首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Nalivaiko E  Blessing WW 《Brain research》2001,891(1-2):130-137
Raphe pallidus/parapyramidal neurons control cutaneous vasoconstriction induced by noxious stimuli. To determine whether they mediate forebrain-induced cutaneous vasoconstriction, we assessed changes in ear pinna blood flow elicited by electrical stimulation of amygdala and hypothalamus before and after injection of muscimol into the raphe/parapyramidal region. We compared ear flow with simultaneously recorded mesenteric flow. Experiments were performed in rabbits anesthetized with urethane (1.25-1.5 g/kg), paralysed and mechanically ventilated. Amygdala stimulation reduced skin conductance from 0.32+/-0.06 to 0.10+/-0.02 cm/s per mmHg (P<0.05, n=9), without effect on mesenteric conductance. Hypothalamic stimulation caused vasoconstriction in both cutaneous and mesenteric beds (conductances fell from 0.27+/-0.05 to 0.05+/-0.02 cm/s per mmHg and from 0.27+/-0.06 to 0.14+/-0.04 cm/s per mmHg (P<0.05, n=9), respectively). Muscimol microinjection (5 nmol in 100 nl) to raphe/parapyramidal region eliminated amygdala- and hypothalamus-induced skin vasoconstriction (pre-stimulus conductance 0.42+/-0.13 and 0.41+/-0.11 cm/s per mmHg, post-stimulus 0.41+/-0.12 and 0.39+/-0.10 cm/s per mmHg, respectively), but not hypothalamically-induced mesenteric vasoconstriction (pre-stimulus 0.29+/-0.06, post-stimulus 0.16+/-0.03 cm/s per mmHg, P<0.05, n=8). The latter was strongly attenuated by bilateral injection of muscimol to the rostral ventrolateral medulla. Data suggest that descending hypothalamo-spinal and amygdala-spinal pathways constricting the cutaneous vascular bed relay in the raphe/parapyramidal area. A relay in the rostral ventrolateral medulla contributes substantially to mesenteric vasoconstriction elicited from the hypothalamus.  相似文献   

2.
The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A receptors and an excitatory influence through 5-HT1B receptors.  相似文献   

