首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary. Background: P2Y12 plays an important role in regulating platelet aggregation and function. This receptor is the primary target of thienopyridine antiplatelet agents, the active metabolites of which bind irreversibly to the receptor, and of newer agents that can directly and reversibly modulate receptor activity. Objective: To characterize the receptor biology of the first reversibly binding oral P2Y12 antagonist, ticagrelor (AZD6140), a member of the new cyclopentyltriazolopyrimidine (CPTP) class currently in phase III development. Methods: Ticagrelor displayed apparent non‐competitive or insurmountable antagonism of ADP‐induced aggregation in human washed platelets. This was investigated using competition binding against [3H]ADP, [33P]2MeS‐ADP and the investigational CPTP compound [125I]AZ11931285 at recombinant human P2Y12. Functional receptor inhibition studies were performed using a GTPγS‐binding assay, and further binding studies were performed using membranes prepared from washed human platelets. Results: Radioligand‐binding studies demonstrated that ticagrelor binds potently and reversibly to human P2Y12 with Kon and Koff of (1.1 ± 0.2) × 10?4 nm ?1 s?1 and (8.7 ± 1.4) × 10?4 s?1, respectively. Ticagrelor does not displace [3H]ADP from the receptor (Ki > 10 μm ) but binds competitively with [33P]2MeS‐ADP (Ki = 4.3 ± 1.3 nm ) and [125I]AZ11931285 (Ki = 0.33 ± 0.04 nm ), and shows apparent non‐competitive inhibition of ADP‐induced signaling but competitive inhibition of 2MeS‐ADP‐induced signaling. Binding studies on membranes prepared from human washed platelets demonstrated similar non‐competitive binding for ADP and ticagrelor. Conclusions: These data indicate that P2Y12 is targeted by ticagrelor via a mechanism that is non‐competitive with ADP, suggesting the existence of an independent receptor‐binding site for CPTPs.  相似文献   

2.
Summary.  A number of new antiplatelet agents currently in development are anticipated to improve clinical outcomes and safety benefits in patients with acute coronary syndrome (ACS). This article reviews the pharmacology and clinical development of three of these agents: prasugrel, cangrelor, and ticagrelor. Prasugrel, a third-generation, oral thienopyridine, has been shown to be superior to clopidogrel, the current gold standard, in preventing ischemic events in patients with ACS undergoing percutaneous coronary intervention (PCI), although the bleeding rate was higher. Cangrelor, a chemical analog of adenosine triphosphate, is a potent direct platelet P2Y12 antagonist. In development as an intravenous agent, cangrelor is currently being evaluated in two phase III studies in patients requiring PCI. Ticagrelor is the first of a new class of orally available antiplatelet agents antagonizing the effects of ADP mediated by P2Y12; it is currently being studied in a phase III trial in patients with ACS.  相似文献   

3.
Summary.  The platelet P2X1 purinergic receptor is a ligand-gated ion channel that responds to ATP. The precise role of P2X1 in platelet function is unknown, though stimulation with the P2X1 agonist α,β-Me-ATP is known to result in platelet shape change through elevation of calcium levels. The aim of the present study was to examine further the effects of P2X1 stimulation on platelet activation. Stimulation of P2X1 with α,β-Me-ATP resulted in shape change and small aggregate formation in heparin-anticoagulated platelet preparations. Given the ability of heparin to potentiate platelet activation, subsequent experiments were performed in hirudin. In these platelet preparations, aggregate formation in response to α,β-Me-ATP alone was less than that observed in heparin; however, α,β-Me-ATP significantly potentiated platelet aggregate formation when added in conjunction with other weak platelet agonists [epinephrine or thrombopoietin (TPO)]. Platelet aggregate formation was confirmed by single platelet loss (microaggregate formation), microscopy, and light transmittance studies. Further, the P2X1 antagonist MRS-2159 inhibited platelet shape change and aggregation responses induced by α,β-Me-ATP. Overall, this study demonstrates that P2X1 stimulation can induce/potentiate platelet activation in combination with other platelet agonists. These results are the first demonstration of platelet aggregation mediated through direct P2X1 stimulation, supporting a role for this receptor in regulating platelet activation.  相似文献   

