首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Clonidine can effectively reduce pain and/or hypersensitivity. However, the antihypersensitivity effects of clonidine topically applied in cream (CC) have not been investigated. The authors evaluated effects of topical application of CC on pain behaviors and spinal Fos-like immunoreactivity in rats with hypersensitivity.

Methods: Clonidine (30, 100, and 300 [mu]g/g) was prepared in a cream base. In rat models of neuropathic pain, inflammatory pain, and postoperative pain, the authors evaluated effects of CC (0.1 g), topically applied onto the plantar surface of the injured or uninjured paw, on thermal hyperalgesia and mechanical allodynia to von Frey filaments. The authors also evaluated effects of CC on lumbar spinal Fos-like immunoreactivity.

Results: In neuropathic rats, CC applied onto the injured paw reduced thermal hyperalgesia and mechanical allodynia dose dependently, whereas CC applied onto the uninjured paw had no effect. The antihypersensitivity effects of CC were antagonized by intraperitoneal yohimbine (10 mg/kg). Further, CC reduced Fos-like immunoreactivity in neuropathic rats. In contrast, CC in a single dose had no effects on hyperalgesia, allodynia, or Fos-like immunoreactivity in rats with inflammatory or postoperative pain. In rats with postoperative pain, CC repeatedly applied for 6 days reduced thermal hyperalgesia, but not mechanical allodynia, in the postoperative days, whereas it had no effects on hyperalgesia or allodynia in those with inflammatory pain.  相似文献   


2.
Obata H  Li X  Eisenach JC 《Anesthesiology》2004,100(5):1258-1262
BACKGROUND: Intrathecal adenosine has antinociceptive effects under conditions of hypersensitivity. T62 (2-amino-3-(4-chlorobenzoyl)-5,6,7,8-tetrahydrobenzothiophen) is an allosteric adenosine receptor modulator that enhances adenosine binding to the A1 receptor. Intrathecal T62 reduces hypersensitivity to mechanical stimuli in a rat model of neuropathic pain by a circuit that totally relies on activation of alpha2 adrenoceptors. Here, the authors tested whether this same dependence was present in the acute setting of hypersensitivity after surgery. METHODS: Intrathecal catheters were inserted in male Sprague-Dawley rats. An incision of the plantar aspect of the hind paw resulted 24 h later in hypersensitivity, as measured by applying von Frey filaments to the paw. At this time, rats received intrathecal T62, clonidine, or the combination in a blinded, isobolographic design. The effect of the alpha2-adrenoceptor antagonist idazoxan on T62 was also tested. RESULTS: Intrathecal T62 produced a dose-dependent antihypersensitivity effect, with no effect on ambulation or activity level. Clonidine also produced a dose-dependent antihypersensitivity effect. The ED40 (95% confidence interval) for T62 was 0.77 (0.63-0.91) microg, and that for clonidine was 1.23 (0.56-1.9) microg. Isobolographic analysis indicated synergism between T62 and clonidine. Intrathecal pretreatment with idazoxan only partially inhibited the antihypersensitivity effect of T62. CONCLUSIONS: Intrathecal T62 is effective for postoperative hypersensitivity. The synergy of T62 with clonidine and its only partial antagonism by idazoxan suggest that T62 does not rely entirely on activation of alpha2 adrenoceptors. These results indicate that, after surgery, T62 acts via a mechanism different from that of spinal nerve ligation, a model of chronic neuropathic pain.  相似文献   