3.
K Kumaido 《Brain and nerve》1988,40(10):929-938
Respiratory control mechanism of the medullary raphe nuclei were studied with some references to their serotonergic mechanisms. Anesthetized, paralyzed and artificially ventilated cats were used and their phrenic nerve efferent activity was always observed as an indicator of central respiratory activity. Following results were obtained. 1) Electrical stimulation of medullary raphe nuclei, namely, nucleus raphe magnus, obscurus and pallidus, produced dominantly inhibitory responses in the phrenic nerve activity, while raphe stimulation in the pons and more rostral portion did not produce any respiratory responses. The blood pressure was depressed by raphe stimulation, too, almost in parallel to the respiratory inhibition. These inhibitory responses in respiration and blood pressure were partially antagonized by cyproheptadine (0.3-0.5 mg/kg i.v.) and methysergide (0.3-0.5 mg/kg i.v.). 2) Raphe stimulation inhibited remarkably activities of the medullary inspiratory and expiratory neurons, similarly. 3) In the experiment, where single shot stimulus was added to the raphe nuclei at the various time point in the respiratory phase, raphe stimulation showed the retardative effect of inspiratory switching, in addition to the inhibitory effect of phrenic burst activity. 4) The mechanism of respiratory inhibition produced by raphe stimulation was analyzed by evoked potentials in the averaged phrenic nerve activity. The post-stimulus averaged potentials of the phrenic nerve consist of the depolarizing potentials of about 10 msec duration and the subsequent hyperpolarizing potentials of several 10 msec duration, the duration time depending on the stimulus intensity. When stimulation was given in high frequency, the post-stimulus averaged potential became flattened, and the phrenic burst activity was inhibited almost completely. But in the case of stimulation in ventral parts of the raphe nuclei, the initial depolarizing potential was comparatively more prominent, and when high frequency stimulation was given, continuous firing was observed in the phrenic nerve activity. At the time of the continuous firing, respiratory rhythmicity was disappeared completely. 5) Propranolol (0.3-1.0 mg/kg i.v.), which have been recognized to have 5-HT1 antagonistic activity, reduced the hyperpolarizing potentials of the post-stimulus averaged potentials, and methysergide (0.3-1.0 mg/kg i.v.), 5-HT1 and 5-HT2 antagonist, reduced both depolarizing and hyperpolarizing potentials. These phenomena would suggest strongly that hyperpolarizing and depolarizing potentials are related to the 5-HT1 and 5-HT2 receptors, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Electrophysiological and in vivo microdialysis were used to investigate and compare the effect of tonic activation of serotonin(2C/2B) (5-HT(2C/2B)) receptors on nigrostriatal and mesolimbic dopaminergic (DA) function. Thus, extracellular single unit recordings of neurochemically-identified DA neurons in the SNc and the VTA, as well as simultaneous monitoring of striatal and accumbal DA release were performed following the administration of the unselective 5-HT(2C/2B) agonists, mCPP (m-chlorophenylpiperazine) and MK 212 [6-chloro-2-(1-piperazinyl)piperazine]. Both mCPP (5-320 microg/kg i. v.) and MK 212 (5-320 microg/kg i.v.) dose-dependently decreased the firing rate of VTA DA neurons. The maximal effect was reached at the cumulative dose of 320 microg/kg mCPP and MK 212, which caused a decrease of 42.6 +/- 12.8% and 56.4 +/- 12.6%, respectively. In addition, the total number of events in bursts and the number of bursts of VTA DA cells were significantly reduced by both mCPP and MK 212. On the other hand, mCPP (5-320 microg/kg i.v.) and MK 212 (5-320 microg/kg i.v.) induced a slight decrease in the basal firing rate, but not in bursting activity of SNc DA neurons. Consistent with electrophysiological data, dialysate DA levels in the nucleus accumbens decreased significantly, reaching the maximum of 26.6 +/- 9.6% below baseline levels 120 min after mCPP (1 mg/kg i.p.) administration, and of 25.2 +/- 5.5% 140 min after MK 212 (1 mg/kg i. p.) injection. DA outflow in the striatum was unaffected by both drugs. The inhibitory effect of both mCPP and MK 212 on VTA DA cell activity was blocked completely by pretreatment with the selective 5-HT(2C) antagonist SB 242084 ?6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-oxy)-pyrid-5-yl carbamoyl] indoline? (200 microg/kg), given intravenously 10 min before the first injection of the 5-HT(2C/2B) agonists. SB 242084 (2. 5 mg/kg i.p.) antagonized also the decrease in DA release induced by mCPP and MK 212 in the nucleus accumbens. Taken together, these data indicate that mCPP and MK 212 selectively inhibit mesolimbic dopaminergic function by acting on 5-HT(2C) receptors. Therefore, selective 5-HT(2C) receptor agonists might be useful in clinical conditions where it is necessary to reduce the mesolimbic dopaminergic activity without affecting the nigrostriatal function.  相似文献   

5.
Systemic doses of fluoxetine slow dorsal raphe cell firing by blocking the reuptake carrier located in the cell body region with the surplus 5-HT thus generated activating inhibitory autoreceptors. The concurrent actions of fluoxetine on postsynaptic receptors in raphe projection areas has not been as thoroughly investigated, although it is presumed that a reduction in cell firing should curtail these targeted effects. The goal of the present studies was to assess the degree of postsynaptic receptor activation obtained with fluoxetine and relate it to cell body autoreceptor activation and the level of extracellular 5-HT obtained at the nerve endings. Changes in firing rates of CA3 hippocampal neurons following systemic administration of fluoxetine were used as a marker of SSRI-dependent changes in postsynaptic 5-HT receptor activation; monitoring of unit activity of neurons in the dorsal raphe nucleus served to gauge the degree of serotonergic input in a parallel series of animals. Estimates of the corresponding changes in terminal 5-HT release in the CA3 region were analyzed by microdialysis. The results indicate that fluoxetine inhibits hippocampal cell firing in a dose-dependent manner (ED(50) = 4.4 mg/kg i.v.) and one sensitive to pretreatment with the 5-HT(1A) antagonist WAY-100,635. Within the same dose range, increases in hippocampal extracellular 5-HT approaching 300% above basal levels were achieved. Both the changes in hippocampal neuronal activity and extracellular 5-HT are evident at doses of fluoxetine in excess of that required to inhibit dorsal raphe cell firing (ED(50) = 1.1 mg/kg i.v.). Taken together, these data suggest that increases in extracellular levels of 5-HT on the order of that observed are sufficient to alter postsynaptic excitability and that this accumulation of synaptic 5-HT and the subsequent activation of postsynaptic 5-HT(1A) receptors are achievable despite loss of firing-dependent 5-HT release.  相似文献   

