首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞衰老的关键特征是经长期正常生长后停止生长,并伴随着一系列功能上和形态学上的变化,但仍保持代谢功能.根据不同的诱导机制,细胞衰老分为复制衰老和应激诱导衰老两类.随着细胞衰老的深入研究,产生了多种学说,其中自由基学说、端粒学说研究得较为深入.p16INK4a/Rb,p19ARF/p53/p21Cipl是引发细胞衰老的两条重要通路,它们相互作用,但当所涉及的关键调节因子发生突变时,细胞将延缓衰老或绕过衰老程序继续增殖.  相似文献   

2.
The INK4a-ARF locus encodes 2 separate proteins through differential splicing of alternative first exons to produce p16INK4a (exon 1alpha) and p14ARF (exon 1beta) products in human cells. The p16INK4a protein inhibits the cyclin D-dependent kinases (CDK) that control the phosphorylation of the Rb protein and cell proliferation. The p14ARF gene product can complex with and sequester the MDM2 protein within the nucleus, thus modulating the activity of the p53 protein. Loss of p16INK4a expression would disrupt the retinoblastoma (Rb)/p16INK4a/cyclin D-dependent kinase (CDK4) pathway, whereas loss of p14ARF expression would inactivate both the Rb and p53/ MDM2/p14ARF pathways through MDM2, which can complex with either Rb or p53. Loss of the p16INK4a gene on 9p21 has been documented in a wide range of human tumors, including one third of glioblastomas. However, in tumors showing homozygous loss of exon 2 of the p16INK4a gene, loss of exon 1beta of the p14ARF gene has not been established. In this study, we have assessed deletion of the p14ARF gene in 29 pediatric and 107 adult high-grade astrocytomas and 9 glioma cell lines, using multiplex PCR analysis for exon 1beta. We found homozygous deletions for exon 1alpha and exon 1beta in 3 of 29 (10%) of the pediatric cases (2 grade III, 1 grade IV), 25 of 107 (23%) of the adult cases (6 grade III and 19 grade IV), and 8 of 9 (89%) of the glioma cell lines. Therefore, loss of the INK4a-ARF locus in high-grade astrocytomas may contribute to the highly malignant behavior and treatment resistance of these tumors through elimination of multiple checkpoint cell cycle control proteins.  相似文献   

3.
To elucidate the role of p53/p16(INK4a)/RB1 pathways in prostate carcinogenesis, we analyzed the p14(ARF), p16(INK4a), RB1, p21(Waf1), p27(Kip1), PTEN, p73, p53, and MDM2 gene status of multiple areas within 16 histologically heterogeneous prostate carcinomas using methylation-specific polymerase chain reaction, differential polymerase chain reaction, and immunohistochemistry. All focal areas examined had Gleason scores ranging from 1 to 5. Methylation of either PTEN or p73 was undetected in any sample, whereas expression of MDM2 seemed to be an independent event within small foci of 4 of 16 tumors. Loss of p14(ARF), p16(INK4a), RB1, and p27(Kip1) expression correlated with homozygous deletion or promoter hypermethylation. One carcinoma showed co-deletion of both p14(ARF) and p16(INK4a) in two of five areas examined; two areas within another tumor demonstrated concurrent hypermethylation of the promoter regions of the same genes. Focal hypermethylation of RB1, p21(Waf1), and p27(Kip1) was detected within two, two, and three tumors, respectively. These findings indicate that both genetic and epigenetic events occur independently in intratumor foci and further suggest hypermethylation-induced loss of gene function may be as critical as specific genetic mutations in prostate carcinogenesis.  相似文献   