3.
BACKGROUND: Although opioids are unsurpassed analgesics, experimental and clinical studies suggest that opioids activate N-methyl-d-aspartate pronociceptive systems leading to pain hypersensitivity and short-term tolerance. Because it is difficult in humans to differentiate pain from hyperalgesia during the postoperative period, the authors performed experimental studies with fentanyl using the rat incisional pain model for evaluating relations between hyperalgesia and short-term tolerance. Because N-methyl-d-aspartate receptor antagonists oppose both pain hypersensitivity and tolerance induced by opioids, the authors examined the capability of ketamine for improving exaggerated postoperative pain management. METHODS: During halothane anesthesia, a hind paw plantar incision was performed in rats receiving four fentanyl subcutaneous injections (100 microg/kg per injection, every 15 min). In some groups, three subcutaneous ketamine injections (10 mg/kg per injection, every 5 h) were performed in saline- or fentanyl-treated rats. One day after surgery, the analgesic effect of morphine (2 mg/kg subcutaneous) was tested. Analgesia, mechanical hyperalgesia, tactile allodynia, and pain score were assessed for several days using the paw pressure vocalization test, the von Frey application test, and the postural disequilibrium test. RESULTS: Fentanyl induced analgesia but also produced exaggerated postoperative pain as indicated by the enhancement of hyperalgesia, allodynia, and weight-bearing decrease after hind paw plantar incision. Ketamine pretreatment prevented such a fentanyl-induced enhancement of postoperative pain and improved its management by morphine. CONCLUSIONS: By opposing postoperative pain hypersensitivity and subsequent short-term tolerance induced by perioperative opioid use, ketamine not only improves exaggerated postoperative pain management but also provides better postoperative rehabilitation.  相似文献   

4.
BACKGROUND: Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats. METHODS: Continuous intrathecal infusion of meloxicam (32 or 320 mug . kg . day) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg . kg . day) on existing neuropathic pain and glial activation were examined. RESULTS: Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation. CONCLUSIONS: Spinal cyclooxygenase 2 mediates the development but not the maintenance of neuropathic pain and glial activation in rats. Peripheral cyclooxygenase 2 plays a part in the maintenance of neuropathic pain.  相似文献   

5.
Malan TP  Mata HP  Porreca F 《Anesthesiology》2002,96(5):1161-1167
BACKGROUND: This study tests the hypothesis that loss of spinal activity of gamma-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury. METHODS: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52 degrees C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus. RESULTS: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function. CONCLUSIONS: Pharmacologic inhibition of intrinsic GABA tone in normal rats resulted in tactile allodynia and thermal hyperalgesia, consistent with the hypothesis being tested. Exogenous administration of GABA agonists reversed spinal nerve ligation-induced allodynia and hyperalgesia, also consistent with this hypothesis. Isoguvacine produced specific antihyperalgesic and antiallodynic effects, whereas assessment of the effects of baclofen was complicated by motor dysfunction. Spinal GABAA agonists may provide a specific therapy for neuropathic pain.  相似文献   

6.
BACKGROUND: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model. METHODS: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg x kg(-1) x day(-1)) or intrathecal (80 microg x kg(-1) x day(-1)) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment. RESULTS: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment. CONCLUSION:: Systemic and intrathecal methylprednisolone inhibited spinal glial activation and the development and maintenance of a neuropathic pain state in a rat model of spinal nerve ligation.  相似文献   

7.

Purpose

Taurine is the most abundant amino acid in many tissues. Although taurine has been shown to be antinociceptive, in this report, our focus is to elucidate the mechanism and action site on neuropathic pain. This study used behavioural assessments to determine whether taurine attenuates neuropathic pain in the spinal cord.

Methods

Chronic constriction injury (CCI) to the sciatic nerve and streptozotocin-induced diabetic neuropathy were introduced to male Sprague-Dawley rats. We then assessed the antinociceptive effect of spinal injections of taurine (100, 200, 400, or 800 μg) using electronic von Frey, paw pressure, and plantar tests. To explore the effect of taurine on motor function, a rotarod test was performed, and in order to determine which neurotransmitter pathway is involved in taurine’s action, we examined how several antagonists of spinal pain processing receptors altered the effect of taurine 400 μg in a paw pressure test.

Results

Taurine alleviated mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia in CCI rats and suppressed mechanical allodynia and hyperalgesia in diabetic rats. Significant effects were observed at 200 μg in both models. On the other hand, taurine dose-dependently affected motor performance, and a significant effect was seen at 400 μg. The antinociceptive effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist.