6.
BACKGROUND: (+/-)Pindolol is a beta-adrenergic/5-HT1A receptor antagonist used in combination with certain antidepressant drugs to accelerate the onset of the antidepressive response. METHODS: The aim of the present study was to assess, using an in vivo electrophysiologic paradigm, the effect of (+/-)pindolol on the spontaneous firing activity of rat dorsal raphe serotonin (5-HT) and locus coeruleus noradrenaline (NA) neurons. RESULTS: (+/-)Pindolol did not modify the firing activity of dorsal raphe 5-HT neurons at low doses (10 and 200 micrograms/kg, i.v.), but it prevented the suppressant effect of the 5-HT autoreceptor agonist lysergic acid diethylamide (LSD, 10 micrograms/kg, i.v.) but not that of the 5-HT1A receptor 8-hydroxy-N,N-dipropyl-aminotetralin (8-OHDPAT, 5 micrograms/kg, i.v.). At a higher dose (500 micrograms/kg, i.v.), (+/-)pindolol decreased 5-HT neuronal firing and this effect was reversed by the selective 5-HT1A receptor antagonist WAY 100635 (100 micrograms/kg, i.v.), suggesting that it could act as a partial 5-HT1A autoreceptor agonist. In the locus coeruleus, the high dose of (+/-)pindolol decreased the firing activity of NA neurons and this effect was reversed by the 5-HT2A receptor antagonist MDL 100907 (200 micrograms/kg, i.v.). Finally, both a lesion of NA neurons and the administration of MDL 100907 prevented the suppressant effect of (+/-)pindolol on the firing of 5-HT neurons. CONCLUSIONS: It is suggested that, at low doses, (+/-)pindolol acts as a somatodendritic 5-HT1A autoreceptor antagonist whereas at a higher dose, it decreases the tonic excitatory input from NA neurons to 5-HT neurons.  相似文献   

7.
In chloralose/urethane anaesthetised rats the effect of intrathecal (i.t.) administration of 5-hydroxytryptamine (5-HT) on activity in sympathetic nerves to the kidney was studied. Intrathecal 5-HT (20-100 micrograms, 10 microliter) increased activity in renal nerves (mean change for 50 micrograms dose 157% +/- 39). At higher doses of 5-HT the initial excitatory response was followed by inhibition 64% +/- 15. Intrathecally, alpha methyl 5-HT (10-400 micrograms) mimicked only the inhibitory action of 5-HT in a dose-dependent manner. These inhibitions were completely antagonised by i.t. ketanserin (25-100 micrograms). Intrathecal 2 methyl 5-HT (10-200 micrograms) had little effect on renal nerve activity. Intrathecal 5 carboxyamidotryptamine (10-200 micrograms) had a more powerful excitatory action on renal nerve activity than did 5-HT. Intrathecally, 8 OH-DPAT (10-200 micrograms) was without effect. Neither the inhibitory action of 5-HT or the excitatory action was affected by i.t. ICS 205 930 (1-10 micrograms) or MDL 72222 (200 micrograms). It was concluded that the actions of 5-HT were within the spinal cord and that the inhibitory effect on sympathetic activity is mediated via a 5-HT2-like receptor whilst the receptors involved in the excitatory action of 5-HT are not M- or 5-HT3-like but appear to be more like the 5-HT1 subtype.  相似文献   