4.
Summary.  The P2Y12 ADP receptor is one of the major regulators of platelet activation and the target of antithrombotic thienopyridines (ticlopidine and clopidogrel). It has been recently cloned but the signaling pathways triggered by this receptor are still poorly documented. Here, we show that stimulation of the human P2Y12 receptor stably expressed in Chinese hamster ovary cells activates two major intracellular signaling mechanisms leading either to cell proliferation or to actin cytoskeleton reorganization. Both effects were blocked by the active metabolite of clopidogrel, a specific antagonist of P2Y12. The P2Y12-mediated stimulation of proliferation required the pertussis toxin-sensitive activation of PI3-kinase/Akt upstream of MAP-kinases. A partial contribution of a transactivation mechanism, through the tyrosine kinase receptor platelet-derived growth factor (PDGF)-R-β, was also observed. Conversely, the P2Y12-mediated reorganization of the actin cytoskeleton was Gi-independent, requiring activation of RhoA and Rho-kinase. Our results provide new insights into the molecular basis of P2Y12-mediated intracellular signaling. These data may prove to be useful for a better understanding of the physiological role of P2Y12, particularly in platelets and glial cells which express this important therapeutic target.  相似文献   

5.
OBJECTIVE: Platelet integrin alpha(IIb)beta3 plays a crucial role in platelet aggregation, and the affinity of alpha(IIb)beta3 for fibrinogen is dynamically regulated. Employing modified ligand-binding assays, we analyzed the mechanism by which alpha(IIb)beta3 maintains its high-affinity state. METHODS AND RESULTS: Washed platelets adjusted to 50 x 10(3) microL(-1) were stimulated with 0.2 U mL(-1) thrombin or 5 microm U46619 under static conditions. After the completion of alpha(IIb)beta3 activation and granule secretion, different kinds of antagonists were added to the activated platelets. The activated alpha(IIb)beta3 was then detected by fluorescein isothiocyanate (FITC)-labeled PAC1. The addition of 1 mum AR-C69931MX (a P2Y12 antagonist) or 1 mm A3P5P (a P2Y1 antagonist) disrupted the sustained alpha(IIb)beta3 activation by approximately 92% and approximately 38%, respectively, without inhibiting CD62P or CD63 expression. Dilution of the platelet preparation to 500 microL(-1) also disrupted the sustained alpha(IIb)beta3 activation, and the disruption by such dilution was abrogated by the addition of exogenous adenosine 5'-diphosphate (ADP) in a dose-dependent fashion. The amounts of ADP released from activated platelets determined by high-performance liquid chromatography were compatible with the amounts of exogenous ADP required for the restoration. We next examined the effects of antagonists on protein kinase C (PKC) and Rap1B activation induced by 0.2 U mL(-1) thrombin. Thrombin induced long-lasting PKC and Rap1B activation. AR-C69931MX markedly inhibited Rap1B activation without inhibiting PKC activation. CONCLUSIONS: Our data indicate that the continuous interaction between released ADP and P2Y12 is critical for the maintenance of alpha(IIb)beta3 activation.  相似文献   

6.
Summary.  In order to investigate the role of the platelet P2Y1 receptor in several aspects of platelet activation and thrombosis, transgenic (TG) mice overexpressing this receptor specifically in the megakaryocytic/platelet lineage were generated using the promoter of the tissue-specific platelet factor 4 gene. Studies of the saturation binding of [33P]2MeSADP in the presence or absence of the selective P2Y1 antagonist MRS2179 indicated that wild-type (WT) mouse platelets bore 150 ± 31 P2Y1 receptors and TG platelets 276 ± 34, representing an 84% increase in P2Y1 receptor density. This led to a well defined phenotype of platelet hyper-reactivity in vitro, as shown by increased aggregations in response to adenosine 5'-diphosphate (ADP) and low concentration of collagen in TG as compared with WT platelets. Moreover, overexpression of the P2Y1 receptor enabled ADP to induce granule secretion, unlike in WT platelets, which suggests that the level of P2Y1 expression is critical for this event. Our results further suggest that the weak responses of normal platelets to ADP are due to a limited number of P2Y1 receptors rather than to activation of a specific transduction pathway. TG mice displayed a shortened bleeding time and an increased sensitivity to in vivo platelet aggregation induced by infusion of a mixture of collagen and epinephrine. Overall, these findings emphasize the importance of the P2Y1 receptor in hemostasis and thrombosis and suggest that variable expression levels of this receptor on platelets might play a role in thrombotic states in human, which remains to be assessed.  相似文献   

