首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prostaglandins (PGs) are known to be involved in the pathogenesis of inflammation and pain. However, their role in orofacial pain is not clearly understood. The present study was undertaken to determine the effect of systemic and locally administered nonsteroidal anti-inflammatory drugs (NSAIDs) on the role of PGs in orofacial pain induced by formalin in rats. The subcutaneous injection of formalin into the rat upper lip generated behavioural responses that lasted for several minutes. The orofacial responses due to formalin were seen in two distinct phases, the early response (0-3 min) and the continuous prolonged response (9-45 min). Systemic administration of ketorolac or diclofenac (10 and 30 mg/kg, i.p.) significantly attenuated formalin-induced nociceptive behaviour in the phase-2, but not in the phase-1 of the formalin test. Similarly, subcutaneous (local) administration of ketorolac or diclofenac in the orofacial area (100 and 300 μg/lip) markedly decreased the phase-2 nociceptive response due to formalin. However, both the drugs had no effect on the phase-1 response of the formalin test. These results suggest that PGs, particularly peripheral PGs are involved in nociceptive behaviour following formalin injection in the orofacial area.  相似文献   

2.
Terpenes have a wide range of pharmacological properties, including antinociceptive action. The anti-inflammatory and antinociceptive effects of eucalyptol are well established. The purpose of this study was to evaluate the antinociceptive effect of eucalyptol on acute and neuropathic orofacial pain in rodent models. Acute orofacial and corneal nociception was induced with formalin, capsaicin, glutamate and hypertonic saline in mice. In another series, animals were pretreated with capsazepine or ruthenium red to evaluate the involvement of TRPV1 receptors in the effect of eucalyptol. In a separate experiment, perinasal tissue levels of IL-1β, TNF-α and IFN-γ were measured. Rats were pretreated with eucalyptol before induction of temporomandibular joint pain with formalin or mustard oil. In another experiment, rats were submitted to infraorbital nerve transection (IONX) to induce chronic pain, followed by induction of mechanical hypersensitivity using Von Frey hairs. Locomotor performance was evaluated with the open-field test, and molecular docking was conducted on the TRPV1 channel. Pretreatment with eucalyptol significantly reduced formalin-induced nociceptive behaviors in all mouse strains, but response was more homogenous in the Swiss strain. Eucalyptol produced antinociceptive effects in all tests. The effect was sensitive to capsazepine but not to ruthenium red. Moreover, eucalyptol significantly reduced IFN-γ levels. Matching the results of the experiment in vivo, the docking study indicated an interaction between eucalyptol and TRPV1. No locomotor activity changes were observed. Our study shows that eucalyptol may be a clinically relevant aid in the treatment of orofacial pain, possibly by acting as a TRPV1 channel antagonist.  相似文献   

3.
This study investigated the antinociceptive effect of intrathecal escin and examined its effect on the formalin-induced activation of c-Fos and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) in the rat spinal cord. Rats were chronically implanted with lumbar intrathecal catheters, and the ability of intrathecal escin to alter nociceptive behaviours in the rat formalin test was examined. The expression of c-Fos and p-p38 MAPK in the dorsal horn of the spinal cord was detected in the control and escin (40μg) groups using immunohistochemical techniques. Intrathecal escin produced a dose-dependent reduction in formalin-evoked flinching behaviour in rats during the second phase; however, no effect was observed in the first phase. In addition, immunohistochemical experiments showed that the expression of c-Fos and p-p38 MAPK in the spinal cord dorsal horn increased after an injection of formalin into the paw. Interestingly, the 40μg dose of intrathecal escin, which was the larger of the two doses that blocked formalin-induced hyperalgaesia, attenuated the formalin-induced increases in c-Fos and p-p38 MAPK in the dorsal horn of the spinal cord. The decrease in pain-related behaviours and c-Fos expression indicated that escin produced antinociceptive effects in the rat formalin test. Although the specific mechanisms of these effects were not investigated, the reduction in p-p38 MAPK in the dorsal horn of the spinal cord may be involved.  相似文献   

