首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metastasis of benign tumor cells in tuberous sclerosis complex   总被引:4,自引:0,他引:4  
Lymphangiomyomatosis (LAM) is a life-threatening lung disease affecting almost exclusively young women. Histologically, LAM is characterized by the diffuse, bilateral proliferation of abnormal smooth muscle cells and cystic degeneration of the lung parenchyma. LAM can occur as an isolated disorder (sporadic LAM), or in women with tuberous sclerosis complex (TSC-LAM). Patients with both sporadic LAM and TSC-LAM often have benign renal angiomyolipomas. The smooth muscle cells within the angiomyolipomas are very similar to the smooth muscle cells in pulmonary LAM. Genetic data suggest that pulmonary LAM is the result of a highly unusual disease mechanism: the metastasis of benign cells. If LAM is the result of metastasis, it is remarkable that the metastasis occurs in women, but not in men. In this review, I discuss the genetic data supporting this metastatic model for LAM. The implications of the model for the functions of the TSC1 and TSC2 gene products, hamartin and tuberin, respectively, will also be considered. Hamartin and tuberin may play functional roles in the suppression of cell migration and/or metastasis, possibly through their regulation of the small GTPase Rho.  相似文献   

2.
The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells. We show that primary cultures of human LAM cells exhibit increased migratory activity and invasiveness, which is abolished by TSC2 re-expression. We found that TSC2 also inhibits cell migration through its N-terminus, independent of its GTPase-activating protein activity. LAM cells show increased stress fiber and focal adhesion formation, which is attenuated by TSC2 re-expression. The small GTPase RhoA is activated in LAM cells compared with normal human mesenchymal cells. Pharmacologic inhibition of Rho activity abrogates LAM cell migration; RhoA activity was also abolished by TSC2 re-expression or TSC1 knockdown with specific siRNA. These data demonstrate that TSC2 controls cell migration through its N-terminus by associating with TSC1 and regulating RhoA activity, suggesting that TSC2 may play a critical role in modulating cell migration and invasiveness, which contributes to the pathobiology of LAM.  相似文献   

3.
4.
The interstitial lung disease lymphangioleiomyomatosis (LAM) is characterized by diffuse proliferation of smooth muscle cells (SMCs), which in many patients show TSC2 (tuberin) gene mutations, in addition to thickening of interstitial tissues, loss of alveoli, and the development of cystic spaces. While SMC proliferation is the defining feature of LAM, a significant proportion of LAM lung tissue consists of expanded interstitial connective tissue that is negative for smooth muscle actin and TSC2 mutations. The importance of this actin-negative interstitial tissue to the pathophysiology of LAM is not clear. The present study has determined the contribution of this interstitial tissue to LAM lung volume by morphometric analysis and has examined its cell and matrix proteoglycan composition by immunohistochemistry. Lung tissue from nine LAM patients and four control subjects was examined. LAM lung contained twice as much interstitial tissue as control lung (27% versus 13% of total lung volume), with SMCs accounting for less than 25% of the interstitial volume. Areas of interstitial tissue stained strongly for the matrix proteoglycans versican and biglycan. Decorin was prominent in association with collagen bundles. SMCs did not stain, or stained lightly, for proteoglycans. Versican and biglycan deposits were closely associated with actin-negative interstitial fibroblasts identified by prolyl 4-hydroxylase immuno-staining. Comparatively normal alveolar walls in LAM lung also stained strongly for versican and had a reduced elastin content. Thickened interstitial regions contained significant amounts of elastin (approximately 13% of interstitial volume) but with fibres in disorganized patterns. Elastic fibres were absent from areas that stained strongly for versican and biglycan. These areas also showed weak staining for elastin binding protein (EBP), consistent with proteoglycan-induced shedding of EBP and inhibition of elastic fibre formation. These findings point to a significant contribution from matrix proteoglycans to the expanded and remodelled interstitial lung tissue of LAM patients.  相似文献   