7.
BACKGROUND: Thromboxane A2 (TXA2) is a positive feedback lipid mediator that is generated upon stimulation of platelets with various agonists. Aspirin works as an antithrombotic drug by blocking the generation of TXA2. The aim of this study was to evaluate the role of the purinergic P2Y receptors in thrombin-induced TXA2 generation. RESULTS: PAR1-activating peptide (SFLLRN), PAR4-activating peptide (AYPGKF), and thrombin, induced the activation of cytosolic phospholipase A2 (cPLA2), release of arachidonic acid (AA) from membrane-bound phospholipids, and subsequent TXA2 generation in human platelets. The actions of these agonists were significantly inhibited in the presence of the P2Y12 receptor antagonist, AR-C69931MX, but not the P2Y1 receptor antagonist, MRS2179. In addition, AYPGKF- and thrombin-induced TXA2 generation was significantly reduced in platelets from mice dosed with clopidogrel, confirming the results obtained with the human platelets. Also, Pearl mouse platelets that lack releasable nucleotides generated significantly less TXA2 when compared with the wild-type littermates in response to PAR stimulation. Inhibition of extracellular signal-regulated protein kinase 1/2 (Erk 1/2) activation using U0126, an inhibitor of MAP kinase kinase (MEK), suppressed PAR-mediated cPLA2 phosphorylation and TXA2 generation. Further, platelets that were pretreated with AR-C69931MX, as well as Pearl mouse platelets, displayed the reduced levels of Erk1/2 phosphorylation upon stimulation with the PAR agonists. CONCLUSIONS: Based on these findings, we conclude that thrombin-induced Erk1/2 activation is essential for PAR-mediated TXA2 generation, which is potentiated by the P2Y12 receptor-mediated signaling pathway but not the P2Y1 receptor-mediated signaling pathway. Finally, using selective inhibitors of Src kinases, we show that PAR-mediated Src activation precedes Erk1/2 activation.  相似文献   

8.
9.
Cardiovascular complications are common in systemic lupus erythematosus (SLE) and myocardial infarctions are the leading cause of increased mortality. The ADP receptor P2Y(12) plays a central role in platelet activation and the P2Y(12) blocker clopidogrel reduces the incidence of cardiovascular events. Clusterin, a complement inhibitory protein suggested to be involved in the pathogenesis of SLE, has been found recently in a microarray study to be expressed at very high levels in platelets. Using a new protocol for mRNA quantification in platelets we set out to study if gene expression is altered in SLE patients compared with a healthy control group. Quantitative assay based on real-time PCR was used to measure mRNA expression, Western blot for P2 receptor protein expression and PFA-100 for platelet aggregation. The P2Y(12) receptor expression was decreased in SLE compared to the controls (P < 0.05), while expression of P2Y(1) and P2X(1) were unaltered. These findings were consistent at the protein level. The clusterin mRNA expression was very high. However, SLE patients had significantly lower levels than controls (P < 0.05). Platelet aggregation was similar in both groups. It may be suggested that a decreased level of P2Y(12) receptors could represent a protective response in SLE against thrombotic complications. Lowered clusterin levels could be involved in the pathogenesis of SLE due to decreased protective effects. These findings could help to achieve a better understanding of the platelet function in SLE and serve as a guide for further research and drug use.  相似文献   

10.
Summary.  Previous studies in experimental models revealed a role for the P2Y1 platelet ADP receptor in systemic vascular thromboembolism models. In the present work, we used models of localized arterial and venous thrombosis to assess the role of the P2Y1 receptor in these processes. Arterial thrombosis was induced in one mesenteric arteriole of a mouse using FeCl3, while venous thrombosis was studied in a Wessler model adapted to rats. P2Y1-deficient mice and mice treated with the P2Y1 antagonist MRS2179 displayed significantly less arterial thrombosis than their respective controls. Combination of P2Y1 deficiency with P2Y12 inhibition led to a significant additive effect. Venous thrombosis was slightly but significantly inhibited in MRS2179-treated rats. These results demonstrate a role for the P2Y1 receptor in both arterial and venous thrombosis, further establishing this receptor as a potential target for antithrombotic drugs.  相似文献   

