首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Background: Because propofol is water insoluble, current formulations of propofol use a soybean oil emulsion. These soybean emulsions cause elevated plasma triglycerides and support bacterial growth. This study compares an alternative formulation of propofol as a 2% emulsion in a medium-chain triglyceride solution (IDD-D(TM) Propofol) with Diprivan(R).

Methods: This double-blind, crossover, phase 1 study compared IDD-D Propofol with Diprivan using two consecutive protocols of 12 subjects each. Subjects in protocol 1 received a single bolus of 2.5 mg/kg, and those in protocol 2 received the same induction dose followed by a 30-min infusion at 0.2 mg [middle dot] kg-1 [middle dot] min-1. Venous samples were taken for propofol concentration and biochemical measurements. Induction and emergence times were measured by termination of voluntary counting and responding to command, respectively.

Results: Plasma concentrations were not different between the two formulations. Induction time was 14% longer with IDD-D Propofol than with Diprivan (N = 24, protocols 1 and 2 combined, 53.3 +/- 12.1 s and 46.9 +/- 7.8 s, respectively;P = 0.002). Emergence time was not significantly different for protocol 1 but was marginally longer (P = 0.04) for IDD-D Propofol in protocol 2 (1,197 +/- 445 s [n = 11] and 1,254 +/- 468 s [n = 12], respectively). As expected because of the inherent characteristics of the formulations, plasma triglycerides were elevated for Diprivan but not for IDD-D Propofol; octanoate, a metabolite of medium-chain triglycerides, was elevated only with IDD-D Propofol. Octanoate was elevated to concentrations below those considered toxic. Plasma concentrations of other biochemical markers of medium-chain triglyceride metabolism, e.g., ketones, showed no significant changes. Interestingly, there were significant differences between male and female subjects in the propofol plasma concentrations and time to awakening with both drugs.  相似文献   


3.
The Influence of Age on Propofol Pharmacodynamics   总被引:6,自引:0,他引:6  
Background: The authors studied the influence of age on the pharmacodynamics of propofol, including characterization of the relation between plasma concentration and the time course of drug effect.

Methods: The authors evaluated healthy volunteers aged 25-81 yr. A bolus dose (2 mg/kg or 1 mg/kg in persons older than 65 yr) and an infusion (25, 50, 100, or 200 [micro sign]g [middle dot] kg-1 [middle dot] min-1) of the older or the new (containing EDTA) formulation of propofol were given on each of two different study days. The propofol concentration was determined in frequent arterial samples. The electroencephalogram (EEG) was used to measure drug effect. A statistical technique called semilinear canonical correlation was used to select components of the EEG power spectrum that correlated optimally with the effect-site concentration. The effect-site concentration was related to drug effect with a biphasic pharmacodynamic model. The plasma effect-site equilibration rate constant was estimated parametrically. Estimates of this rate constant were validated by comparing the predicted time of peak effect with the time of peak EEG effect. The probability of being asleep, as a function of age, was determined from steady state concentrations after 60 min of propofol infusion.

Results: Twenty-four volunteers completed the study. Three parameters of the biphasic pharmacodynamic model were correlated linearly with age. The plasma effect-site equilibration rate constant was 0.456 min-1. The predicted time to peak effect after bolus injection ranging was 1.7 min. The time to peak effect assessed visually was 1.6 min (range, 1-2.4 min). The steady state observations showed increasing sensitivity to propofol in elderly patients, with C50 values for loss of consciousness of 2.35, 1.8, and 1.25 [micro sign]g/ml in volunteers who were 25, 50, and 75 yr old, respectively.  相似文献   