Conclusion

The present study demonstrated that intrathecal administration of taurine attenuates different models of neuropathic pain, and these effects seem to be mediated by the activation of glycinergic neurotransmission. These findings suggest that taurine may be a candidate remedy for neuropathic pain.  相似文献   

8.
The role of heme oxygenase in neuropathic and incisional pain   总被引:7,自引:0,他引:7  
Heme oxygenase (HO) catalyzes the formation of free iron, biliverdin, and the second messenger molecule carbon monoxide from heme. We document a role for HO in both neuropathic and incisional pain models. For our neuropathic model, the L5 and L6 nerve roots of rats were ligated unilaterally resulting in mechanical allodynia and thermal hyperalgesia in the ipsilateral hind paws. Both changes were dose-dependently reversed by systemic administration of the HO inhibitor tin protoporphyrin (Sn-P). Likewise, a 1-cm incision made in one hind paw resulted in mechanical allodynia and thermal hyperalgesia, again reversible by using Sn-P. The 50% effective doses for Sn-P ranged from 4.0 to 6.8 micromol/kg depending on the model and nociceptive stimulus. We also observed that the blood-brain barrier impermeable HO inhibitor zinc protoporphyrin had little analgesic activity in these models when injected systemically. Using an enzymatic assay, we observed increased HO activity in lumbar spinal cord tissue from either nerve root ligated or incised animals as compared with tissue from sham-operated animals. Taken together, we interpret our results to indicate that an increase in spinal cord HO activity at least partially underlies the allodynia and hyperalgesia seen in rat models of neuropathic and incisional pain. IMPLICATIONS: Central nervous system heme oxygenase likely plays a role in nociceptive signaling in both neuropathic and incisional models of pain. Therefore, inhibitors of heme oxygenase activity may be viable analgesics in these settings.  相似文献   

9.
Injury to, or dysfunction of, the nervous system can lead to spontaneous pain, hyperalgesia, and/or allodynia. It is believed that the number and activity of GABAergic neurons gradually decreases over the dorsal horn. Glutamic acid decarboxylase (GAD) immunocompetence has been demonstrated on spinal progenitor cells (SPCs) cultivated in vitro. The intrathecal implantation of these cultivated progenitor cells may provide a means of alleviating neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve was used to induce chronic neuropathic pain in the hind paw of rats. SPCs (1 x 10(6)) were implanted intrathecally on the third day after the CCI surgery. The behavioral response to thermal hyperalgesia was observed and recorded during the 14 days postsurgery. Various techniques were utilized to trace the progenitor cells, confirm the differentiation, and identify the neurotransmitters involved. GAD immunoactivity was revealed for 65% of the cultivated spinal progenitor cells in our study. We also determined that transplanted cells could survive more than 3 weeks postintrathecal implantation. Significant reductions were demonstrated for responses to thermal stimuli for the CCI rats that had received intrathecal SPC transplantation. A novel intrathecal delivery with SPCs reduced CCI-induced neuropathic pain.  相似文献   

10.
Opioid-induced hyperalgesia and incisional pain.   总被引:9,自引:0,他引:9  
Opioids occupy a position of unsurpassed clinical utility in the treatment of pain of many etiologies. However, recent reports in laboratory animals and humans have documented the occurrence of hyperalgesia when the administration of opioids is abruptly tapered or discontinued, a condition known as opioid-induced hyperalgesia (OIH). In these studies we documented that rats administered morphine (40 mg. kg(-1). day(-1) for 6 days) via subcutaneous osmotic minipumps demonstrated thermal hyperalgesia and mechanical allodynia for several days after the cessation of morphine administration. Additional experiments using a rat model of incisional pain showed that that attributable to OIH were additive with the hyperalgesia and allodynia that resulted from incision. In our final experiments we observed that if naloxone is administered chronically before incision then discontinued (20 mg. kg(-1). day(-1) for 6 days), the hyperalgesia and allodynia that result from hind paw incision was markedly reduced. In contrast, naloxone 1 mg/kg administered acutely after hind paw incision increased hyperalgesia and allodynia. We conclude that the chronic administration of exogenous opioid receptor agonists and antagonists before incision can alter the hyperalgesia and allodynia observed in this pain model, perhaps by altering intrinsic opioidergic systems involved in setting thermal and mechanical nociceptive thresholds. Implications: The chronic administration of opioids followed by abrupt cessation can lead to a state of hyperalgesia. In these studies we demonstrate that the hyperalgesia from opioid cessation and from hind paw incision are additive in rats. We suggest that failure to take into consideration preoperative opioid use can lead to excessive postoperative pain.  相似文献   