8.
In the rat, intravenous (i.v.) serotonin (5-HT) is a noxious stimulus which produces distinct vagal afferent-mediated pseudoaffective responses, a passive avoidance behavior, a vagal afferent-mediated inhibition of the nociceptive tail-flick (TF) reflex and a complex triad of cardiovascular responses. In the present study, we have used a variety of 5-HT receptor antagonists to characterize the receptor subtype(s) in the rat that mediate (1) inhibition of the TF reflex and (2) the cardiovascular responses produced by i.v. 5-HT. 5-HT produced a dose-dependent (3-72 micrograms/kg, i.v.) inhibition of the TF reflex (ED50 = 15.3 +/- 0.7 micrograms/kg). Following administration of the 5-HT2 receptor-selective antagonists ketanserin (50-250 micrograms/kg, i.v.) or xylamidine (10-100 micrograms/kg, i.v.), or the 5-HT3 receptor-selective antagonists ICS 205-930 (50-250 micrograms/kg, i.v.) or MDL 72222 (25-250 micrograms/kg, i.v.), there appeared to be a parallel shift of the 5-HT dose-response curve to the right. Following co-administration of xylamidine (50 micrograms/kg, i.v.) with ICS 205-930 (100 micrograms/kg, i.v.), the 5-HT-induced inhibition of the TF reflex was completely abolished at all doses of 5-HT tested (3-288 micrograms/kg, i.v.). In contrast, administration of the centrally acting 5-HT2 receptor-selective antagonist LY 53857 (10-100 micrograms/kg, i.v.) or the non-specific receptor antagonist methysergide (25-500 micrograms/kg, i.v.) resulted in a dose-dependent, but not parallel shift of the 5-HT dose-response curve to the right. The maximal doses of LY 53857 and methysergide tested (250 micrograms/kg and 500 micrograms/kg, respectively) completely abolished the effects of 5-HT (3-288 micrograms/kg, i.v.). Administration of the alpha 1-adrenoceptor antagonist prazosin (25-100 micrograms/kg, i.v.) failed to alter the 5-HT dose-response curve, indicating that the effects of ketanserin were due to blockage of 5-HT2 receptors rather than alpha 1 receptors. Administration of each of the antagonists also produced marked, but selective effects on components of the complex cardiovascular response to i.v. 5-HT. Each of the 5-HT3 receptor selective antagonists (ICS 205-930 or MDL 72222) produced a dose-dependent attenuation of the Bezold-Jarisch reflex-mediated hypotension and bradycardia, and each of the 5-HT2 receptor selective antagonists (xylamidine, ketanserin or LY 53857) produced a dose-dependent attenuation of the pressor response. The non-specific 5-HT receptor antagonist methysergide produced a dose-dependent attenuation of the 5-HT-induced pressor response.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We investigated, using single-unit recordings in chloral hydrate-anaesthetized rats, the role of serotonin 4 (5-HT4) receptors in the control of dorsal raphé nucleus (DRN) 5-HT neuron activity. About one-half (36) of the 76 neurons recorded were affected by either the preferential 5-HT4 agonist cisapride (500 and 1000 micro g/kg, i.v.) or the selective 5-HT4 antagonist, GR 125487 (200- 2000 micro g/kg, i.v.). Responding neurons displayed a significantly higher mean basal firing rate (1.93 +/- 0.1 Hz) than non-responders (1.31 +/- 0.1 Hz). The firing rate of responding 5-HT neurons was enhanced dose-dependently by cisapride (+47 and +94% at 500 and 1000 micro g/kg, respectively), an effect abolished by GR 125487 (500 micro g/kg) and reduced by the 5-HT4 antagonist, SDZ 205557 (500 micro g/kg, i.v). Conversely, GR 125487 induced a dose-dependent inhibition of responders activity, which was almost completely suppressed at the dose of 2000 micro g/kg. In a separate set of experiments, the selective 5-HT4 agonist, prucalopride (500 micro g/kg, i.v), increased the firing activity (+35%) of 5-HT neurons displaying a high basal firing rate; subsequent injection of GR 125487 (500 micro g/kg, i.v.) suppressed this effect. These results indicate that 5-HT4 receptors exert both a tonic and a phasic, positive, frequency-related control on DRN 5-HT neuronal activity. The existence of such a control might open new avenues for therapeutic research in the antidepressant field.  相似文献   

10.
Reboxetine is a non-tricyclic antidepressant with selective noradrenergic (NA) reuptake-blocking effects. The effects of acute and sustained administration of reboxetine, on the firing activity of locus coeruleus NA neurons and dorsal raphe 5-HT neurons, were assessed using in vivo extracellular unitary recording in rats anaesthetized with chloral hydrate. Reboxetine (0.1-1.25 mg/kg, i.v.) dose-dependently decreased the firing activity of NA neurons (ED50 = 480 +/- 14 microg/kg). A 2-day treatment with reboxetine at 1.25, 2.5, 5, or 10 mg/kg per day (using osmotic minipumps implanted subcutaneously) produced significant decreases of 52%, 68%, 81%, and 83%, respectively, of NA firing activity. When the reboxetine treatment (2.5 mg/kg per day) duration was prolonged to 7 days, a 66% decrease in NA firing activity was observed which further decreased to 80% after 21 days of treatment. In contrast, 5-HT neuron firing rate remained unaltered following short- and long-term reboxetine treatments. The suppressant effect of the alpha2-adrenoceptor agonist clonidine on the firing activity of NA neurons was unchanged in long-term reboxetine-treated rats, but its effect on the firing activity of 5-HT neurons was blunted. The enhancement of NA firing activity by the 5-HT1A agonist 8-OH-DPAT was abolished in long-term reboxetine-treated rats, whereas, the inhibitory effect of the 5-HT2 agonist DOI was attenuated by about three-fold. In conclusion, sustained NA reuptake blockade by reboxetine lead to profound alterations in the function of NA neurons and of 5-HT receptors modulating their firing activity.  相似文献   

