首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is caused in almost all cases by homozygous intronic expansions resulting in the loss of frataxin, a mitochondrial protein conserved through evolution, and involved in mitochondrial iron homeostasis. Yeast knockout models, and histological and biochemical data from patient heart biopsies or autopsies indicate that the frataxin defect causes a specific iron-sulfur protein deficiency and mitochondrial iron accumulation leading to the pathological changes. Affected human tissues are rarely available to further examine this hypothesis. To study the mechanism of the disease, we generated a mouse model by deletion of exon 4 leading to inactivation of the Frda gene product. We show that homozygous deletions cause embryonic lethality a few days after implantation, demonstrating an important role for frataxin during early development. These results suggest that the milder phenotype in humans is due to residual frataxin expression associated with the expansion mutations. Surprisingly, in the frataxin knockout mouse, no iron accumulation was observed during embryonic resorption, suggesting that cell death could be due to a mechanism independent of iron accumulation.  相似文献   

2.
Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by a deficiency of frataxin, a conserved mitochondrial protein of unknown function. Mitochondrial iron accumulation, loss of iron-sulfur cluster-containing enzymes and increased oxidative damage occur in yeast and mouse frataxin-depleted mutants as well as tissues and cell lines from FRDA patients, suggesting that frataxin may be involved in export of iron from the mitochondria, synthesis of iron-sulfur clusters and/or protection from oxidative damage. We have previously shown that yeast frataxin has structural and functional features of an iron storage protein. In this study we have investigated the function of human frataxin in Escherichia coli and Saccharomyces cerevisiae. When expressed in E.coli, the mature form of human frataxin assembles into a stable homopolymer that can bind approximately 10 atoms of iron per molecule of frataxin. The iron-loaded homopolymer can be detected on non-denaturing gels by either protein or iron staining demonstrating a stable association between frataxin and iron. As analyzed by gel filtration and electron microscopy, the homopolymer consists of globular particles of approximately 1 MDa and ordered rod-shaped polymers of these particles that accumulate small electron-dense cores. When the human frataxin precursor is expressed in S.cerevisiae, the mitochondrially generated mature form is separated by gel filtration into monomer and a high molecular weight pool of >600 kDa. A high molecular weight pool of frataxin is also present in mouse heart indicating that frataxin can assemble under native conditions. In radiolabeled yeast cells, human frataxin is recovered by immunoprecipitation with approximately five atoms of (55)Fe bound per molecule. These findings suggest that FRDA results from decreased mitochondrial iron storage due to frataxin deficiency which may impair iron metabolism, promote oxidative damage and lead to progressive iron accumulation.  相似文献   

3.
The neurodegenerative disorder Friedreich's ataxia (FRDA) is caused by mutations in frataxin, a mitochondrial protein whose function remains controversial. Using co-immunoprecipitation and mass spectrometry we identified multiple interactors of mitochondrial frataxin in mammalian cells. One interactor was mortalin/GRP75, a homolog of the yeast ssq1 chaperone that integrates iron-sulfur clusters into imported mitochondrial proteins. Another interactor was ISD11, recently identified as a component of the eukaryotic complex Nfs1/ISCU, an essential component of iron-sulfur cluster biogenesis. Interactions between frataxin and ISD11, and frataxin and GRP75 were confirmed by co-immunoprecipitation experiments in both directions. Immunofluorescence analysis demonstrated that ISD11 co-localized with both frataxin and with mitochondria. The point mutations I154F and W155R in frataxin cause FRDA and are clustered to one surface of the protein, and these mutations decrease the interaction of frataxin with ISD11. The frataxin/ISD11 interaction was also decreased by the chelator EDTA, and was increased by supplementation with nickel but not other metal ions. Nickel supplementation rescued the defective interaction of mutant frataxin I154F and W155R with ISD11. Upon ISD11 depletion by siRNA in HEK293T cells, the amount of the Nfs1/ISCU protein complex declined, as did the activity of the iron-sulfur cluster enzyme aconitase, while the cellular iron content was increased, as seen in tissues from FRDA patients. Furthermore, ISD11 mRNA levels were decreased in FRDA patient cells. These data suggest that frataxin binds the iron-sulfur biogenesis Nfs1/ISCU complex through ISD11, that the interaction is nickel-dependent, and that multiple consequences of frataxin deficiency are duplicated by ISD11 deficiency.  相似文献   