11.
Background: Intrathecal adenosine has antinociceptive effects under conditions of hypersensitivity. T62 (2-amino-3-(4-chlorobenzoyl)-5,6,7,8-tetrahydrobenzothiophen) is an allosteric adenosine receptor modulator that enhances adenosine binding to the A1 receptor. Intrathecal T62 reduces hypersensitivity to mechanical stimuli in a rat model of neuropathic pain by a circuit that totally relies on activation of [alpha]2 adrenoceptors. Here, the authors tested whether this same dependence was present in the acute setting of hypersensitivity after surgery.

Methods: Intrathecal catheters were inserted in male Sprague-Dawley rats. An incision of the plantar aspect of the hind paw resulted 24 h later in hypersensitivity, as measured by applying von Frey filaments to the paw. At this time, rats received intrathecal T62, clonidine, or the combination in a blinded, isobolographic design. The effect of the [alpha]2-adrenoceptor antagonist idazoxan on T62 was also tested.

Results: Intrathecal T62 produced a dose-dependent antihypersensitivity effect, with no effect on ambulation or activity level. Clonidine also produced a dose-dependent antihypersensitivity effect. The ED40 (95% confidence interval) for T62 was 0.77 (0.63-0.91) [mu]g, and that for clonidine was 1.23 (0.56-1.9) [mu]g. Isobolographic analysis indicated synergism between T62 and clonidine. Intrathecal pretreatment with idazoxan only partially inhibited the antihypersensitivity effect of T62.  相似文献   


12.
BACKGROUND AND OBJECTIVES: Minocycline is a second-generation tetracycline with multiple biological effects, including inhibition of microglial activation. Recently, microglial activation has been implicated in the development of nerve injury-induced neuropathic pain. In this study, the authors examined the effects of continuous intrathecal minocycline on the development of neuropathic pain and microglial activation induced by L5/6 spinal-nerve ligation in rats. METHODS: Under isoflurane anesthesia, male Sprague-Dawley rats (200-250 g) received right L5/6 spinal-nerve ligation and intrathecal catheters connected to an infusion pump. Intrathecal saline or minocycline (2 and 6 microg/h) was given continuously after surgery for 7 days (n = 8 per group). The rat right hind paw withdrawal threshold to von Frey filament stimuli and withdrawal latency to radiant heat were determined before surgery and on days 1 to 7 after surgery. Spinal microglial activation was evaluated with OX-42 immunoreactivity on day 7 after surgery. RESULTS: Spinal-nerve ligation induced mechanical allodynia and thermal hyperalgesia on the affected hind paw of saline-treated rats. Intrathecal minocycline (2 and 6 microg/h) prevented the development of mechanical allodynia and thermal hyperalgesia induced by nerve ligation. It also inhibited nerve ligation-induced microglial activation, as evidenced by decreased OX-42 staining. No obvious histopathologic change was noted after intrathecal minocycline (6 microg/h) infusion. CONCLUSIONS: In this study, the authors demonstrate the preventive effect of continuous intrathecal minocycline on the development of nociceptive behaviors induced by L5/6 spinal-nerve ligation in rats. Further studies are required to examine if continuous intrathecal minocycline could be used safely in the clinical setting.  相似文献   