11.
The present experiments were undertaken to determine, using Laser Doppler flowmetry, if elimination of efferent constrictor mechanisms would unmask cutaneous vasodilator responses following preganglionic sympathetic nerve stimulation in the forepaw of anesthetized cats. We also addressed the question of a potential causal relationship between neurally evoked vasodilator and sudomotor responses. Three separate anti-adrenergic regimens were utilized: (1) acute guanethidine administration (1-2 mg/kg); (2) chronic monoamine depletion with reserpine (5 mg/kg) and alpha-methyl-para-tyrosine (2 x 300 mg/kg); and (3) alpha-adrenoceptor blockade with prazosin (300 micrograms/kg) and yohimbine (0.5 mg/kg). Guanethidine treatment produced a significant depression of basal cutaneous blood flow whereas alpha-adrenoceptor blockade did not. In all three groups, stimulation of the preganglionic thoracic sympathetic nerve trunk produced intensity-dependent increases of digital skin blood flow along with near-maximal sympathetic-cholinergic sudomotor (electrodermal) responses recorded simultaneously from the same paw. Vasodilator responses were not altered by intravenous propranolol (1 mg/kg) or atropine (1 mg/kg); however, evoked sudomotor responses were totally blocked by atropine. Low doses (1.5 mg/kg i.v.) of hexamethonium selectively abolished the cutaneous vasodilator responses but not concomitantly evoked sudomotor responses. These results demonstrate, using direct measurements of blood flow, that cutaneous digital vasodilation can be measured in cats following removal of vasoconstrictor mechanisms either pre- or postjunctionally. Neither muscarinic nor beta-adrenoceptor mechanisms appear to be involved. These experiments also suggest that cutaneous vasodilation is not a consequence of concomitant sudomotor activation.  相似文献   

12.
Robert B. McCall   《Brain research》1984,311(1):131-139
The cardiovascular role of serotonin (5-HT) containing neurons in the midline medullary raphe nuclei was studied in anesthetized cats. High frequency electrical stimulation of nucleus (n.) raphe (r.) pallidus, n.r. obscurus and n.r. magnus produced both pressor and depressor responses. Single shock stimulation of pressor sites produced an excitatory evoked potential of sympathetic nervous discharge (SND) recorded from the inferior cardiac nerve. Conversely, single shock stimulation of vasodepressor sites resulted in a computer-summed inhibition of SND. The mean conduction velocity in the sympathoexcitatory medullo-spinal pathway to sympathetic preganglionic neurons was calculated to be 1.24 m/s. The 5-HT antagonists methysergide and metergoline blocked the excitation of sympathetic activity evoked from medullary raphe nuclei. In contrast, these agents failed to alter the sympathoexcitatory response to electrical stimulation of lateral medulla pressor sites or the sympathoinhibitory response elicited by raphe stimulation. The 5-HT uptake inhibitor chlorimipramine increased the duration of the sympathoexcitatory response evoked from the raphe but not from the lateral medulla. Finally, mid-collicular transection did not effect the excitation of sympathetic activity elicited by stimulation of medullary raphe nuclei. These data suggest that serotonergic neurons in the midline medullary raphe nuclei provide an excitatory input to sympathetic neurons in the spinal cord.  相似文献   