4.
McCarson KE  Enna SJ 《Neuropharmacology》1999,38(11):1767-1773
Activation of gamma-aminobutyric acid (GABA) neurotransmission evokes antinociceptive responses in laboratory animals. The recent cloning of GABA(B) receptor gene products makes it possible to examine the regulation of this receptor system as it relates to the mediation of pain-related sensory information. Inasmuch as acute and chronic pain alter the expression of a number of nociception-related receptors, and because such changes are important components in the regulation of pain, the present study was undertaken to determine whether GABA(B) receptor gene expression is altered in sensory systems following a peripheral nociceptive stimulus. Solution hybridization-nuclease protection assays conducted 24 h after formalin injection into the right hindpaw of the rat revealed a significant bilateral increase in GABA(B) R1 and R2 receptor expression in the dorsal lumbar spinal cord, and a significant increase in GABA(B) R1 receptor mRNA in the ipsilateral lumbar dorsal root ganglion. These findings indicate an activity-dependent, differential regulation of GABA(B) R1 and R2 receptor gene expression in spinal sensory systems in response to chemogenic nociceptive activation, suggesting that GABA(B) receptor plasticity may play an important role in regulating the mediation, and perception, of chronic pain.  相似文献   

5.
Intracranial headaches, including migraines, are mediated by nociceptive activation of the trigeminal nucleus caudalis (TNC), but the precise mechanisms are poorly understood. We previously demonstrated that selective blockage of spinal sigma-1 receptors (Sig-1R) produces a prominent antinociceptive effect in several types of pain models. This study evaluates whether the Sig-1R antagonist (BD1047) has an antinociceptive effect on capsaicin (a potent C-fiber activator) induced headache models in rats. Intracisternal infusion of capsaicin evoked pain behavior (face grooming), which was significantly attenuated by BD1047 pretreatment. BD1047 consistently reduced capsaicin-induced Fos-like immunoreactivity (Fos-LI), a neuronal activator, in the TNC in a dose-dependent manner. Moreover, capsaicin-induced phosphorylation of N-methyl-D-aspartate receptor subunit 1 was reversed by BD1047 pretreatment in the TNC. These results indicate that the Sig-1R antagonist has an inhibitory effect on nociceptive activation of the TNC in the capsaicin-induced headache animal model.  相似文献   

6.

Background

In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain.

Methods

Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum.

Results

Magnesium sulfate administered subcutaneously (0.005–45 mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45 mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity.

Conclusions

Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency.  相似文献   

7.
This study evaluated the effects of different anti-TNFalpha strategies on the nociceptive and inflammatory responses triggered by formalin in the rat orofacial region. Formalin injection (2.5%) into the right upper lip caused a nociceptive response that was biphasic, with the first phase observed between 0 and 3 min and the second phase between 12 and 30 min. Plasma extravasation induced by formalin was time-related and reached the peak at 360 min. The monoclonal antibody anti-TNFalpha (25 and 50 pg/lip) significantly inhibited the second phase of formalin-induced nociceptive behavior, while the first phase remained unaltered. The systemic treatment with the chimeric anti-TNFalpha antibody infliximab also caused a significant inhibition of the second phase. Interestingly, the local administration of infliximab (50 pg/lip) produced a significant reduction of both phases of formalin-induced nociception. In addition, the systemic pretreatment with the preferential inhibitor of TNFalpha synthesis thalidomide (25 and 50 mg/kg, p.o) promoted a marked reduction of the first and second phases of formalin-evoked nociception. The local administration of the monoclonal antibody anti-TNFalpha (25 and 50 pg/lip) or infliximab (50 pg/lip) markedly reduced the plasma extravasation induced by formalin. Otherwise, formalin-elicited plasma extravasation was not significantly affected by the systemic administration of either infliximab (1 mg/kg; s.c) or thalidomide (50 mg/kg, p.o). Present data suggest that blocking TNFalpha effects, through different pharmacological tools, could represent a good alternative to control orofacial inflammatory pain that is refractory to other drugs.  相似文献   

8.
Rats emit ultrasonic vocalizations (USVs) about 22 kHz and 50 kHz sound frequency to communicate the presence of negative or positive emotional states, respectively. The calling behavior may be influenced by several factors, including environmental factors. Likewise, pain behavior can be modulated according to the social context, and also can be transferred to conspecifics through direct observation and/or social interaction. Herein we investigated if acute pain induction was related to changes in emission of aversive and appetitive calls and how different social contexts affected the nociceptive behavior and USVs. Our results demonstrated that orofacial formalin injection in rats induced aversive calls in addition to the nociceptive behavior, and both are reduced by systemic treatment with morphine (2.5 mg/kg). Exposure of formalin-injected rats to cagemates had no effect on the nociceptive behavior or calls emitted by the demonstrator, but the observer showed emotional contagion of pain. In contrast, exposure of formalin-injected rats to non-cagemates decreased the nociceptive behavior of the demonstrator, without affecting the calls emission. The emotional contagion was not detected in non-cagemates or in cagemates separated by a visual barrier. In conclusion, we suggest that familiarity and the visual contact contributes to emotional contagion of pain. USV analysis may represent an additional measure in the evaluation of the emotional aspect of orofacial pain, and for the study of pain modulation.  相似文献   