4.
Mitochondrial ferritin (MtF) is structurally and functionally similar to the cytosolic ferritins, molecules designed to store and detoxify cellular iron. MtF expression in human and mouse is restricted to the testis and few tissues, and it is abundant in the erythroblasts of patients with sideroblastic anemia, where it is thought to protect the mitochondria from the damage caused by iron loading. Mitochondria iron overload occurs also in cells deficient in frataxin, a mitochondrial protein involved in iron handling and implicated in Friedreich ataxia. We expressed human MtF in frataxin-deficient yeast cells, a well-characterized model of mitochondrial iron overload and oxidative damage. The human MtF precursor was efficiently imported by yeast mitochondria and processed to functional ferritin that actively sequestered iron in the organelle. MtF expression rescued the respiratory deficiency caused by the loss of frataxin protecting the activity of iron-sulfur enzymes and enabling frataxin-deficient cells to grow on non-fermentable carbon sources. Furthermore, MtF expression prevented the development of mitochondrial iron overload, preserved mitochondrial DNA integrity and increased cell resistance to H2O2. The data show that MtF can substitute for most frataxin functions in yeast, suggesting that frataxin is directly involved in mitochondrial iron-binding and detoxification.  相似文献   

5.
Friedreich ataxia (FA) is a progressive neurodegenerative disease caused by expansion of a trinucleotide repeat within the first intron of the gene that encodes frataxin. In our study, we investigated the regulation of frataxin expression by iron and demonstrated that frataxin mRNA levels decrease significantly in multiple human cell lines treated with the iron chelator, desferal (DFO). In addition, frataxin mRNA and protein levels decrease in fibroblast and lymphoblast cells derived from both normal controls and from patients with FA when treated with DFO. Lymphoblasts and fibroblasts of FA patients have evidence of cytosolic iron depletion, as indicated by increased levels of iron regulatory protein 2 (IRP2) and/or increased IRE-binding activity of IRP1. We postulate that this inferred cytosolic iron depletion occurs as frataxin-deficient cells overload their mitochondria with iron, a downstream regulatory effect that has been observed previously when mitochondrial iron-sulfur cluster assembly is disrupted. The mitochondrial iron overload and presumed cytosolic iron depletion potentially further compromise function in frataxin-deficient cells by decreasing frataxin expression. Thus, our results imply that therapeutic efforts should focus on an approach that combines iron removal from mitochondria with a treatment that increases cytosolic iron levels to maximize residual frataxin expression in FA patients.  相似文献   

6.
7.
Friedreich's ataxia is a neurodegenerative disorder caused by mutations in the frataxin gene that produces a predominantly mitochondrial protein whose primary function appears to be mitochondrial iron-sulfur cluster (ISC) biosynthesis. Previously we demonstrated that frataxin interacts with multiple components of the mammalian ISC assembly machinery. Here we demonstrate that frataxin interacts with the mammalian mitochondrial chaperone HSC20. We show that this interaction is iron-dependent. We also show that like frataxin, HSC20 interacts with multiple proteins involved in ISC biogenesis including the ISCU/Nfs1 ISC biogenesis complex and the GRP75 ISC chaperone. Furthermore, knockdown of HSC20 caused functional defects in activity of mitochondrial ISC-containing enzymes and also defects in ISC protein expression. Alterations up or down of frataxin expression caused compensatory changes in HSC20 expression inversely, as expected of two cooperating proteins operating in the same pathway and suggesting a potential therapeutic strategy for the disease. Knockdown of HSC20 altered cytosolic and mitochondrial iron pools and increased the expression of transferrin receptor 1 and iron regulatory protein 2 consistent with decreased iron bioavailability. These results indicate that HSC20 interacts with frataxin structurally and functionally and is important for ISC biogenesis and iron homeostasis in mammals. Furthermore, they suggest that HSC20 may act late in the ISC pathway as a chaperone in ISC delivery to apoproteins and that HSC20 should be included in multi-protein complex studies of mammalian ISC biogenesis.  相似文献   