11.
ADP is important in propagating hemostasis upon its secretion from activated platelets in response to other agonists. Lipid rafts are microdomains within the plasma membrane that are rich in cholesterol and sphingolipids, and have been implicated in the stimulatory mechanisms of platelet agonists. We sought to determine the importance of lipid rafts in ADP-mediated platelet activation via the G protein-coupled P2Y1 and P2Y12 receptors using lipid raft disruption by cholesterol depletion with methyl-beta-cyclodextrin. Stimulation of cholesterol-depleted platelets with ADP resulted in a reduction in the extent of aggregation but no difference in the extent of shape change or intracellular calcium release. Furthermore, repletion of cholesterol to previously depleted membranes restored ADP-mediated platelet aggregation. In addition, P2Y12-mediated inhibition of cAMP formation was significantly decreased upon cholesterol depletion from platelets. Stimulation of cholesterol-depleted platelets with agonists that depend upon Galpha(i) activation for full activation displayed significant loss of aggregation and secretion, but showed restoration when simultaneously stimulated with the Galpha(z)-coupled agonist epinephrine. Finally, Galpha(i) preferentially localizes to lipid rafts as determined by sucrose density centrifugation. We conclude that Galpha(i) signaling downstream of P2Y12 activation, but not Galpha(q) or Galpha(z) signaling downstream of P2Y1 or alpha2A activation, respectively, has a requirement for lipid rafts that is necessary for its function in ADP-mediated platelet activation.  相似文献   

12.
P2X1 receptors are ATP-gated channel demonstrated to be involved in multiple platelet responses, although in vitro analysis has been complicated by the effects of rapid desensitization. To further investigate potential roles of P2X1 receptors in platelet activation, the current study employed methods which maximally preserved P2X1 functionality. In preliminary in vivo studies, P2X1-deficiency reduced thrombus formation following the laser-induced, but not FeCl3-induced injury. Given the multiple potential mechanisms involved in thrombus formation in vivo, including tissue-factor/thrombin generation pathways, subsequent studies were designed to investigate the effects of P2X1 inhibition or stimulation on platelet activation in vitro; specifically, the interaction of P2X1 with thrombin receptor stimulation. Aggregation initiated by low/threshold levels of a protease-activated receptor (PAR)4 agonist was reduced in P2X1-deficient murine platelets, and inhibition of P2X1 in wild-type platelets similarly reduced PAR4-mediated aggregation. In human platelets, aggregation to low/threshold stimulation of PAR1 was inhibited with the P2X1 antagonist MRS2159. In addition, P2X1 stimulation primed human platelet responses, such that subsequent sub-threshold PAR1 responses were converted into significant aggregation. Selective ADP receptor inhibitors attenuated P2X1-mediated priming, suggesting that the synergy between P2X1 and sub-threshold PAR1 stimulation was in part because of enhanced granular release of ADP. Overall, the present study defines a novel interaction between platelet P2X1 and thrombin receptors, with P2X1 functioning to amplify aggregation responses at low levels of thrombin receptor stimulation.  相似文献   

13.
Summary.  Background:  Agents that act as antagonists at P2Y12 ADP receptors on platelets are in use (clopidogrel), and in development for use (cangrelor and prasugrel), in patients with cardiovascular disease. Cangrelor is a direct-acting reversible antagonist being developed for short-term infusion; clopidogrel and prasugrel are oral prodrugs that provide irreversible inhibition via transient formation of active metabolites. At the cessation of cangrelor infusion, patients are likely to receive clopidogrel or prasugrel as a means of maintaining antiplatelet therapy. Objectives:  To apply an experimental in vitro approach to investigate the possibility that cangrelor influences the ability of the active metabolites of clopidogrel and prasugrel to inhibit ADP-mediated platelet function. Methods:  The effects of cangrelor and the active metabolites of clopidogrel (C-AM) and prasugrel (P-AM) on platelet function were assessed by ADP-induced platelet P-selectin expression in whole blood. The method involved rapid removal of the antagonists by dilution, and measurement of residual platelet inhibition. Results:  Cangrelor, C-AM and P-AM markedly inhibited P-selectin expression. The effect of cangrelor, but not of C-AM and P-AM, was reversible following antagonist removal. Preincubation of blood with cangrelor prior to addition of C-AM or P-AM reduced the ability of metabolites to irreversibly antagonize P2Y12. Irreversible inhibition was maintained when blood was preincubated with metabolites prior to cangrelor. Conclusions:  Cangrelor influences the ability of the active metabolites of clopidogrel or prasugrel to inhibit platelet function irreversibly. Careful consideration should be given to the timing of administration of an oral P2Y12 antagonist following cangrelor infusion.  相似文献   