13.
To further evaluate the serotonin (5-HT) neurotoxic potential of substituted amphetamines, we used tritiated proline to examine anterograde transport along ascending axonal projections originating in the rostral raphe nuclei of animals treated 3 weeks previously with (+/-)fenfluramine (FEN, 10 mg/kg, every 2 h x 4 injections; i.p.) or (+/-)3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, twice daily for 4 days; s.c.). The documented 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT, 75 microg; ICV; 30 min after pretreatment with pargyline, 50 mg/kg; i.p., and desipramine 25 mg/kg; i.p.), served as a positive control. Along with anterograde axonal transport, we measured two 5-HT axonal markers, 5-HT and 5-hydroxyindoleacetic acid (5-HIAA). Prior treatment with FEN or MDMA led to marked reductions in anterograde transport of labeled material to various forebrain regions known to receive 5-HT innervation. These reductions were associated with lasting decrements in 5-HT axonal markers. In general, decreases in axonal transport were less pronounced than those in 5-HT and 5-HIAA. However, identical changes were observed after 5,7-DHT. These results further indicate that FEN and MDMA, like 5,7-DHT, are 5-HT neurotoxins.  相似文献   

14.
Hippocampal serotonin (5-hydroxytryptamine, 5-HT) synthesis, as determined by the accumulation of 5-hydroxytryptophan (5-HTP) following inhibition of L-aromatic amino acid decarboxylase with NSD 1015, was inhibited by systemic administration of the selective serotonin reuptake inhibitors fluoxetine (10 mg/kg i.p.) and paroxetine (3 mg/kg i.p.). Pretreatment of rats with the selective 5-HT1A receptor antagonist WAY 100635 for a period of 7 days using subcutaneously implanted osmotic minipumps (1 mg/kg/day) was sufficient to block the inhibition of 5-HT synthesis following the 5-HT 1A receptor agonist 8-OH-DPAT (0.3 mg/kg s.c.), but failed to inhibit the decrease of hippocampal 5-HT synthesis by fluoxetine (10 mg/kg i.p.) or paroxetine (3 mg/kg i.p.). Similarly, pretreatment of rats with GR 127935 (5 mg/kg i.p.), an antagonist with high affinity for 5-HT1B/D receptors, blocked the reduction of hippocampal 5-HT synthesis following the 5-HT receptor agonist TFMPP (3 mg/kg s.c.) without affecting the reduction of hippocampal 5-HT synthesis by either fluoxetine or paroxetine. In contrast, pretreatment with WAY 100635 (1 mg/kg/day, for 7 days s.c. in osmotic minipumps) in combination with GR 127935 (5 mg/kg i.p.) significantly attenuated the decrease of hippocampal 5-HT synthesis by both fluoxetine and paroxetine. These results indicate that both 5-HT1A and 5-HT1B/1D receptors, which function in the rat as inhibitory somatodendritic and nerve terminal autoreceptors, independently regulate hippocampal 5-HT synthesis and must be simultaneously blocked to prevent the inhibition of 5-HT synthesis by selective serotonin reuptake inhibitors which increase 5-HT availability at both nerve terminals in hippocampus and 5-HT cell bodies in the raphe nuclei.  相似文献   