8.
Deficiency in the nuclear-encoded mitochondrial protein frataxin causes Friedreich ataxia (FRDA), a progressive neurodegenerative disorder associating spinocerebellar ataxia and cardiomyopathy. Although the exact function of frataxin is still a matter of debate, it is widely accepted that frataxin is a mitochondrial iron chaperone involved in iron-sulfur cluster and heme biosynthesis. Frataxin is synthesized as a precursor polypeptide, directed to the mitochondrial matrix where it is proteolytically cleaved by the mitochondrial processing peptidase to the mature form via a processing intermediate. The mature form was initially reported to be encoded by amino acids 56-210 (m(56)-FXN). However, two independent reports have challenged these studies describing two different forms encoded by amino acids 78-210 (m(78)-FXN) and 81-210 (m(81)-FXN). Here, we provide evidence that mature human frataxin corresponds to m(81)-FXN, and can rescue the lethal phenotype of fibroblasts completely deleted for frataxin. Furthermore, our data demonstrate that the migration profile of frataxin depends on the experimental conditions, a behavior which most likely contributed to the confusion concerning the endogenous mature frataxin. Interestingly, we show that m(56)-FXN and m(78)-FXN can be generated when the normal maturation process of frataxin is impaired, although the physiological relevance is not clear. Furthermore, we determine that the d-FXN form, previously reported to be a degradation product, corresponds to m(78)-FXN. Finally, we demonstrate that all frataxin isoforms are generated and localized within the mitochondria. The clear identification of the N-terminus of mature FXN is an important step for designing therapeutic approaches for FRDA based on frataxin replacement.  相似文献   

9.
A deficiency in mitochondrial frataxin causes an increased generation of mitochondrial reactive oxygen species (ROS), which may contribute to the cell degenerative features of Friedreich's ataxia. In this work the authors demonstrate mitochondrial iron-sulfur cluster (ISC) defects and mitochondrial heme defects, and suggest how both may contribute to increased mitochondrial ROS in lymphoblasts from human patients. Mutant cells are deficient in the ISC-requiring mitochondrial enzymes aconitase and succinate dehydrogenase, but not in the non-ISC mitochondrial enzyme citrate synthase; also, the mitochondrial iron-sulfur scaffold protein IscU2 co-immunoprecipitates with frataxin in vivo. Presumably as a consequence of the iron-sulfur cluster defect, cytochrome c heme is deficient in mutants, as well as heme-dependent Complex IV. Mitochondrial superoxide is elevated in mutants, which may be a consequence of cytochrome c deficiency. Hydrogen peroxide, glutathione peroxidase activity, and oxidized glutathione (GSSG) are each elevated in mutants, consistent with activation of the glutathione peroxidase pathway. Mutant status blunted the effects of Complex III and IV inhibitors, but not a Complex I inhibitor, on superoxide production. This suggests that heme defects late in the electron transport chain of mutants are responsible for increased mutant superoxide. The impact of ISC and heme defects on ROS production with age are discussed.  相似文献   

10.
Friedreich ataxia is a severe autosomal-recessive disease characterized by neurodegeneration, cardiomyopathy and diabetes, resulting from reduced synthesis of the mitochondrial protein frataxin. Although frataxin is ubiquitously expressed, frataxin deficiency leads to a selective loss of dorsal root ganglia neurons, cardiomyocytes and pancreatic beta cells. How frataxin normally promotes survival of these particular cells is the subject of intense debate. The predominant view is that frataxin sustains mitochondrial energy production and other cellular functions by providing iron for heme synthesis and iron-sulfur cluster (ISC) assembly and repair. We have proposed that frataxin not only promotes the biogenesis of iron-containing enzymes, but also detoxifies surplus iron thereby affording a critical anti-oxidant mechanism. These two functions have been difficult to tease apart, however, and the physiologic role of iron detoxification by frataxin has not yet been demonstrated in vivo. Here, we describe mutations that specifically impair the ferroxidation or mineralization activity of yeast frataxin, which are necessary for iron detoxification but do not affect the iron chaperone function of the protein. These mutations increase the sensitivity of yeast cells to oxidative stress, shortening chronological life span and precluding survival in the absence of the anti-oxidant enzyme superoxide dismutase. Thus, the role of frataxin is not limited to promoting ISC assembly or heme synthesis. Iron detoxification is another function of frataxin relevant to anti-oxidant defense and cell longevity that could play a critical role in the metabolically demanding environment of non-dividing neuronal, cardiac and pancreatic beta cells.  相似文献   