4.
In vitro expansion of chondrocytes for tissue-engineering applications is limited by forms of growth arrest known as quiescence and replicative senescence. At the molecular level cyclin-dependent kinase inhibitors (CDKIs) are involved in mediating growth arrest in the G1 phase of the cell cycle. Using ribonuclease protection assays and immunocytochemical staining methods, we quantitatively analyzed expression profiles of G1 cell cycle inhibitors at the mRNA and protein levels. These inhibitors included the CDKIs of the CIP/KIP family (p21CIP1 p27KIP1, and p57KIP2) and the INK4 family (p15INK4b, p16INK4a, p18INK4c, and p19INK4d) as well as the retinoblastoma protein-family (pRb, p107, and p130) and the tumor suppressor p53. Analysis was carried out in proliferating, quiescent, and senescent states of primary cultures of adult human nasoseptal chondrocytes. The most pronounced effect (p < 0.0001) between cultures in proliferation and cultures in growth arrest was an increased expression of the CDKIs p57KIP2 and p15INK4b for quiescent growth arrest, and of p16INK4a, p15INK4b, and p57KIP2 for senescent growth arrest. Thus, these cell cycle inhibitors represent potential candidates for selective intervention to promote cellular multiplication of chondrocytes undergoing in vitro expansion for tissue-engineering applications. Possible methods of modulation include the targeted elimination of specifically identified cell cycle inhibitors by antisense technologies.  相似文献   

5.
The INK4a/ARF locus on human chromosome band 9p21 carries two tumor suppressor genes, TP14ARF and TP16INK4a, and both are frequently inactivated in nonsmall cell lung carcinoma (NSCLC. TP14ARF and TP16INK4a play important roles in the TP53 and RB tumor suppressor pathways, respectively. To elucidate the genetic and epigenetic status of the TP14ARF and TP16INK4a genes in NSCLC, we comprehensively analyzed mutations, homozygous deletions, methylations in the CpG regions, and expression of the TP14ARF and TP16INK4a genes in 31 NSCLC cell lines. TP16INK4a (84%) was inactivated more frequently than TP14ARF (55%). Moreover, p16INK4a was inactivated in all 17 cell lines with TP14ARF inactivation. Three cell lines with base substitutions in exon 2 resulted in missense mutations of TP16INK4a but silent mutations of TP14ARF. There was a case of mutation in exon 1alpha unique to TP16INK4a, but not a mutation in exon 1beta unique to TP14ARF. The TP16INK4a gene was methylated in 6 cell lines, but the TP14ARF gene was not methylated in any cell line. Unlike a mutually exclusive relationship for inactivation between TP16INK4a and RB, TP14ARF and TP53 did not show such a relationship (P = 0.61, Fisher exact test). Thus, the present results indicate the TP16INK4a gene to be the primary target of INK4a/ARF locus alterations. Transient TP14ARF expression induced G1 arrest in the cells with wild-type TP53, but not in the cells with mutated TP53. Thus, the pathogenetic and biologic significance of TP14ARF inactivation is different between NSCLC cells with wild-type TP53 and those with mutated TP53.  相似文献   

6.
Senescence and apoptosis are two key mechanisms that protect against cancer development. Many cell cycle regulators, such as p14(ARF), p15(INK4b) and p16(INK4a), are important in G1 cell cycle arrest and oncogene-induced senescence. The bcl-2 protein is one of the key components that control apoptosis, while the p53 protein plays key roles in both mechanisms. The genes of these key regulator proteins are often mutated or deleted in various malignancies. It is unknown how senescence and apoptosis are regulated in one of the most common tumors of the female genital tract, cervical squamous cell carcinoma (SCC). In this study the, expression of senescence, apoptosis and proliferation markers in normal cervical epithelium, cervical intraepithelial neoplasia (CIN) and SCC are characterized via immunohistochemical staining for p14(ARF), p15(INK4b), p16(INK4a), bcl-2, p53 and Ki-67 in tissue microarray blocks containing 20 samples each of normal cervix, moderate-to-severe cervical dysplasia (CIN II-III) and invasive SCC. Samples are derived from 60 total cases of cervical biopsies and cervical conizations. Results showed that the proliferation marker, Ki-67, is markedly increased, and the senescence markers, p15(INK4b), p16(INK4a) and p14(ARF) are overexpressed in both dysplasia and carcinoma. P53 immunostain is negative in all normal cervical tissue, and positive in dysplasia and carcinoma. Although the expression of bcl-2 is increased in dysplasia, this marker is negative in approximately half of SCC cases. These results suggest that some senescence pathways are activated and are still maintained in cervical dysplasia and carcinoma. However proliferation is increased and carcinogenesis is not thwarted, leading to eventual development of cervical cancer. Other mechanisms, such as those that account for the apparent overexpression of p53 and paradoxical loss of bcl-2 expression in some SCC cases, as well as additional senescence and apoptotic pathways, may play key roles carcinogenesis of cervical SCC.  相似文献   