15.
The dorsal and median raphe 5-HT neurons give rise to projections that differ in axon morphology and in vulnerability to certain amphetamine derivatives. The present study was undertaken to determine if these two 5-HT systems possess different functional properties. To this end, we studied the effects of selective 5-HT1A or 5-HT1A/5-HT1B receptor agonists and of p-chloroamphetamine on extracellular levels of indoleamines, as measured by differential pulse voltammetry with extracellular levels of indoleamines, as measured by differential pulse voltammetry with electrochemically pretreated carbon fiber electrodes, in cell body and nerve terminal regions of these subsets of 5-HT neurons in the rat brain. The selective 5-HT1A agonist 8-OH-DPAT produced a gradual decrease in the height of the 300 mV oxidation peak in the dorsal raphe and in the frontal cortex, reaching a maximum of 60% 3 h after the i.v. injection of 30 micrograms/kg. However, the same dose of 8-OH-DPAT was ineffective in the median raphe and in the dentate gyrus that receives its 5-HT innervation exclusively from the median raphe. A higher dose of 8-OH-DPAT (150 micrograms/kg, i.v.) produced a 60% decrease in the height of the 300 mV oxidation peak in the median raphe, whereas only a 20% decrease was obtained in the dentate gyrus. In contrast, the non-selective 5-HT1 agonist RU 24,969 (10 mg/kg, i.p.) caused a 70% reduction of the 300 mV peak height in both the dorsal and median raphe and a 50% decrease in both the frontal cortex and the dentate gyrus. Moreover, although a high dose of 8-OH-DPAT (150 micrograms/kg, i.v.) given alone reduced by 20% the amplitude of the oxidative peak in the dentate gyrus, subsequent administration of RU 24,969 (10 mg/kg, i.p.) caused a further 30% diminution of the oxidative peak height. The greater responsiveness of dorsal as compared to median raphe 5-HT systems to 5-HT1A receptor agonists was confirmed in two further series of experiments. First, the microiontophoretic application of 8-OH-DPAT directly onto 5-HT neurons was three times more potent in suppressing the firing rate of dorsal raphe 5-HT neurons than that of their median raphe congeners. Second, 8-OH-DPAT and buspirone were ten and four times, respectively, more potent in decreasing 5-HT synthesis in the frontal cortex than in the hippocampus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In the present study, we investigated the effects of various serotonin (5-HT) antagonists on 5-HT's action on medial prefrontal cortical cells (mPFc) using the techniques of single cell recording and microiontophoresis. The microiontophoretic application of 5-HT (10-80 nA) produced a current-dependent suppression of mPFc cell firing and this effect was blocked by the selective 5-HT3 receptor antagonists (+/-)-zacopride, ICS 205930 and granisetron at currents of 5-20 nA. Furthermore, the intravenous (i.v.) administration of (+/-)-zacopride (5-50 micrograms/kg) markedly attenuates the suppressive action of 5-HT on mPFc cell firing. In contrast, the microiontophoresis of 5-HT1 and 5-HT2 receptor antagonists such as (+/-)-pindolol, spiperone, metergoline, and ritanserin (10-20 nA) failed to block 5-HT's effect. In fact, in some cells, spiperone and ritanserin potentiated 5-HT's action and prolonged neuronal recovery. In addition, the intravenous administration of either ritanserin (5-2,000 micrograms/kg) or metergoline (4-2,400 micrograms/kg) failed to alter 5-HT's action. The electrical stimulation of the caudal linear raphe nucleus (CLi) suppressed the spontaneous activity of 83% of the mPFc cells tested by 45 +/- 2%. This suppression was significantly attenuated by the iontophoresis of granisetron (2.5-5 nA) but not by the 5-HT2 and 5-HT1C receptor antagonist ritanserin or the relatively selective 5-HT2 receptor antagonist (+)-MDL 11,939 (10-40 nA). However, the i.v. administration of ritanserin (0.5-1.5 mg/kg) or S-zacopride (0.1 mg/kg) significantly blocked the suppression of mPFc cell firing produced by CLi stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
  • 1.1. The effects of risperidone on brain 5-hydroxytryptamine (5-HT) neuronal activity were investigated using microdialysis in the frontal cortex (FC) or the dorsal raphe nucleus (DRN) as well as single cell recording in the DRN.
  • 2.2. Systemic administration of risperidone (0.6 and 2.0 mg/kg s.c.) dose-dependently increased 5-HT output in both the FC and the DRN.
  • 3.3. Local cortical administration of both risperidone or idazoxan enhanced the 5-HT efflux in the FC, whereas local raphe administration of risperidone but not idazoxan increased the output of 5-HT in the DRN.
  • 4.4. Systemic administration of risperidone (200 μg/kg i.v.) or the selective α1 adrenoceptor antagonist prazosin (400 μg/kg i.v.) decreased, whereas selective α2 adrenoceptor antagonist idazoxan (20 μg/kg i.v.) increased the 5-HT cell firing in the DRN.
  • 5.5. Pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 μg/kg i.v.) effectively antagonized the inhibition of 5-HT cells induced by risperidone, but failed to prevent the prazosin-induced decrease in 5-HT cell firing in the DRN.
  • 6.6. The inhibitory effect of risperidone on 5-HT cell firing in the DRN was significantly attenuated in rats pretreated with the 5-HT depletor PCPA (p-chlorophenylalanine; 300 mg/kg/day i.p. for 3 consecutive days) in comparison with drug naive animals.
  • 7.7. Consequently, the risperidone-induced increase in 5-HT output in the FC may be related to its α2 adrenoceptor antagonistic action, an effect probably executed at the nerve terminal level, whereas the reduction in 5-HT cell firing by risperidone appears to be associated with increased availability of 5-HT in the somatodendritic region of the neurones leading to an enhanced 5-HT1A autoreceptor activation and, in turn, to inhibition of cell firing.
  相似文献   