4.
Background The optimal extent of thyroidectomy for papillary thyroid cancer (PTC) is controversial. Our objective was to evaluate the effect of total thyroidectomy or partial thyroidectomy on survival in low- and high-risk patients.Methods The Surveillance, Epidemiology, and End Results database was used to identify PTC patients who underwent thyroidectomy. The independent effects of age, distant metastases, extrathyroidal extension, tumor size, sex, lymph node metastases, radioactive iodine use, and extent of thyroidectomy on survival were analyzed for low- and high-risk PTC.Results There were 4402 (81%) low-risk and 1030 (19%) high-risk patients; 84.9% underwent total thyroidectomy. The 5- and 10-year survival were 95% and 89% in the low-risk patients and 84% and 73% in the high-risk patients, respectively (P = .001). In the low-risk patients, 10-year survival after total thyroidectomy was 89%, compared with 91% after partial thyroidectomy (adjusted hazard ratio for death, 1.73; 95% confidence interval, 1.28–2.33; P < .001); older age, male sex, larger tumor, lymph node metastases, and lack of radioactive iodine were associated with higher mortality. In the high-risk patients, 10-year survival after total thyroidectomy was 72%, compared with 78% after partial thyroidectomy (adjusted hazard ratio for death, 1.46; 95% confidence interval, .89–2.40; P = .14); older age, distant metastases, larger tumors, and lack of radioactive iodine were associated with higher mortality.Conclusions Survival of patients with PTC was not significantly influenced by the extent of thyroidectomy. The survival after partial thyroidectomy was similar to total thyroidectomy within both the low- and high-risk prognostic groups.  相似文献   

5.
Background: GPI 15715 is a new water-soluble prodrug that is hydrolyzed to release propofol. The objectives of this crossover study in volunteers were to investigate the pharmacokinetics and pharmacodynamics of GPI 15715 in comparison with propofol emulsion.

Methods: In two separate sessions, nine healthy male volunteers (19-35 yr, 70-86 kg) received GPI 15715 and propofol emulsion as a target controlled infusion over 60 min. In the first 20 min, the propofol target concentration increased linearly to 5 [mu]g/ml. Subsequently, the targets were reduced to 3 [mu]g/ml and 1.5 [mu]g/ml for 20 min each. The plasma concentrations of GPI 15715 and propofol were measured from arterial and venous blood samples up to 24 h and pharmacokinetics were analyzed. The pharmacodynamic effect was measured by the median frequency of the power spectrum of the electroencephalogram, and a sigmoid model with effect compartment was fitted to the data.

Results: Compared with propofol emulsion, propofol from GPI 15715 showed a different disposition function and especially larger volumes of distribution. The propofol effect site concentration for half maximum effect was 2.0 +/- 0.5 [mu]g/ml for GPI 15715 and 3.0 +/- 0.7 [mu]g/ml for propofol emulsion (P < 0.05). Propofol from GPI 15715 did not show a hysteresis between plasma concentration and effect.  相似文献   


6.
7.
《Anesthesiology》2008,109(3):436-447
Background: A newly developed microemulsion propofol consisted of 10% purified poloxamer 188 and 0.7% polyethylene glycol 660 hydroxystearate. The authors studied the physicochemical properties, aqueous free propofol concentration, and plasma bradykinin generation. Pharmacokinetics and pharmacodynamics were also evaluated in rats.

Methods: The pH, particle size, and osmolarity of microemulsion propofol were measured using a pH meter, particle size analyzer, and cryoscopic osmometer, respectively. The aqueous free propofol and plasma bradykinin were measured by a dialysis method and radioimmunoassay, respectively. Microemulsion propofol was administered by zero-order infusion of 0.5, 1.0, and 1.5 mg [middle dot] kg-1 [middle dot] min-1 for 20 min in 30 rats. The electroencephalographic approximate entropy was used as a surrogate measure of propofol effect.