7.
Two different proteins, p16(INK4a) and p14(ARF), encoded by the INK4a/ARF locus play important roles in the RB and p53 pathways, respectively. This study was performed to determine genetic and epigenetic alterations in the INK4a/ARF locus and their effects on the growth of osteosarcoma. Among six cell lines examined, both p16(INK4a) and p14(ARF) exons were homozygously deleted in two cell lines, MG63 and HOS, and both p16(INK4a) and p14(ARF) promoters were methylated in one cell line, U2OS. Wild-type mRNA and proteins for p16(INK4a) and p14(ARF) were expressed in three other cell lines, SaOS2, HuO9, and G292. Transfection studies were performed using two cell lines, U2OS and MG63. Both the RB and p53 genes were wild types in U2OS, whereas p53 but not RB was mutated in MG63. Both p16(INK4a) and p14(ARF) suppressed the growth of U2OS, whereas p16(INK4a) but not p14(ARF) suppressed the growth of MG63. p53 only did not suppress the growth of MG63 either; however, coexpression of p14(ARF) with p53 increased the fraction of the G0/G1 phase in MG63 cells. The data presented here demonstrate the importance of genetic and epigenetic alterations in the INK4a/ARF locus for the growth of osteosarcoma and thus will be useful to further understand the biologic behavior of osteosarcoma in association with the defects in the p53 and RB pathways.  相似文献   

8.
Purpose: To investigate the expression of p15INK4b, p16INK4a and p21Waf1/Cip1 in specimens from cases of normal cervical epithelium (NCE), cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma (SCC), and to evaluate whether there is evidence implicating oncogene-induced senescence (OIS) in cervical squamous cell cancer development. Methods: The immunohistochemical expression of p15INK4b, p16INK4a and p21Waf1/Cip1 were investigated in formalin-fixed paraffin-embedded specimens from 19 NCE, 51 CIN and 21 SCC cases, respectively. Comparisons among different groups for each marker were performed with Chi-square test. Results: The expression of p15INK4b, p16INK4a and p21Waf1/Cip1 were significantly higher in both CIN and SCC compared to NCE. Furthermore, the expression of p15INK4b and p21Waf1/Cip1 was significantly higher in CIN П compared to CIN І, and these expressions were statistically higher in CIN Ш compared to CIN П, respectively. The p16INK4a expression was significantly higher in CIN Ш compared to CIN І. Conclusions: The results suggested that the senescence programs mediated by p15INK4b, p16INK4a and p21Waf1/Cip1 were activated during the stage of CIN and SCC, and demonstrated that senescence may play important role in preventing from NCE to SCC.  相似文献   

9.
Rheumatoid synovial fibroblasts (RSF) express cyclin-dependent kinase (CDK) inhibitors p16(INK4a) and p21(Cip1) when they are growth-inhibited in vitro. The induction of p16(INK4a) is characteristic of RSF and intra-articular p16(INK4a) gene therapy has been shown to suppress adjuvant arthritis (AA) of rats. The other inducible CDK inhibitor, p21(Cip1), has multiple functions depending on the cell type. They include inhibition of CDK as well as promotion of active CDK complex formation and induction of apoptosis. This study is to discern the biological effects of p21(Cip1) gene transfer into RSF and its therapeutic effects on AA. A recombinant adenovirus containing a human p21(Cip1) gene and control adenoviruses were prepared. RSF infected with these viruses were examined for their cell growth. Apoptotic cell death was evaluated by nuclear staining and DNA fragmentation analysis. In vivo gene therapy of rat AA was carried out by intra-articular injection of the viruses. Severity of the arthritis was clinically scored. The treated joints were examined histologically and proliferating cell nuclear antigens (PCNA) were detected immunohistochemically. The adenoviral p21(Cip1) gene transfer inhibited growth of RSF without inducing apoptosis. p21(Cip1) gene therapy suppressed AA clinically and histologically. The effects were comparable to p16(INK4a) gene therapy. PCNA expression was reduced in the p21(Cip1)-treated joints. The adenoviral gene transfer of p21(Cip1) ameliorated rat AA. The effect was attributable to inhibition of proliferation. Because p21(Cip1) is induced more easily by many chemicals than p16(INK4a), it also appears to be a feasible target in developing anti-rheumatic drugs.  相似文献   