14.
Summary. A paired study in 10 autologous volunteer donors was undertaken to investigate the efficacy of adding prostaglandin E1 (PGE1) in vitro during routine platelet concentrate (PC) production. After 5 days storage, PCs prepared with PGE1 were compared with control PCs. In vivo platelet recovery, survival and biodistribution were determined following autologous infusion of indium-111 labelled platelets into volunteers, together with the in vitro evaluation of platelet function and biochemistry. PGE1 facilitated easier and faster platelet resuspension following centrifugation. After storage there were few significant in vitro differences between PCs prepared with PGE1 and control PCs. The artifactual leucocyte concentration was significantly lower in the presence of PGE1, suggesting less platelet aggregates had been formed during storage and β-thromboglobulin release was significantly reduced by PGE1, 14.0±6.0 μg per 109platelets compared with 22.3±9.8μg per 109platelets in control PCs, (P < 0.01), indicating PGE1 reduced both platelet aggregation and activation probably at the initial preparation stage, known to produce the greatest trauma. Initial in vivo platelet recovery for PCs prepared with PGE1 was similar to that of control PCs, 41.1 ± 12.5% vs. 44.4±80%, respectively, and there were no differences in organ distribution at 24h. However, in vivo multiple hit survival was reduced in the presence of PGE1, 5.8 ± 1.6 days compared with 6.9 ± 1.4 days in control PCs (P < 0.05). Despite the ability of PGE1 to facilitate platelet resuspension and inhibit platelet aggregation and activation during preparation of the PCs, the reduced in vivo survival time may preclude the use of PGE1 during routine PC preparation.  相似文献   

15.
The functional significance of extracellular signal-regulated kinase 2 (ERK2) activation was investigated during shear induced human platelet aggregation (SIPA) in vitro and during shear controlled thrombosis in vivo in intestinal arterioles and venules of wild type (WT) and transgenic (TG) mice with platelet-specific overexpression of human P2X(1) (TG). In SIPA, ERK2 was rapidly phosphorylated during GPIb stimulation, its activation contributing to SIPA for 50%, independently of P2X(1) regulation. Thrombotic occlusion of injured arterioles occurred considerably faster in TG (4.3 +/- 2.3 min) than in WT (38 +/- 8 min) arterioles, but occlusion times in TG (19 +/- 12) and WT (48 +/- 4.5 min) venules differed less. Both the alphabeta-meATP triggered desensitization of platelet P2X(1), as well as P2X(1) antagonism by NF279 or NF449 prolonged mean occlusion to about 75 min in WT and 65 min in TG arterioles, but venular occlusion times were less affected. Preventing ERK2 activation by U0126 prolonged occlusion times in TG (41 +/- 10 min) and WT (51 +/- 17) arterioles more than in TG (46 +/- 5 min) and WT (56 +/- 6 min) venules, uncovering a role for ERK2 in shear controlled thrombosis. Antagonism of GPIb by a recombinant murine von Willebrand factor (VWF)-A1 fragment prolonged occlusion times to comparable values, ranging from 55 to 58 min, both in TG and WT arterioles and venules. Further inhibition strategies, combining VWF-A1, U0126 and NF449 in WT and TG mice and resulting in occlusion in various time windows, identified that inhibition by VWF-A1 largely abrogated the ERK2 contribution to thrombosis. In conclusion, P2X(1) and ERK2 both participate in shear stress controlled thrombosis, but ERK2 activation is initiated predominantly via GPIb-VWF interactions.  相似文献   

16.
17.
BACKGROUND: Activation of two receptors for adenosine diphosphate (ADP), P2Y(1) and P2Y(12), is necessary for ADP-induced platelet aggregation (PA). It is generally believed that the antithrombotic effects of drugs inhibiting P2Y(12), such as clopidogrel, are uniquely mediated by inhibition of P2Y(12)-dependent PA. However, as P2Y(12) is negatively coupled to adenylyl cyclase (AC), its inhibition may also exert antithrombotic effects through the potentiation of prostacyclin (PGI(2)), which inhibit PA by stimulating AC. OBJECTIVES: To test whether inhibition of P2Y(12) potentiates the antiplatelet effects of PGI(2). METHODS: We measured the effects of PGI(2) (0.01-10 microm) on PA of washed human platelets induced by thrombin (0.5 U mL(-1)) in the presence or absence of ARC69931MX (anti-P2Y(12)) or MRS2500 (anti-P2Y(1)). Results: PGI(2) inhibited PA in the presence of anti-P2Y(12), but not in the presence of anti-P2Y(1) or in the absence of inhibitors. In contrast, dibutyryl-cyclicAMP inhibited PA both in the presence and absence of anti-P2Y(1) or anti-P2Y(12). PGI(2) increased platelet cyclicAMP levels only in the absence of thrombin or in the presence of thrombin plus anti-P2Y(12). CONCLUSIONS: PGI(2) did not inhibit PA induced by thrombin, because its effect on AC was prevented by released ADP interacting with P2Y(12). Anti-P2Y(12) drugs, by rescuing AC activity, potentiate the antiplatelet effect of PGI(2), which may contribute to their antithrombotic effect.  相似文献   