Results: The pH, osmolarity, and particle size of microemulsion propofol are 7.5, 280 mOsm/l, and 67.0 +/- 28.5 nm, respectively. The aqueous free propofol concentration in microemulsion propofol was 63.3 +/- 1.2 [mu]g/ml. When mixed with human blood, microemulsion propofol did not generate bradykinin in plasma. Although microemulsion propofol had nonlinear pharmacokinetics, a two-compartment model with linear pharmacokinetics best described the time course of the propofol concentration as follows: V1 = 0.143 l/kg, k10 = 0.175 min-1, k12 = 0.126 min-1, k21 = 0.043 min-1. The pharmacodynamic parameters in a sigmoid Emax model were as follows: E0 = 1.18, Emax = 0.636, Ce50 = 1.87 [mu]g/ml, [gamma] = 1.28, ke0 = 1.02 min-1.  相似文献   


8.
Hepatic osteodystrophy is multifactorial in its pathogenesis. Numerous studies have shown that impairments of the hepatic growth hormone/insulin‐like growth factor‐1 axis (GH/IGF‐1) are common in patients with non‐alcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and chronic cholestatic liver disease. Moreover, these conditions are also associated with low bone mineral density (BMD) and greater fracture risk, particularly in cortical bone sites. Hence, we addressed whether disruptions in the GH/IGF‐1 axis were causally related to the low bone mass in states of chronic liver disease using a mouse model of liver‐specific GH‐receptor (GHR) gene deletion (Li‐GHRKO). These mice exhibit chronic hepatic steatosis, local inflammation, and reduced BMD. We then employed a crossing strategy to restore liver production of IGF‐1 via hepatic IGF‐1 transgene (HIT). The resultant Li‐GHRKO‐HIT mouse model allowed us to dissect the roles of liver‐derived IGF‐1 in the pathogenesis of osteodystrophy during liver disease. We found that hepatic IGF‐1 restored cortical bone acquisition, microarchitecture, and mechanical properties during growth in Li‐GHRKO‐HIT mice, which was maintained during aging. However, trabecular bone volume was not restored in the Li‐GHRKO‐HIT mice. We found increased bone resorption indices in vivo as well as increased basal reactive oxygen species and increased mitochondrial stress in osteoblast cultures from Li‐GHRKO and the Li‐GHRKO‐HIT compared with control mice. Changes in systemic markers such as inflammatory cytokines, osteoprotegerin, osteopontin, parathyroid hormone, osteocalcin, or carboxy‐terminal collagen cross‐links could not fully account for the diminished trabecular bone in the Li‐GHRKO‐HIT mice. Thus, the reduced serum IGF‐1 associated with hepatic osteodystrophy is a main determinant of low cortical but not trabecular bone mass. © 2017 American Society for Bone and Mineral Research.  相似文献   

9.
10.
Erythropoietin Is Not a Cause of Access Thrombosis   总被引:2,自引:0,他引:2  
  相似文献   

11.
Background: GPI 15715 (AQUAVAN injection) is a new water-soluble prodrug which is hydrolyzed to release propofol. The objectives of this first study in humans were to investigate the safety, tolerability, pharmacokinetics, and clinical pharmacodynamics of GPI 15715.

Methods: Three groups of three healthy male volunteers (aged 19-35 y, 67-102 kg) received 290, 580, and 1,160 mg GPI 15715 as a constant rate infusion over 10 min. The plasma concentrations of GPI 15715 and propofol were measured from arterial and venous blood samples up to 24 h. Pharmacokinetics were analyzed with compartment models. Pharmacodynamics were assessed by clinical signs.

Results: GPI 15715 was well tolerated without pain on injection. Two subjects reported a transient unpleasant sensation of burning or tingling at start of infusion. Loss of consciousness was achieved in none with 290 mg and in one subject with 580 mg. After 1,160 mg, all subjects experienced loss of consciousness at propofol concentrations of 2.1 +/- 0.6 [mu]g/ml. A two-compartment model for GPI 15715 (central volume of distribution, 0.07 l/kg; clearance, 7 ml [middle dot] kg-1 min-1; terminal half-life, 46 min) and a three-compartment model for propofol (half-lives: 2.2, 20, 477 min) best described the data. The maximum decrease of blood pressure was 25%; the heart rate increased by approximately 35%. There were no significant laboratory abnormalities.  相似文献   


12.
13.
Background: Parecoxib, a cyclooxygenase-2-specific inhibitor with intended perioperative analgesic and antiinflammatory use, is a parenterally administered inactive prodrug undergoing rapid hydrolysis in vivo to the active cyclooxygenase-2 inhibitor valdecoxib. Both parecoxib and valdecoxib inhibit human cytochrome P450 2C9 (CYP2C9) activity in vitro. Thus, a potential exists for in vivo interactions with other CYP2C9 substrates, including propofol. This investigation determined the influence of parecoxib on the pharmacokinetics and pharmacodynamics of bolus dose propofol in human volunteers.