10.
Aberrant cell cycle regulation in cervical carcinoma   总被引:31,自引:0,他引:31  
Carcinoma of the uterine cervix is one of the most common malignancies among women worldwide. Human papillomaviruses (HPV) have been identified as the major etiological factor in cervical carcinogenesis. However, the time lag between HPV infection and the diagnosis of cancer indicates that multiple steps, as well as multiple factors, may be necessary for the development of cervical cancer. The development and progression of cervical carcinoma have been shown to be dependent on various genetic and epigenetic events, especially alterations in the cell cycle checkpoint machinery. In mammalian cells, control of the cell cycle is regulated by the activity of cyclin-dependent kinases (CDKs) and their essential activating coenzymes, the cyclins. Generally, CDKs, cyclins, and CDK inhibitors function within several pathways, including the p16(INK4A)-cyclin D1-CDK4/6-pRb-E2F, p21(WAF1)- p27(KIP1)-cyclinE-CDK2, and p14(ARF)-MDM2-p53 pathways. The results from several studies showed aberrant regulation of several cell cycle proteins, such as cyclin D, cyclin E, p16(INK4A), p21(WAF1), and p27(KIP1), as characteristic features of HPV- infected and HPV E6/E7 oncogene-expressing cervical carcinomas and their precursors. These data suggested further that interactions of viral proteins with host cellular proteins, particularly cell cycle proteins, are involved in the activation or repression of cell cycle progression in cervical carcinogenesis.  相似文献   

11.
INK4a/ARF locus codes for two different proteins, p16(INK4a) and p14(ARF), involved in cell cycle regulation. p14(ARF) is considered an upstream regulator of p53 function. To determine the role of these genes in the pathogenesis of human non-Hodgkin's lymphomas we have analyzed exon 1beta, 1alpha, and 2 of the INK4a/ARF locus and p53 gene aberrations in 97 tumors previously characterized for p16(INK4a) alterations. p53 alterations were detected in four of 51 (8%) indolent lymphomas but in 15 of 46 (33%) aggressive tumors. Inactivation of p14(ARF) was always associated with p16(INK4a) alterations. Exon 1beta was concomitantly deleted with exon 1alpha and 2 in eight tumors. One additional lymphoblastic lymphoma showed deletion of exon 1alpha and 2 but retained exon 1beta. No mutations were detected in exon 1alpha and 1beta in any case. Two of the three mutations detected in exon 2 caused a nonsense mutation in the p16(INK4a) reading frame and a missense mutation in the ARF reading frame involving the nucleolar transport domain of the protein. The third mutation was a missense mutation in the p16(INK4a) reading frame, but it was outside the coding region of p14(ARF). Aggressive lymphomas with p14(ARF) inactivation and p53 wild type showed a significantly lower p53 protein expression than tumors with no alteration in any of these genes. In this series of tumors, inactivation of the INK4a/ARF locus mainly occurred in tumors with a wild-type p53 gene because only two lymphomas showed simultaneous aberrations in these genes. Tumors with concomitant alterations of p16(INK4a) and p14(ARF)/p53 genes seem to exhibit a worse clinical behavior than lymphomas with no alterations or isolated inactivation of any of these genes. These findings indicate that p14(ARF) genetic alterations occur in a subset of aggressive NHLs, but they are always associated with p16(INK4a) aberrations. Concomitant disruption of p16(INK4a) and p14(ARF)/p53 regulatory pathways may have a cooperative effect in the progression of these tumors.  相似文献   