5.
In addition to its effects on bone metabolism, osteoprotegerin (OPG), a soluble member of the tumor necrosis factor family of receptors, promotes smooth muscle cell proliferation and migration and may act as a survival factor for tumor cells. We hypothesized that these cellular mechanisms of OPG may be involved in the growth and proliferation of lymphangioleiomyomatosis (LAM) cells, abnormal smooth muscle-like cells with mutations in one of the tuberous sclerosis complex tumor-suppressor genes (TSC1/TSC2) that cause LAM, a multisystem disease characterized by cystic lung destruction, lymphatic infiltration, and abdominal tumors. Herein, we show that OPG stimulated proliferation of cells cultured from explanted LAM lungs, and selectively induced migration of LAM cells identified by the loss of heterozygosity for TSC2. Consistent with these observations, cells with TSC2 loss of heterozygosity expressed the OPG receptors, receptor activator of NF-κB ligand, syndecan-1, and syndecan-2. LAM lung nodules showed reactivities to antibodies to tumor necrosis factor–related apoptosis-inducing ligand, receptor activator of NF-κB ligand, syndecan-1, and syndecan-2. LAM lung nodules also produced OPG, as shown by expression of OPG mRNA and colocalization of reactivities to anti-OPG and anti-gp100 (HMB45) antibodies in LAM lung nodules. Serum OPG was significantly higher in LAM patients than in normal volunteers. Based on these data, it appears that OPG may have tumor-promoting roles in the pathogenesis of lymphangioleiomyomatosis, perhaps acting as both autocrine and paracrine factors.Osteoprotegerin (OPG; TNFRSF11B), a soluble member of the tumor necrosis factor (TNF) receptor family, is best known as a regulator of bone metabolism that promotes bone formation by inhibiting osteoclast development, thus protecting against osteoporosis.1,2 OPG, acting as a decoy receptor, binds to receptor activator of NF-κB ligand (RANKL), preventing the interaction of RANKL with its receptor RANK, resulting in the inhibition of osteoclast activation and bone resorption. Polymorphisms in the OPG gene have been linked to development of osteoporosis.3–6 Patients with juvenile Paget disease, a rare inherited disease affecting children, show increased bone turnover, leading to skeletal deformity. Mutations in the OPG gene determine the severity of the juvenile Paget disease phenotype,7 with the loss of the entire gene or mutations leading to the loss of OPG structure resulting in a severe phenotype.More recently, the role of OPG in vascular cell biological characteristics has been studied. OPG knockout mice have both severe osteoporosis and significant arterial calcification,8 suggesting that OPG plays a protective role against arterial calcification in mice. OPG serum levels are associated with the severity of cardiovascular disease in humans.9–11 OPG levels may be higher either directly, through a proatherosclerotic effect, or indirectly, because of an incomplete compensatory mechanism in which increases in serum OPG levels are seen as a response to RANKL activity.9–11 This compensatory effect may also be invoked to explain high serum levels of OPG, sometimes seen in subjects with osteoporosis.12Vascular smooth muscle cells express OPG, and aortic smooth muscle cells proliferate in response to OPG.13 OPG induced both the proliferation and migration of pulmonary artery smooth muscle cells14 and human microvascular endothelial cells.15 The effects of OPG on human microvascular endothelial cells were mediated through integrins αVβ3 and αVβ5 and the extracellular signal–regulated kinase 1/2. OPG can also stimulate monocyte migration; this effect was shown to involve syndecans and phosphatidylinositol-3-OH kinase/Akt, protein kinase C, and tyrosine kinases.16OPG also has roles in tumor development and metastasis.17,18 OPG can bind TNF-related apoptosis-inducing ligand (TRAIL), blocking TRAIL’s apoptotic effects on cancer cells.19–23 Serum OPG levels may be higher in cancer patients compared with healthy controls, and levels may correlate with cancer stage.24–27 Tumor growth and metastasis are also supported by OPG’s promotion of endothelial cell survival and angiogenesis.28,29 Interestingly, some malignant breast cancer tumors show endothelial OPG expression, whereas neighboring normal endothelium does not express high levels of the protein.29Lymphangioleiomyomatosis (LAM) cells are abnormal neoplastic smooth muscle-like cells, with mutations in one of two tuberous sclerosis complex tumor-suppressor genes (TSC1 or TSC2). TSC1 (encoding hamartin) and TSC2 (tuberin) form a complex that regulates the serine/threonine kinase, mammalian target of rapamycin.30 Mutations in TSC1/TSC2 lead to uncontrolled mammalian target of rapamycin activity, resulting in increased cell proliferation and size.30 These LAM cells form nodules covered with type II pneumocytes, with surrounding areas of cystic destruction in the lungs of patients with LAM. In addition to the cystic destruction of lung parenchyma, LAM, a rare multisystem disease affecting women,31 is characterized by lymphatic abnormalities and abdominal tumors (eg, angiomyolipomas). LAM cells can metastasize, as LAM cells from lung lesions and angiomyolipomas in the same patient have the same TSC2 mutation.32 Consistent with their migratory behavior, LAM cells have been isolated from blood and other body fluids of patients with LAM.33,34 LAM cells have characteristics of both smooth muscle cells, such as reactivity with antibodies to smooth muscle actin and desmin, and of melanocytes, with reactivity with HMB45,35 an antibody recognizing gp100, a melanosomal protein.36–38In this study, we investigated the effect of OPG on the neoplastic smooth muscle cell-like LAM cells. OPG promoted proliferation of cells grown from explanted LAM lungs and specifically induced LAM cell migration. Three OPG receptors, RANKL, syndecan-1, and syndecan-2, were detected on LAM cells and LAM lung nodules. Furthermore, LAM cells produced OPG, and OPG levels were elevated in serum from patients with LAM compared with healthy volunteers, suggesting both autocrine and paracrine effects of OPG in LAM.  相似文献   