18.
K Taguchi  Y Suzuki 《Brain research》1992,583(1-2):150-154
The effects of cutaneous noxious heating and of systemic morphine on serotonergic activity in the spinal cord were examined in anesthetized rats. An oxidation current of 5-hydroxyindole signal was seen at 280-300 mV with differential normal pulse voltammetry. Noxious heat stimuli produced a mean signal increase over control values of 15.5 +/- 3.4% at 52 degrees C, and 7.2 +/- 5.5% at 45 degrees C. These increases lasted for 5-10 min. Non-noxious stimuli (37 degrees C) did not affect the 5-hydroxyindole signal. Morphine (0.5, 2.0 and 5.0 mg/kg, i.p.) in the absence of cutaneous stimulation did not change the signal significantly. Systemic morphine alone did not significantly modify the 5-hydroxytryptamine (5-HT) metabolism, as observed in in vivo voltammetry, in the spinal cord of anesthetized rat. However, a low dose of morphine (0.5 mg/kg, i.p.) attenuated the increase in the signal modified by noxious stimuli, and high doses (2.0 or 5.0 mg/kg, i.p.) enhanced it. Both effects of morphine were antagonized by naloxone (0.5 mg/kg, i.v.). It is likely that morphine with noxious stimuli modify the sensitivity of serotonergic descending inhibitory system. It is concluded that noxious heating of the skin increases the 5-HT metabolism in the spinal cord of anesthetized rats and that systemic administration of morphine modulates this 5-HT metabolism.  相似文献   

19.
The possibility that the putative transmitter 5-hydroxytryptamine (5-HT) is involved in the mediation of long latency to onset raphe-spinal inhibition of sympathetic preganglionic neurones was investigated in anaesthetized cats by stimulating sites located in nucleus raphe pallidus and obscurus and recording sympathetic discharge in T3 or T10 white rami evoked either reflexively or by intraspinal stimulation at cervical level. Several putative 5-HT anttagonists were administered intravenously (i.V.) or topically to the spinal cord. In 7 cats lysergic acid diethylamide (LSD) in a dose range 25–50 μg/kg i.v. or 0.6 μg topically, reversibly reduced the raphe spinal inhibition by 40–100%. Topical application was more effective than i.v. administration. In 5 cats stimulating within the ventromedial reticular formation at sites unlikely to involved 5-HT neurons produced a short latency to onset inhibition which was unaffected by LSD. Methysergide, cinanserin and cyproheptadine depressed sympathetic discharge in the absence of brain stimulation in cats with CNS intact and in unanaesthetized decerebrate spinal cats. The results are discussed in the light of the known actions of the putative 5-HT antagonists.  相似文献   

20.
YM992 is a selective serotonin (5-HT) reuptake inhibitor and a 5-HT(2A) antagonist with potential antidepressant activity. As expected from a 5-HT reuptake inhibitor, which induces an accumulation of 5-HT in the dorsal raphe, YM992 inhibited the firing activity of these 5-HT neurons (ED50: 2.0+/-0.2 mg/kg, i.v.). This effect was reversed by the 5-HT(1A) antagonist WAY 100635. YM992 also dose-dependently prolonged the time for CA3 neurons to recover 50% of their firing rate following microiontophoretic applications of 5-HT, a reliable index of the function of the 5-HT reuptake carrier. In a second series of experiments, the adaptative properties of 5-HT neurons were examined during sustained administration of YM992 (20 mg/kg/day, s.c., delivered by osmotic minipumps) after 2 days of treatment. YM992 decreased by more than 60% the firing activity of the 5-HT neurons. There was a partial recovery of firing after 7 days and a complete one after 14 days of treatment in the presence of the minipump still delivering the drug. In a third series of experiments, the sensitivity of pre- and postsynaptic 5-HT(1A) receptors in the dorsal raphe and the dorsal hippocampus were assessed. The results showed that YM992 attenuated the inhibitory effect of intravenous administration of LSD and the 5-HT(1A) agonist 8-OH-DPAT on the firing activity of 5-HT neurons. As did the selective 5-HT reuptake inhibitor fluvoxamine, YM992 markedly increased the effectiveness of the electrical stimulation of ascending 5-HT fibres on firing activity of the postsynaptic hippocampus pyramidal neurons. This enhancement of 5-HT neurotransmission by YM992 was attributable to a desensitization of the terminal 5-HT(1B) autoreceptors since the postsynaptic 5-HT(1A) receptors in the hippocampus remained normosensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号