited these secondary responses to von Willebrand factor, indicating that they require thromboxane A2 formation and feedback amplification by thromboxane A2. A monoclonal antibody, 10E5, to the platelet glycoprotein IIb/IIIa complex inhibited both primary and secondary aggregation. Although vWf supports ADP-induced aggregation when the concentration of ionized calcium is in the micromolar range, it does not support ADP-induced aggregation in the presence of a concentration of ionized calcium in the physiological range, indicating that vWf probably cannot substitute for fibrinogen in supporting ADP- induced aggregation in vivo.  相似文献   

17.
The blockade of the platelet integrin glycoprotein (GP) IIb/IIIa has proved to be an effective antiplatelet therapy. Profound thrombocytopenia has repeatedly been described as an adverse effect in patients treated with GP IIb/IIIa inhibitors, but its mechanism has not been elucidated yet. With use of flow cytometry, the activation status of platelets was monitored in 26 patients presenting with acute myocardial infarction who were treated with the GP IIb/IIIa inhibitor abciximab alone or in combination with the fibrinolytic agent reteplase. Fibrinogen and PAC-1 (a GP IIb/IIIa activation-specific monoclonal antibody) binding, as well as P-selectin expression on unstimulated platelets were constant in 25 patients throughout a follow-up of 7 days. In 1 patient (D.F.), the percentage of platelet-binding fibrinogen increased from 2.2% to 17.8%, for PAC-1 from 2.8% to 13.2%, and for P-selectin expression from 10.2% to 58.3% 10 minutes after the start of treatment. Furthermore, D.F. had a decrease in single platelet count in ethylenediaminetetraacetic acid-, citrate-, and heparin-anticoagulated and native blood. Blood films revealed platelet aggregates. In vitro testing of D.F.'s blood 2 and 4 weeks after initial admission demonstrated a reinduction of fibrinogen and PAC-1 binding to platelets, an increase of P-selectin expression, and formation of platelet aggregates following exposition of platelets to abciximab in vitro. In summary, this report describes the induction of platelet activation by a GP IIb/IIIa inhibitor in vivo and reinduction in vitro in direct association with thrombocytopenia. Platelet activation by GP IIb/IIIa inhibitors may be one potential mechanism for GP IIb/IIIa inhibitor-induced thrombocytopenia.  相似文献   

18.
Background Platelet surface glycoprotein IIb/IIIa (αIIb/β3) receptor inhibition, with prevention of fibrinogen binding and platelet aggregation, concomitantly attenuates arterial thrombotic capacity and impairs protective hemostasis, 2 divergent platelet-dependent processes. Purpose Because the currently available, Food and Drug Administration-approved small molecule glycoprotein IIb/IIIa receptor antagonists are considered “competitive” inhibitors and there is limited information on the reversibility of platelet inhibition with fibrinogen or platelet supplementation, the following series of in vitro experiments were performed. Methods and Results Washed platelets from 24 healthy volunteers were suspended in tyrodes buffer and incubated with achievable (in vivo) concentrations of either tirofiban or eptifibatide before activation with thrombin receptor agonist peptide (15 μmol/L). Platelet aggregation was inhibited by 40% to 50%, but reversal was achieved with fibrinogen supplementation in a concentration-dependent manner. In a separate series of in vitro experiments, platelet inhibition exceeding 90% was established with tirofiban (average concentration 9.28 μg/L) and eptifibatide (average concentration 95.4 μg/L). Recovery of platelet aggregation to at least 50% was achieved after the addition of fibrinogen (0.76-0.80 g/L), platelets (2.4 × 1011/L), or their combination. There was an inverse relationship between plasma baseline fibrinogen and the amount of supplemental fibrinogen needed to restore platelet aggregability (r = −0.60; P <.01). Conclusion The reversibility of glycoprotein IIb/IIIa-directed platelet inhibition is influenced by cell surface receptor availability and intrinsic pharmacodynamic mechanism of action. Fibrinogen supplementation with fresh frozen plasma or cryoprecipitate either alone or in combination with platelet transfusion represents an important and readily available treatment consideration for restoring hemostatic potential and managing major hemorrhagic complications associated with the administration of small-molecule, competitive glycoprotein IIb/IIIa receptor antagonists. (Am Heart J 2002;143:725-32.)  相似文献   

19.
Platelet lysates from five patients with a form of type IIb von Willebrand's disease (vWd), associated with spontaneous platelet aggregation and thrombocytopenia, induced platelet aggregation of normal and other vWd's platelet-rich plasma (PRP). Platelet lysate from normals, type I or type IIa vWd did not cause platelet aggregation of normal PRP. When polyclonal monospecific antibodies directed against plasma von Willebrand factor (vWf) were incubated with the type IIb platelet lysate, they inhibited the platelet aggregation. Monoclonal antibodies directed against the glycoprotein (GP) Ib binding domain of plasma vWf incubated with the type IIb platelet lysate did not inhibit the platelet aggregation. Normal platelets suspended in afibrinogenaemic plasma did not aggregate when type IIb vWd platelet lysate was added. Normal platelets incubated with monoclonal antibodies directed against the fibrinogen and vWf binding site(s) on the GPIIb/IIIa were not aggregated by the type IIb platelet lysate. Bernard-Soulier PRP aggregated when type IIb vWd platelet lysate was added, while Glanzmann's thrombasthenic platelets did not. Peptides containing the RGDS sequence or the sequence of the carboxy terminal 15 amino acids of the gamma chain of fibrinogen inhibited the type IIb vWd platelet lysate-induced platelet aggregation. These data suggest that type IIb platelet vWf can cause platelet aggregation of PRP without the addition of any agonist. This interaction is different from that observed with the plasma vWf from these patients.  相似文献   

20.
Two monoclonal antibodies--one that blocks ristocetin-induced platelet binding of von Willebrand factor to glycoprotein Ib and one that blocks adenosine diphosphate-induced binding of fibrinogen to the glycoprotein IIb/IIIa complex--were used to assess the binding site(s) for von Willebrand factor when platelets are stimulated with thrombin or adenosine diphosphate (ADP). Neither agonist induced binding of von Willebrand factor to glycoprotein Ib. ADP and thrombin induced von Willebrand factor binding exclusively to the glycoprotein IIb/IIIa complex. The results of the site of binding of von Willebrand factor with thrombasthenic platelets were consistent with the data obtained with the monoclonal antibodies and normal platelets. Human fibrinogen caused complete inhibition of thrombin-induced von Willebrand factor binding to normal platelets at concentrations considerably below that found in normal plasma. We conclude that thrombin induces very little binding of exogenous von Willebrand factor to platelets at normal plasma fibrinogen levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号