11.
Friedreich's ataxia is an autosomal recessive neuro-degenerative disorder involving both central and peripheral nervous system. Patients also show a systemic clinical picture presenting heart disease and diabetes mellitus or glucose intolerance. The disease is caused by mutations in the FRDA gene mapped on chromosome 9q13. The product of the gene is frataxin, an 18 kDa soluble mitochondrial protein with 210 amino acids. Crystal structure suggests a new, not previously reported, protein fold. The most frequent mutation is the expansion of a GAA trinucleotide repeat located within the first intron of the gene, and represents 98% of the mutations. Point mutations are described in compound heterozygous subjects with one expanded allele. A two-step model of GAA normal alleles towards premutation alleles, which might generate further full expanded mutations in the population with Indo-European ancestry, has been postulated. Clinical phenotype is variable and an inverse correlation with the GAA expansion size has been observed. Analysis of the GAA triplet is a strong molecular tool for clinical diagnosis, genetic counselling and prenatal diagnosis. Friedreich's ataxia patho-genesis is not solved yet. Substantial data from organism models, such the S. cerevisae yeast and more recently conditioned knock-outs in mouse, and studies in heart biopsies and fibroblast cultures from patients suggest an important role of mitochondrial iron in the development of the disease. Iron is accumulated in the mitochondrial matrix of both the yeast frataxin deficient mutant and the patient fibroblasts. It has been postulated that iron-induced oxygen radical affects the oxidative phosphorylation in frataxin deficiency states favouring the disease pathology. A second hypothesis postulates a direct role of frataxin in the mitochondrial energy activation and oxidative phosphorylation. Iron chelator drugs and antioxidant drugs have been postulated for Friedreich's treatment. No results from clinical trials are available yet, but idebenone, a short-chain quinone, seems to reduce the size of hypertrophic cardiomyopathy and levels of oxidative stress molecules in patients.  相似文献   

12.
The maturation of iron-sulfur (Fe/S) proteins in eukaryotes has been intensively studied in yeast. Hardly anything is known so far about the process in higher eukaryotes, even though the high conservation of the yeast maturation components in most Eukarya suggests similar mechanisms. Here, we developed a cell culture model in which the RNA interference (RNAi) technology was used to deplete a potential component of Fe/S protein maturation, frataxin, in human HeLa cells. This protein is lowered in humans with the neuromuscular disorder Friedreich's ataxia (FRDA). Upon frataxin depletion by RNAi, the enzyme activities of the mitochondrial Fe/S proteins, aconitase and succinate dehydrogenase, were decreased, while the activities of non-Fe/S proteins remained constant. Moreover, Fe/S cluster association with the cytosolic iron-regulatory protein 1 was diminished. In contrast, no alterations in cellular iron uptake, iron content and heme formation were found, and no mitochondrial iron deposits were observed upon frataxin depletion. Hence, iron accumulation in FRDA mitochondria appears to be a late consequence of frataxin deficiency. These results demonstrate (i) that frataxin is a component of the human Fe/S cluster assembly machinery and (ii) that it plays a role in the maturation of both mitochondrial and cytosolic Fe/S proteins.  相似文献   