9.
Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid‐sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1‐like current) and 230.59% (for ASIC3‐like current) in the formalin‐induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain.  相似文献   

10.
This study investigated the role of neurokinin 1 receptors (NK1R) in inflammatory cutaneous orofacial pain. The effects of subcutaneous and intracisternal administration of the NK1R antagonist SR140333 on the face rubbing response provoked by injection of 50 µl of 1.5% formalin into the vibrissa pad were examined. Subcutaneous administration of SR140333 (5, 15, 30 mg/kg) induced a dose-related depressant effect on both the first and second phases of the formalin test. In contrast, intracisternal administration of SR140333 (10, 30, 60, 90 g) produced a decrease only on the second phase with an apparent ceiling effect at approximately 50%. These data suggest that persistent nociceptive effects associated with orofacial cutaneous inflammation depend at least in part on the activation of NK1R.  相似文献   

11.
Carnosine is a biologically active dipeptide that is found in fish and chicken muscle. Recent studies have revealed that carnosine has neuroprotective activity in zinc-induced neural cell apoptosis and ischemic stroke. In the present study, we examined the expression of carnosine in the spinal cord, and the antinociceptive potency of carnosine in a mouse model of inflammation-induced nociceptive pain. Immunohistochemical studies with antiserum against carnosine showed an abundance of carnosine-immunoreactivity in the dorsal horn of the mouse spinal cord. Double-immunostaining techniques revealed that carnosine was expressed in the neurons and astrocytes in the spinal cord. Oral administration of carnosine attenuated the number of writhing behaviors induced by the intraperitoneal administration of 0.6% acetic acid. Treatment with carnosine also attenuated the second phase, but not the first phase, of the nociceptive response to formalin. Moreover, intrathecal, but not intraplanter, administration of carnosine attenuated the second phase of the nociceptive response to formalin. Our immunohistochemical and behavioral data suggest that carnosine has antinociceptive effects toward inflammatory pain, which may be mediated by the attenuation of nociceptive sensitization in the spinal cord.  相似文献   

12.
The present study explored the interaction between histaminergic and opioidergic systems at the level of the hippocampus in modulation of orofacial pain by intra-hippocampal microinjections of histamine, pyrilamine (an antagonist of histamine H(1) receptors), ranitidine (an antagonist of histamine H(2) receptors), morphine (an opioid receptor agonist) and naloxone (an opioid receptor antagonist) in separate and combined treatments. Orofacial pain was induced by subcutaneous (sc) injection of formalin (50 μl, 1%) in the upper lip region and the time spent face rubbing was recorded in 3 min blocks for 45 min. Formalin (sc) produced a marked biphasic (first phase: 0-3 min, second phase: 15-33 min) pain response. Histamine and morphine suppressed both phases of pain. Histamine increased morphine-induced antinociception. Pyrilamine and ranitidine had no effects when used alone, whereas pretreatments with pyrilamine and ranitidine prevented histamine- and morphine-induced antinociceptive effects. Naloxone alone non-significantly increased pain intensity and inhibited the antinociceptive effects of morphine and histamine. The results of the present study indicate that at the level of the hippocampus, histamine through its H(1) and H(2) receptors, mediates orofacial region pain. Moreover, morphine via a naloxone-reversible mechanism produces analgesia. In addition, both histamine H(1) and H(2) receptors, as well as opioid receptors may be involved in the interaction between histamine and morphine in producing analgesia.  相似文献   

13.
The possible anti-inflammatory and antinociceptive effects of nitrendipine, nicardipine, diltiazem and verapamil were examined with formalin test in the rat paw. Pretreatment with these calcium channel blockers 1 h before formalin injection diminished formalin-induced inflammatory changes and nociceptive responses. Formalin-induced nociceptive responses were inhibited 20-90% by the calcium channel blockers. Nitrendipine and nicardipine were found to be highly effective in inhibiting the inflammatory changes, whereas the effects of verapamil and diltiazem were partial. Administration of naloxone affected neither the inflammatory changes and nociceptive responses induced by formalin nor the antiinflammatory and antinociceptive effects of the calcium channel blockers. The results suggest the possible anti-inflammatory and naloxone-insensitive antinociceptive properties of calcium channel blockers.  相似文献   