18.
Summary. Background: Platelet adhesion promoted by integrin  α2β1 induces integrin  αIIbβ3 activation through the phospholipase C (PLC)‐dependent stimulation of the small GTPase Rap1b. Objective: To analyze the mechanism of PLC activation downstream of α2β1 that is required for regulation of Rap1b and αIIbβ3. Methods: Human and murine platelets were allowed to adhere to immobilized type I monomeric collagen through α2β1. Tyrosine phosphorylation of PLCγ2, PLC activation, accumulation of GTP‐bound Rap1b and fibrinogen binding were measured and compared. Results: Integrin  α2β1 recruitment induced an evident PLC activation that was concomitant with robust tyrosine phosphorylation of PLCγ2, and was suppressed in platelets from PLCγ2‐knockout mice. Moreover, PLCγ2?/? platelets were unable to accumulate active Rap1b and to activate αIIbβ3 upon adhesion through α2β1. Inhibition of Src kinases completely prevented tyrosine phosphorylation of PLCγ2 in adherent platelets, but did not affect its activation, and both Rap1b and αIIbβ3 stimulation occurred normally. Importantly, αIIbβ3‐induced phosphorylation and activation of PLCγ2, as well as accumulation of active Rap1b, were totally suppressed by Src inhibition. Integrin  α2β1 recruitment triggered the Src kinase‐independent activation of the small GTPase Rac1, and activation of Rac1 was not required for PLCγ2 phosphorylation. However, when phosphorylation of PLCγ2 was blocked by the Src kinase inhibitor PP2, prevention of Rac1 activation significantly reduced PLCγ2 activation, GTP‐Rap1b accumulation, and αIIbβ3 stimulation. Conclusions: Src kinases and the Rac GTPases mediate independent pathways for PLCγ2 activation downstream of α2β1.  相似文献   

19.
Platelet aggregation induced by collagen, ADP and epinephrine, was monitored in 150 type-II patients (115 type IIA and 35 type IIB) and compared with a reference group of normolipidaemic controls; in addition, malondialydehyde formation and thromboxane B2 were examined in a subsample of the type-IIA patients. Threshold aggregatory concentrations were significantly lower in the whole group of type-II patients for all three aggregating agents; no difference in terms of aggregatory response was detected between platelets from type-IIA and -IIB patients. Only 56% of type-II patients, however, exceeded the 95th percentile of the threshold aggregatory concentrations in controls. The formation of malondialdehyde in platelet-rich plasma stimulated with thrombin and collagen, was significantly higher in platelets from type-IIA patients. The production of thromboxane B2 by platelets, from endogenous arachidonic acid in type-IIA patients, was significantly higher and exceeded the highest level found in controls.  相似文献   

20.
In this study, we have identified a patient (OSP-1) with a congenital P2Y12 deficiency showing a mild bleeding tendency from her childhood and examined the role of P2Y12 in platelet function. At low concentrations of agonists OSP-1 platelets showed an impaired aggregation to several kinds of stimuli, whereas at high concentrations they showed a specifically impaired platelet aggregation to adenosine diphosphate (ADP). ADP normally induced platelet shape change and failed to inhibit PGE1-stimulated cAMP accumulation in OSP-1 platelets. Molecular genetic analysis revealed that OSP-1 was a homozygous for a mutation in the translation initiation codon (ATG to AGG) in the P2Y12 gene. Heterologous cell expression of wild-type or mutant P2Y12 confirmed that the mutation was responsible for the deficiency in P2Y12. OSP-1 platelets showed a markedly impaired platelet spreading onto immobilized fibrinogen. Real-time observations of thrombogenesis under a high shear rate (2000 s(-1)) revealed that thrombi over collagen were small and loosely packed and most of the aggregates were unable to resist against high shear stress in OSP-1. Our data suggest that secretion of endogenous ADP and subsequent P2Y12-mediated signaling are critical for platelet aggregation, platelet spreading, and as a consequence, for stabilization of thrombus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号