13.
Frataxin is a nuclear-encoded mitochondrial protein widely conserved among eukaryotes. Human frataxin (fxn) is severely reduced in Friedreich ataxia (FRDA), a frequent autosomal recessive neuro- and cardio-degenerative disease. Whereas the function of fxn is unknown, the yeast frataxin homolog (Yfh1p) has been shown to be involved in mitochondrial iron homeostasis and protection from free radical toxicity. Evidence of iron accumulation and oxidative damage in cardiac tissue from FRDA patients suggests that fxn may have a similar function, but whether yeast and human frataxin actually have interchangeable roles in mitochondrial iron homeostasis is unknown. We show that a wild-type FRDA cDNA can complement Yfh1p-deficient yeast (yfh1 delta) by preventing the mitochondrial iron accumulation and oxidative damage associated with loss of Yfh1p. We analyze the functional effects of two FRDA point mutations, G130V and W173G, associated with a mild and a severe clinical presentation, respectively. The G130V mutation affects protein stability and results in low levels of mature (m) fxn, which are nevertheless sufficient to rescue yfh1 delta yeast. The W173G mutation affects protein processing and stability and results in severe m-fxn deficiency. Expression of the FRDA (W173G) cDNA in yfh1 delta yeast leads to increased levels of mitochondrial iron which are not as elevated as in Yfh1p-deficient cells but are above the threshold for oxidative damage of mitochondrial DNA and iron-sulfur centers, causing a typical yfh1 delta phenotype. These results demonstrate that fxn functions like Yfh1p, providing experimental support to the hypothesis that FRDA is a disorder of mitochondrial iron homeostasis.  相似文献   

14.
The mitochondrial matrix protein frataxin is depleted in patients with Friedreich's ataxia, the most common autosomal recessive ataxia. While frataxin is important for intracellular iron homeostasis, its exact cellular role is unknown. Deletion of the yeast frataxin homolog YFH1 yields mutants ((Delta)yfh1) that, depending on the genetic background, display various degrees of phenotypic defects. This renders it difficult to distinguish primary (early) from secondary (late) consequences of Yfh1p deficiency. We have constructed a yeast strain (Gal-YFH1) that carries the YFH1 gene under the control of a galactose-regulated promoter. Yfh1p-deficient Gal-YFH1 cells are far less sensitive to oxidative stress than (Delta)yfh1 mutants, maintain mitochondrial DNA, and synthesize heme at wild-type rates. Yfh1p depletion causes a strong reduction in the assembly of mitochondrial Fe/S proteins both in vivo and in detergent extracts of mitochondria. Impaired Fe/S protein biogenesis explains the respiratory deficiency of Gal-YFH1 cells. Furthermore, Yfh1p-depleted Gal-YFH1 cells show decreased maturation of cytosolic Fe/S proteins and accumulation of mitochondrial iron. This latter phenotype is common for defects in cytosolic Fe/S protein assembly. Together, our data demonstrate a specific role of frataxin in the biosynthesis of cellular Fe/S proteins and exclude most of the previously suggested functions. Friedreich's ataxia may therefore represent a disorder caused by defects in Fe/S protein maturation.  相似文献   

15.
Friedreich ataxia (FRDA) results from a generalized deficiency of mitochondrial and cytosolic iron-sulfur protein activity initially ascribed to mitochondrial iron overload. Recent in vitro data suggest that frataxin is necessary for iron incorporation in Fe-S cluster (ISC) and heme biosynthesis. In addition, several reports suggest that continuous oxidative damage resulting from hampered superoxide dismutases (SODs) signaling participates in the mitochondrial deficiency and ultimately the neuronal and cardiac cell death. This has led to the use of antioxidants such as idebenone for FRDA therapy. To further discern the role of oxidative stress in FRDA pathophysiology, we have tested the potential effect of increased antioxidant defense using an MnSOD mimetic (MnTBAP) and Cu,ZnSOD overexpression on the murine FRDA cardiomyopathy. Surprisingly, no positive effect was observed, suggesting that increased superoxide production could not explain by itself the FRDA cardiac pathophysiology. Moreover, we demonstrate that complete frataxin-deficiency neither induces oxidative stress in neuronal tissues nor alters the MnSOD expression and induction in the early step of the pathology (neuronal and cardiac) as previously suggested. We show that cytosolic ISC aconitase activity of iron regulatory protein-1 progressively decreases, whereas its apo-RNA binding form increases despite the absence of oxidative stress, suggesting that in a mammalian system the mitochondrial ISC assembly machinery is essential for cytosolic ISC biogenesis. In conclusion, our data demonstrate that in FRDA, mitochondrial iron accumulation does not induce oxidative stress and we propose that, contrary to the general assumption, FRDA is a neurodegenerative disease not associated with oxidative damage.  相似文献   