13.
BACKGROUND: Intrathecal adenosine reduces areas of mechanical hypersensitivity and provides analgesia in patients with neuropathic pain. Adenosine also causes side effects, yet its dose response for either efficacy or side effects has not been examined in double blind studies. We studied two doses of intrathecal adenosine in humans with experimental hypersensitivity and the ability of the adenosine receptor antagonist, aminophylline, to reverse adenosine's effects. METHODS: Following Internal Review Board approval and written informed consent, 35 volunteers were studied. Five volunteers were studied to confirm the stability of a new method of inducing hypersensitivity with capsaicin. The remaining 30 volunteers received, in a randomized, double-blind manner, saline, or adenosine, 0.5 or 2.0 mg, by intrathecal injection 40 min after areas of allodynia and hyperalgesia were established from capsaicin. Two hr later, volunteers were randomized to receive intravenous saline or aminophylline, 5 mg/kg. RESULTS: Topical capsaicin with intermittent heating resulted in stable areas of allodynia and hyperalgesia. Intrathecal adenosine, but not saline, reduced areas of allodynia and hyperalgesia from capsaicin, with no differences between doses. Side effects occurred in 1, 2, and 6 volunteers receiving saline, 0.5 mg and 2.0 mg adenosine, respectively. Aminophylline failed to reverse adenosine's effects. CONCLUSIONS: There is no difference in efficacy to experimental hypersensitivity between the largest approved dose of intrathecal adenosine and a dose 25% this size, but side effects are more common with the larger dose. Failure of aminophylline to reverse adenosine's effects could reflect inadequate concentrations at receptors in the spinal cord after intravenous injection.  相似文献   

14.
Chronic constriction injury (CCI) of the sciatic nerve in rats induces persistent mechanical hyperalgesia and allodynia. CCI is widely known as a model of neuropathic pain, and many studies using this model have been reported. Recently, c-fos has been used as a neural marker of pain, and various studies have assessed the relationship between hyperalgesia and c-fos expression in the lumbar spinal cord. In this study, we examined the role of a prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-8711) in a rat CCI model. EP1 receptor antagonist (EP1-ra) oral administration from day 8 to day 14 significantly reduced hyperalgesia and allodynia in the three pain tests on day 15. EP1-ra treatment from day 8 to 14 also reduced c-fos-positive cells in laminae I-II, III-IV, and V-X compared with saline treatment. A single dose of EP1-ra treatment on day 8 significantly reduced hyperalgesia and allodynia at 1 h and 2 h after administration, but the efficacy was not observed at 24 h. We conclude that EP1-ra treatment may be useful for hyperalgesia and allodynia and that EP1 receptor mechanisms are involved in the maintenance of c-fos gene expression induced by nerve injury. IMPLICATIONS: We examined whether a prostaglandin E2 receptor subtype EP1 receptor antagonist abrogates neuropathic pain induced by chronic constriction injury model in rats. The EP1 receptor antagonist significantly reduced hyperalgesia, allodynia, and c-fos positive cells. These findings suggested that EP1 receptor antagonists may have a role in treatment of neuropathic pain.  相似文献   

15.
Background: Although opioids are unsurpassed analgesics, experimental and clinical studies suggest that opioids activate N-methyl-d-aspartate pronociceptive systems leading to pain hypersensitivity and short-term tolerance. Because it is difficult in humans to differentiate pain from hyperalgesia during the postoperative period, the authors performed experimental studies with fentanyl using the rat incisional pain model for evaluating relations between hyperalgesia and short-term tolerance. Because N-methyl-d-aspartate receptor antagonists oppose both pain hypersensitivity and tolerance induced by opioids, the authors examined the capability of ketamine for improving exaggerated postoperative pain management.

Methods: During halothane anesthesia, a hind paw plantar incision was performed in rats receiving four fentanyl subcutaneous injections (100 [mu]g/kg per injection, every 15 min). In some groups, three subcutaneous ketamine injections (10 mg/kg per injection, every 5 h) were performed in saline- or fentanyl-treated rats. One day after surgery, the analgesic effect of morphine (2 mg/kg subcutaneous) was tested. Analgesia, mechanical hyperalgesia, tactile allodynia, and pain score were assessed for several days using the paw pressure vocalization test, the von Frey application test, and the postural disequilibrium test.