14.
Statins, belonging to a well-known drug class used for lowering cholesterol through competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, also have other pleiotropic properties, such as anti-inflammatory action. The purpose of this study was to evaluate the antinociceptive and anti-inflammatory effects of simvastatin in five models of nociceptive behaviour. Oral gavage administration of simvastatin induced a dose-dependent inhibition of nociception for 1 day in the acetic acid writhing (ED(50) = 5.59 ± 0.07), tail-flick (ED(50) = 112.96 ± 8.00), hot-plate (ED(50) = 134.87 ± 2.20), formalin hind paw (ED(50) = 19.86 ± 1.12 in phase I and 23.30 ± 2.05 in phase II) and orofacial formalin (ED(50) = 5.54 ± 2.74 in phase I and 11.48 ± 1.88 in phase II) tests. However, after 3 days, the values were in the acetic acid writhing (ED(50) = 6.14 ± 0.51), tail-flick (ED(50) = 154 ± 8.88), hot-plate (ED(50) = 136.14 ± 2.94), formalin hind paw (ED(50) = 15.93 ± 0.42 in phase I and 17.10 ± 1.80 in phase II) and orofacial formalin (ED(50) = 6.79 ± 0.66 in phase I and 5.80 ± 1.49 in phase II) tests. This study demonstrated the antinociceptive and anti-inflammatory activities of simvastatin in five models of tonic or phasic pain. These actions seem to be related to the inhibition of cytokine and prostanoid release and stimulation of nitric oxide synthesis. A possible clinical role of simvastatin could be related to the potentially beneficial effects in the neuropathic pain, and by their pleiotropic properties, they could play a clinical role in anti-inflammatory disease.  相似文献   

15.
The aim of the present study was to investigate the contribution of spinal nitric oxide (NO) to the antinociceptive effects of emulsified isofluane in rats. The formalin test was used to assess nociceptive responses. Immunocytochemistry and histochemistry were performed to determine the effects of emulsified isoflurane on formalin-induced changes in Fos-like immunoreactive (Fos-LI)- and nicotinamide adenine dinucleotide phosphatediaphorase (NADPH-d)-positive neurons, respectively. The results showed that emulsified isofluane, administered intraperitoneally, significantly decreased the formalin-induced paw licking time and that this was attenuated by pretreatment with intrathecal injection of the NO precursor L-arginine. Furthermore, Fos-LI- and NADPH-d-positive neurons were mainly found in the ipsilateral dorsal horn after injection of formalin, some of which were Fos-LI/NADPH-d double-labelled neurons. Administration of emulsified isofluane significantly decreased Fos-LI- and NADPH-d-positive, as well as Fos-LI/NADPH-d double-labelled, neurons. Finally, emulsified isofluane produced a significant reduction of NOS activity and a decrease of NO production in the spinal cord of formalin-treated rats. In conclusion, the results suggest that inhibition of spinal NO production contributes to the antinociceptive effects of emulsified isofluane on formalin-induced pain in rats.  相似文献   

16.
Nitric oxide (NO), a diffusible gas, is produced in the central nervous system, including the spinal cord dorsal horn and the trigeminal nucleus, the first central areas processing nociceptive information from periphery. In the spinal cord, it has been demonstrated that NO acts as pronociceptive or antinociceptive mediators, apparently in a concentration-dependent manner. However, the central role of NO in the trigeminal nucleus remains uncertain in support of processing the orofacial nociception. Thus, we here investigated the central role of NO in formalin (3%)-induced orofacial pain in rats by administering membrane-permeable or -impermeable inhibitors, relating to the NO signaling pathways, into intracisternal space. The intracisternal pretreatments with the NO synthase inhibitor L-NAME, the NO-sensitive guanylate cyclase inhibitor ODQ, and the protein kinase C inhibitor GF109203X, all of which are permeable to the cell membrane, significantly reduced the formalin-induced pain, whereas the membrane-impermeable NO scavenger PTIO significantly enhanced it, compared to vehicle controls. These data suggest that an overall effect of NO production in the trigeminal nucleus is pronociceptive, but NO extracellularly diffused out of its producing neurons would have an antinociceptive action.  相似文献   