16.
Much has been learned about the cellular pathology of Friedreich's ataxia, a recessive neurodegenerative disease resulting from insufficient expression of the mitochondrial protein frataxin. However, the biochemical function of frataxin has remained obscure, hampering attempts at therapeutic intervention. To predict functional interactions of frataxin with other proteins we investigated whether its gene specifically co-occurs with any other genes in sequenced genomes. In 56 available genomes we identified two genes with identical phylogenetic distributions to the frataxin/cyaY gene: hscA and hscB/JAC1. These genes have not only emerged in the same evolutionary lineage as the frataxin gene, they have also been lost at least twice with it, and they have been horizontally transferred with it in the evolution of the mitochondria. The proteins encoded by hscA and hscB, the chaperone HSP66 and the co-chaperone HSP20, have been shown to be required for the synthesis of 2Fe-2S clusters on ferredoxin in proteobacteria. JAC1, an ortholog of hscB, and SSQ1, a paralog of hscA, have been shown to be required for iron-sulfur cluster assembly in mitochondria of Saccharomyces cerevisiae. Combining data on the co-occurrence of genes in genomes with experimental and predicted cellular localization data of their proteins supports the hypothesis that frataxin is directly involved in iron-sulfur cluster protein assembly. They indicate that frataxin is specifically involved in the same sub-process as HSP20/Jac1p.  相似文献   

17.
Friedreich's ataxia (FRDA) is the most common inherited ataxia. FRDA is an autosomal recessive degenerative disorder caused by a GAA triplet expansion or point mutations in the FRDA gene on chromosome 9q13. The FRDA gene product, frataxin, is a widely expressed mitochondrial protein that is severely reduced in FRDApatients. The function of frataxin has not been established yet. Studies of the yeast and animal model of the disease as well as of tissues from FRDA patients have demonstrated that deficit of frataxin is associated with mitochondrial iron accumulation, increased sensitivity to oxidative stress, deficit of respiratory chain complex activities and in vivo impairment of tissue energy metabolism. Pilot studies have shown the potential effect of antioxidant therapy in this condition and provide a strong rationale for designing larger clinical randomized trials.  相似文献   

18.
We have disrupted expression of the mitochondrial Friedreich ataxia protein frataxin specifically in murine hepatocytes to generate mice with impaired mitochondrial function and decreased oxidative phosphorylation. These animals have a reduced life span and develop multiple hepatic tumors. Livers also show increased oxidative stress, impaired respiration and reduced ATP levels paralleled by reduced activity of iron-sulfur cluster (Fe/S) containing proteins (ISP), which all leads to increased hepatocyte turnover by promoting both apoptosis and proliferation. Accordingly, phosphorylation of the stress-inducible p38 MAP kinase was found to be specifically impaired following disruption of frataxin. Taken together, these findings indicate that frataxin may act as a mitochondrial tumor suppressor protein in mammals.  相似文献   

19.
Disabled early recruitment of antioxidant defenses in Friedreich's ataxia   总被引:4,自引:0,他引:4  
Friedreich's ataxia (FRDA) results from a generalized deficiency of mitochondrial iron-sulfur protein activity ascribed to mitochondrial iron overload. However, iron overload appears to be a late event in the disease. Here we show that neither superoxide dismutases nor the import iron machinery was induced by an endogenous oxidative stress in FRDA patients' fibroblasts in contrast to control cells. Superoxide dismutase activity was not induced in the heart of conditional frataxin-KO mice either. This suggests that continuous oxidative damage to iron-sulfur clusters, resulting from hampered superoxide dismutase signaling, is causative of the mitochondrial deficiency and long term mitochondrial iron overload occurring in FRDA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号