Methods: This was a randomized, balanced crossover, placebo-controlled, double-blind, clinical investigation. Twelve healthy 21- to 37-yr-old subjects were studied after providing institutional review board-approved written informed consent. Each subject received a 2-mg/kg intravenous propofol bolus 1 h after placebo (control) or 40 mg intravenous parecoxib on two occasions. Venous concentrations of propofol, parecoxib, and parecoxib metabolites were determined by mass spectrometry. Pharmacokinetic parameters were determined by noncompartmental analysis. Pharmacodynamic measurements included clinical endpoints, cognitive function (memory, Digit-Symbol Substitution Tests), subjective self-assessment of recovery (Visual Analog Scale) performed at baseline, 15, 30, 60 min after propofol, and sedation depth measured by Bispectral Index.

Results: Propofol plasma concentrations were similar between placebo- and parecoxib-treated subjects. No significant differences were found in pharmacokinetic parameters (Cmax, clearance, elimination half-life, volume of distribution) or pharmacodynamic parameters (clinical endpoints [times to: loss of consciousness, apnea, return of response to voice], Bispectral Index scores, Digit-Symbol Substitution Test scores, memory, Visual Analog Scale scores, propofol EC50).  相似文献   


14.
《Arthroscopy》2020,36(10):2748-2749
Traditional teaching has told us that arthroscopic ankle arthrodesis is reserved for those patients with severe osteoarthrosis but minimal deformity. However, it is not the size of the deformity that matters; rather, it is the ability to correct the deformity intraoperatively that leads to satisfactory results. Preoperative identification of those patients with significant deformity that can be corrected with an arthroscopic approach would allow for improved selection and likely lead to better patient-reported outcomes and fewer complications.  相似文献   

15.
16.
With the development of insulin resistance (IR), there is a compensatory increase in the plasma insulin response to offset the defect in insulin action to maintain normal glucose tolerance. The insulin response is the result of two factors: insulin secretion and metabolic clearance rate of insulin (MCRI). Subjects (104 with normal glucose tolerance [NGT], 57 with impaired glucose tolerance [IGT], and 207 with type 2 diabetes mellitus [T2DM]), divided in nonobese and obese groups, received a euglycemic insulin-clamp (40 mU/m2 ⋅ min) and an oral glucose tolerance test (OGTT) (75 g) on separate days. MCRI was calculated during the insulin-clamp performed with [3-3H]glucose and the OGTT and related to IR: peripheral (glucose uptake during the insulin clamp), hepatic (basal endogenous glucose production × fasting plasma insulin [FPI]), and adipocyte (fasting free fatty acid × FPI). MCRI during the insulin clamp was reduced in obese versus nonobese NGT (0.60 ± 0.03 vs. 0.73 ± 0.02 L/min ⋅ m2, P < 0.001), in nonobese IGT (0.62 ± 0.02, P < 0.004), and in nonobese T2DM (0.68 ± 0.02, P < 0.03). The MCRI during the insulin clamp was strongly and inversely correlated with IR (r = −0.52, P < 0.0001). During the OGTT, the MCRI was suppressed within 15–30 min in NGT and IGT subjects and remained suppressed. In contrast, suppression was minimal in T2DM. In conclusion, the development of IR in obese subjects is associated with a decline in MCRI that represents a compensatory response to maintain normal glucose tolerance but is impaired in individuals with T2DM.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号