17.
Signs and symptoms of persistent pain are associated with neuronal hyperexcitability within nociceptive pathways. This manifests behaviourally as a decrease in the nociceptive threshold to sensory stimulation, and is closely correlated with altered affective pain processing and increased expression of anxiety-like symptoms. Anticonvulsant drugs can have marked analgesic actions in animals and humans, and some have also been reported to possess anxiolytic-like properties in animals. In the current study, we have compared the antinociceptive actions of diazepam (allosteric GABA(A) receptor modulator), gabapentin (binds to alpha(2)delta Ca(2+) channel subunit), lamotrigine, riluzole and phenytoin (Na(+) channel blockers), levetiracetam (unknown mechanism), sodium valproate (potentiates GABA-mediated inhibition), ethosuximide (T-type Ca(2+) channel blocker) and retigabine (K(v)7 channel opener) in the rat formalin test, with their anxiolytic actions in the rat conditioned emotional response (CER) model of anxiety. Lamotrigine, gabapentin, riluzole, retigabine and ethosuximide attenuated second phase nociceptive responses in the formalin test. Lamotrigine, gabapentin and riluzole also displayed an anxiolytic-like profile in the CER model. Notably, the minimum doses of these drugs required to attenuate anxiety behaviour were similar to, or considerably lower than those needed to reverse pain-like behaviours. Diazepam was anxiolytic but only attenuated pain-like behaviours at sedative doses. The other drugs tested were inactive in both models. Our data suggests: (i) an antiepileptic mechanism of action per se is not necessarily sufficient for a compound to display antinociceptive and/or anxiolytic actions; and (ii) the combined antinociceptive and anxiolytic-like profiles of lamotrigine, gabapentin and riluzole suggests that these compounds likely modulate both sensory and affective dimensions of pain.  相似文献   

18.
Aim: To investigate the validity and sensitivity of an automatic movement detection system developed by our laboratory for the formalin test in rats. Methods:The effects of systemic morphine and local anesthetic lidocaine on the nociceptive behaviors induced by formalin subcutaneously injected into the hindpaw were examined by using an automated movement detection system and manual measuring methods. Results: Formalin subcutaneously injected into the hindpaw produced typical biphasic nociceptive behaviors (agitation). The mean agitation event rate during a 60-min observation period increased linearly following increases in the formalin concentration (0.0%, 0.5%, 1.5%, 2.5%, and 5%, 50 μL). Systemic application of morphine of different doses (1, 2, and 5 mg/kg) 10-min prior to formalin injection depressed the agitation responses induced by formalin injection in a dose-dependent manner, and the antinociceptive effect induced by the largest dose (5 mg/kg) of morphine was significantly antagonized by systemic application of the opioid receptor antagonist naloxone (1.25 mg/kg). Local anesthetic lidocaine (20 mg/kg) injected into the ipsilateral ankle subskin 5-min prior to formalin completely blocked the agitation response to formalin injection. These results were comparable to those obtained from manual measure of the incidence of flinching or the duration time of licking/biting of the injected paw. Conclusion: These data suggest that this automated movement detection system for formalin test is a simple, validated measure with good pharmacological sensitivity suitable for discovering novel analgesics or investigating central pain mechanisms.  相似文献   

19.
We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund''s adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions.  相似文献   

20.
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the management of acute and chronic pain. The role of the opioid system in the synergism between NSAIDs is not well characterized. Mice were injected with a 5% formalin solution (20 μl) into the upper right lip to perform an orofacial formalin test. The isobolographic method was used to determine the interaction between dexketoprofen, which is the (S)-(+) enantiomer of ketoprofen, and meloxicam co-administration. Additionally, the non-selective, opioid antagonist naltrexone, the selective δ opioid receptor (DOP) antagonist naltrindole and the selective κ opioid receptor (KOP) antagonist norbinaltorphimine were used to assess the opioid effects on this interaction. Intraperitoneal administration of dexketoprofen or meloxicam induced dose-dependent antinociception with different phase I and phase II potencies in the orofacial formalin test. Meloxicam displayed similar potencies (ED(50)) in phase I (7.20 mg/kg) and phase II (8.60 mg/kg). Dexketoprofen was more potent in phase I (19.96 mg/kg) than in phase II (50.90 mg/kg). The interactions between dexketoprofen and meloxicam were synergistic in both phases. This was determined based on the fixed ratios (1:1) of their ED(50) values, which were determined by isobolographic analysis. Furthermore, this antinociceptive activity does not seem to be modulated by opioid receptor blockers because they did not induce changes in the nature of this interaction. This finding may be relevant with regards to NSAID multi-modal analgesia where an opioid antagonist must be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号