Results: Fentanyl induced analgesia but also produced exaggerated postoperative pain as indicated by the enhancement of hyperalgesia, allodynia, and weight-bearing decrease after hind paw plantar incision. Ketamine pretreatment prevented such a fentanyl-induced enhancement of postoperative pain and improved its management by morphine.  相似文献   


16.
Background: Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats.

Methods: Continuous intrathecal infusion of meloxicam (32 or 320 [mu]g [middle dot] kg-1 [middle dot] day-1) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg [middle dot] kg-1 [middle dot] day-1) on existing neuropathic pain and glial activation were examined.

Results: Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation.  相似文献   


17.
Duflo F  Boselli E  Ryvlin P  Chassard D 《Anesthesiology》2005,103(6):1253-1258
BACKGROUND: A recent model of acute incisional pain has been characterized that strongly parallels the postoperative period in patients experiencing evoked pain. In that setting, abundant literature has revealed antihypersensitive effects produced by intrathecally administered alpha2-adrenergic receptor agonists, such as clonidine, in both animals and humans. Recent reports have suggested an obligatory role of spinal acetylcholine receptors in the analgesic action of intrathecal clonidine. The authors sought to determine the involvement of spinal muscarinic and nicotinic receptor subpopulations in the antihypersensitivity effect of intrathecal clonidine in a rodent model for human postoperative pain. METHODS: After intrathecal catheterization, rats underwent superficial plantar incision. Clonidine or a combination of clonidine and muscarinic receptor subtype antagonists (M1, M2, M3, and M4) or nicotinic receptor subtype antagonists (alpha4beta2 and alpha7) were intrathecally administered, and withdrawal thresholds to mechanical stimuli were examined. RESULTS: Spinal clonidine maximally reduced hypersensitivity adjacent to the wound 30 min after its injection. When animals were intrathecally pretreated with the M1 muscarinic antagonist toxin MT-7, the M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine, and the M4 muscarinic antagonist toxin MT-3, clonidine lost its antihypersensitive action. When animals were intrathecally pretreated with the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine, but not with the alpha7 nicotinic receptor antagonist methyllycaconitine, the antihypersensitivity action of clonidine was abolished. CONCLUSIONS: These data indicate for the first time that the clonidine-induced increase in punctuate mechanical threshold is mediated via the activation of all but M2 muscarinic receptor subtypes, and via the activation of alpha4beta2 but not alpha7 nicotinic receptor subtypes in a rodent model for human postoperative pain.  相似文献   

18.
Background: Basic data are lacking regarding the efficacy and mechanisms of action of corticosteroids in neuropathic pain. Because recent studies indicate that spinal glial activation mediates the pathologic pain states, the authors sought to determine the effects of systemic and intrathecal methylprednisolone on the development and maintenance of neuropathic pain and spinal glial activation in a rat model.

Methods: Rats were anesthetized, and L5 and L6 spinal nerves were tightly ligated. Then, continuous infusion of systemic (4 mg [middle dot] kg-1 [middle dot] day-1) or intrathecal (80 [mu]g [middle dot] kg-1 [middle dot] day-1) methylprednisolone or saline was started. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively with von Frey and Hargreaves tests, respectively. Spinal astrocytic activation was evaluated with glial fibrillary acidic protein immunoreactivity on day 7. In other groups of rats, continuous 3-day treatment with intrathecal methylprednisolone or saline was started 7 days after spinal nerve ligation, when neuropathic pain had already developed. Behavioral tests and immunostaining were performed up to 3 weeks after the treatment.