12.
After a limited number of divisions, most eukaryotic cells grown in culture will undergo a terminal growth arrest called cellular senescence. This growth arrest is thought to be a consequence of progressive telomere shortening that occurs due to incomplete DNA replication of the chromosome ends. In addition, cellular senescence can also be induced by a number of environmental stresses and signaling imbalances which are independent of telomere shortening. The cyclin dependent kinase inhibitors p21 and p16(INK4a) have been shown to execute and maintain the cell cycle arrest in senescence but the nature of the signals that cause upregulation of these inhibitors in senescent cells are only now starting to be discovered. Here we will review the current literature that leads us to propose a model how independent signals activate distinct signaling pathways to regulate p21 and p16(INK4a) levels in senescent cells.  相似文献   

13.
The role of cell cycle regulatory proteins in the pathogenesis of melanoma   总被引:4,自引:0,他引:4  
The transformation of melanocytes to melanoma cells is characterised by abnormal proliferation resulting from alterations in cell cycle regulatory mechanisms. This occurs through alterations in the two major cell cycle regulatory pathways, the retinoblastoma (Rb) and p53 tumour suppressor pathways. This review summarises the current knowledge of alterations in these two pathways at G1/S transition and specifically the role of the key cell cycle regulatory proteins pRb, p16INK4a (p16), cyclin D1, p27Kip1 (p27), p53 and p21Waf1/Cip1 (p21) in the pathogenesis of melanoma. It also considers their prognostic significance. Current data indicate that alterations of cyclin kinase inhibitor (cdki) levels are implicated in the pathogenesis of melanoma and may be useful prognostic markers. However, large validation studies linked to comprehensive clinical follow up data are necessary to clarify the prognostic significance of cell cycle regulatory proteins in individual patients.  相似文献   

14.
BACKGROUND: The INK4a-ARF (CDKN2A) locus, located on chromosome 9p21, encodes two functionally distinct tumor suppressor genes, p14(ARF) and p16(INK4a), that play active roles in the p53 and Rb tumor suppressive pathways, respectively. We analyzed the alterations of p14(ARF), p16(INK4a) and p53 to study the contribution of each pathway in tumorigenesis of 29 patients with primary and consecutive (second primary) squamous cell carcinoma of the head and neck (HNSCC), with a total of 68 carcinomas. METHODS: After microdissection, the DNA of 29 primary and 39 consecutive squamous cell carcinomas was analyzed for INK4a-ARF inactivation and p53 mutation by means of DNA sequence analysis, methylation-specific polymerase chain reaction (MSP), restriction-enzyme-related polymerase chain reaction (RE-PCR), multiplex RT-PCR and immunohistochemistry. In addition, microdeletions of p14(ARF) and p16(INK4a) were assessed using differential PCR. RESULTS: Altogether inactivation (methylation, loss of heterozygosity and mutation of exon 1beta) of p14(ARF) was found in 29 of all 68 (43%) carcinomas, with a significant difference in primary [8 of 29 (28%)] relative to second primary carcinomas [21 of 39 (54%)]. Methylation of p16(INK4a) occurred in 22 of 68 (32%) carcinomas with an even distribution among primary and consecutive tumors. Only two (secondary) carcinomas showed simultaneous promoter methylation of p14(ARF) and p16 (INK4a). Mutations of p53 were found in 32 of 68 HNSCCs (44%), evenly distributed among primary and recurrent carcinomas. p14(ARF) alterations showed no relationship to p53 mutations. CONCLUSIONS: Our data indicate that the INK4a-ARF-/p53 pathway was disrupted in 58 of 68 (84%) primary and recurrent tumors, either by p53 mutations or by INK4a-ARF inactivation. p14(ARF) methylation occurred independently of p16(INK4a) alterations and showed no correlation to p53 mutations. The significantly higher rate of p14(ARF) alterations in recurrent (respective second primary) carcinomas suggests a further acquired genetic aberration during the development of the recurrent carcinomas.  相似文献   