Results: Spinal nerve ligation induced mechanical allodynia and thermal hyperalgesia on days 4 and 7 postoperatively. Glial fibrillary acidic protein immunoreactivity was remarkably enhanced on day 7. Both systemic and intrathecal methylprednisolone inhibited the development of neuropathic pain states and glial activation. Three-day treatment with intrathecal methylprednisolone reversed existing neuropathic pain state and glial activation up to 3 weeks after the treatment.  相似文献   


19.
Zhao C  Tall JM  Meyer RA  Raja SN 《Anesthesiology》2004,100(4):905-911
BACKGROUND: The efficacy of opioids for neuropathic pain remains controversial. The effects of morphine on pain behavior were investigated in two animal models of neuropathic pain: the spared nerve injury (SNI) model and the spinal nerve ligation (SNL) model. METHODS: Nerve injuries were created in rats either by tight ligation and section of the left tibial and common peroneal nerves (SNI) or by unilateral ligation of L5 and L6 spinal nerves (SNL). Paw withdrawal threshold to mechanical stimuli was measured using the up-down method in the hairy and glabrous skin territories of the sural nerve for SNI rats or in the mid-plantar paw of SNL rats. RESULTS: Before SNI, the median paw withdrawal thresholds in hairy and glabrous skin were similar (26 g [25%, 75% quartiles: 26, 26 g]). The paw withdrawal threshold decreased after SNI in both hairy and glabrous skin (P < 0.001). Thirty days after the SNI, the threshold in hairy skin (0.3 g) was significantly lower than in glabrous skin (1.9 g; P < 0.001). In blinded experiments, both subcutaneous and intrathecal morphine (0.1-10 microg) dose-dependently attenuated mechanical allodynia induced by SNI measured in the hairy skin, an effect that was naloxone reversible. The ED50 for the intrathecal morphine was 0.52 microg (95% confidence interval, 0.31-0.90 microg). Morphine (1 microg intrathecal) attenuated SNI-induced mechanical allodynia in glabrous skin with potency similar to that in hairy skin. In SNL rats, morphine (30 microg intrathecal) almost completely reversed the SNL-induced mechanical allodynia. CONCLUSIONS: (1) SNI-induced mechanical allodynia is characterized by a lower paw withdrawal threshold in hairy versus glabrous skin; (2) systemic and intrathecal morphine reverse SNI-induced mechanical allodynia in a dose-dependent fashion; and (3) intrathecal morphine also reverses SNL-induced mechanical allodynia. These results suggest that intrathecal opioids are likely to be effective in the treatment of neuropathic pain.  相似文献   

20.
OBJECTIVE: In the present study, we sought to develop/characterize the pain profile of a rat model of surgically induced osteoarthritis (OA). METHODS: OA was surgically induced in male Lewis rats (200-225 g) by transection of the medial collateral ligament and medial meniscus of the femoro-tibial joint. In order to characterize the pain profile, animals were assessed for a change in hind paw weight distribution (HPWD), development of mechanical allodynia, and the presence of thermal and mechanical hyperalgesia. Rofecoxib and gabapentin were examined for their ability to decrease change in weight distribution and tactile allodynia. RESULTS: Transection of the medial collateral ligament and medial meniscus of male Lewis rats resulted in rapid (<3 days) changes in hind paw weight bearing and the development of tactile allodynia (secondary hyperalgesia). There was, however, no appreciable effect on thermal hyperalgesia or mechanical hyperalgesia. Treatment with a single dose of rofecoxib (10 mg/kg, PO, day 21 post surgery) or gabapentin (100mg/kg, PO, day 21 post surgery) significantly attenuated the change in HPWD, however, only gabapentin significantly decreased tactile allodynia. CONCLUSION: The rat medial meniscal tear (MMT) model mimics both nociceptive and neuropathic OA pain and is responsive to both a selective cylooxygenase-2 (COX-2) inhibitor commonly utilized for OA pain (rofecoxib) and a widely prescribed drug for neuropathic pain (gabapentin). The rat MMT model may therefore represent a predictive tool for the development of pharmacologic interventions for the treatment of the symptoms associated with OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号