15.
16.
The INK4a-ARF locus encodes two tumor suppressor proteins involved in cell-cycle regulation, p16INK4a and p14ARF, whose functions are inactivated in many human cancers. The aim of this study was to evaluate p14ARF and p16INK4a gene inactivation and its association with some clinocopathological parameters in colon cancer. The mutational and methylation status of the p14ARF and p16INK4a genes was analyzed in 60 primary colon carcinomas and 8 colon cancer cell lines. We have identified the first two reported mutations affecting exon 1beta of p14ARF in the HCT116 cell line and in one of the primary colon carcinomas. Both mutations occur within the N-terminal region of p14ARF, documented as important for nucleolar localization and interaction with Mdm2. Tumor-specific methylation of the p14ARF and p16INK4a genes was found in 33% and 32% of primary colon carcinomas, respectively. Methylation of the p14ARF was inversely correlated with p53 overexpression (p = 0.02). p14ARF and p16INK4a gene methylation was significantly more frequent in right-sided than in left-sided tumors (p = 0.02). Methylation of the p14ARF gene occurred more frequently in well-differentiated adenocarcinomas (p = 0.005), whereas the p16INK4a gene was more often methylated in poorly differentiated adenocarcinomas (p = 0.002). The present results underline the role of p14ARF and p16INK4a gene inactivation in the development of colon carcinoma. They suggest that the methylation profile of specific genes, in particular p14ARF and p16INK4a, might be related to biologically distinct subsets of colon carcinomas and possibly to different tumorigenic pathways.  相似文献   

17.
The aim of the present study was to elucidate genetic alterations that are critically involved in astrocytoma progression. We characterized 27 World Health Organization grade II fibrillary astrocytomas which later underwent recurrence or progression, paying specific attention to the CpG island methylation status of critical growth regulatory genes. p14(ARF) and O(6)-methylguanine-DNA methyltransferase (MGMT) hypermethylation represented frequent events (26% and 63%, respectively), which were mutually exclusive except in one case, with alternate or simultaneous methylation of these two genes occurring in 85% of our tumor series. Seventeen tumors (63%) contained TP53 mutations, which were closely related to the presence of MGMT methylation. Methylation of the p21(Waf1/Cip1), p27(Kip1) and p73 genes and homozygous deletion of the p16(INK4a), p15(INK4b) and p14(ARF) genes were not detected in any of the primary low-grade tumors. The presence of p14(ARF) methylation at first biopsy was associated with shorter patient survival, whereas the presence of MGMT methylation carried a better clinical outcome after salvage therapy. Examination of 20 cases whose histological data for recurrent tumors were available revealed that malignant progression occurred in all of the tumors with p14(ARF) methylation but less frequently (50%) in the lesions with MGMT methylation. On analysis of their respective recurrent tumors, five of six patients whose primary low-grade tumors carried p14(ARF) methylation exhibited homozygous co-deletions of the p14(ARF), p15(INK4b) and p16(INK4a) genes, which were restricted to glioblastoma as the most malignant end point. Our findings suggest that p14(ARF) hypermethylation and MGMT hypermethylation constitute distinct molecular pathways of astrocytoma progression, which could differ in biological behavior and clinical outcome.  相似文献   

18.
Cellular senescence is a program in normal cells triggered in response to various types of stress that cells experience when they are explanted into culture. In this study, functional analyses on the role of the class II polycomb complex in cellular senescence were performed using mouse embryo fibroblasts (MEFs) with a genetically deleted member of the complex, Mel18. Mel18-null MEFs undergo typical premature senescence accompanied by the up-regulation of ARF/p53/p16(INK4a) and decrease of Ring1b/Bmi1. Our results demonstrated that ARF or p53 deletion cancels the senescence in Mel18-null MEFs, and the fact that p16(INK4a) is up-regulated in double-null MEFs suggests that the ARF/p53 pathway plays a central role in stress-induced senescence. The in vivo binding of Ring1b and E2F3b to the ARF promoter decreased progressively in senescence, and Mel18 inactivation accelerated the exfoliation of Ring1b/E2F3b from the promoter sequence, indicating the cooperation of polycombs/E2F3b on ARF expression and cellular senescence. Taken together, it seems that class II polycomb proteins and E2F3b dually control cellular senescence via the ARF/p53 pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号