6.
Lymphangioleiomyomatosis (LAM) is an interstitial lung disease characterized by invasion and proliferation of abnormal smooth muscle (ASM) cells in lung parenchyma and axial lymphatics. LAM cells bear mutations in tuberous sclerosis (TSC) genes. TSC2(-/-) ASM cells, derived from a human renal angiomyolipoma, require epidermal growth factor (EGF) for proliferation. Blockade of EGF receptors (EGFR) causes cell death. TSC2(-/-) ASM cells, previously labeled with PKH26-GL dye, were endonasally administered to 5-week-old immunodeficient female nude mice, and 4 or 26 weeks later anti-EGFR antibody or rapamycin was administered twice a week for 4 consecutive weeks. TSC2(-/-) ASM cells infiltrated lymph nodes and alveolar lung walls, causing progressive destruction of parenchyma. Parenchymal destruction was efficiently reversed by anti-EGFR treatment and partially by rapamycin treatment. Following TSC2(-/-) ASM cell administration, lymphangiogenesis increased in lungs as indicated by more diffuse LYVE1 expression and high murine VEGF levels. Anti-EGFR antibody and rapamycin blocked the increase in lymphatic vessels. This study shows that TSC2(-/-) ASM cells can migrate and invade lungs and lymph nodes, and anti-EGFR antibody is more effective than rapamycin in promoting lung repair and reducing lymphangiogenesis. The development of a model to study metastasis by TSC cells will also help to explain how they invade different tissues and metastasize to the lung.  相似文献   

7.
Pulmonary lymphangioleiomyomatosis (LAM) is a destructive lung disease characterized by a diffuse hamartomatous proliferation of smooth muscle cells (LAM cells) in the lungs. Pulmonary LAM can occur as an isolated form (sporadic LAM) or in association with tuberous sclerosis complex (TSC) (TSC-LAM), a genetic disorder with autosomal dominant inheritance with various expressivity resulting from mutations of either the TSC1 or TSC2 gene. We examined mutations of both TSC genes in 6 Japanese patients with TSC-LAM and 22 patients with sporadic LAM and identified six unique and novel mutations. TSC2 germline mutations were detected in 2 (33.3%) of 6 patients with TSC-LAM and TSC1 germline mutation in 1 (4.5%) of 22 sporadic LAM patients. In accordance with the tumor-suppressor model, loss of heterozygosity (LOH) was detected in LAM cells from 3 of 4 patients with TSC-LAM and from 4 of 8 patients with sporadic LAM. Furthermore, an identical LOH or two identical somatic mutations were demonstrated in LAM cells microdissected from several tissues, suggesting LAM cells can spread from one lesion to another. Our results from Japanese patients with LAM confirmed the current concept of pathogenesis of LAM: TSC-LAM has a germline mutation but sporadic LAM does not; sporadic LAM is a TSC2 disease with two somatic mutations; and a variety of TSC mutations causes LAM. However, our study indicates that a fraction of sporadic LAM can be a TSC1 disease; therefore, both TSC genes should be examined, even for patients with sporadic LAM. Received: August 30, 2001 / Accepted: November 2, 2001  相似文献   

8.
The TSC1 and TSC2 proteins, which function as a TSC1/TSC2 tumor suppressor complex, are associated with lymphangioleiomyomatosis (LAM), a genetic disorder characterized by the abnormal growth of smooth muscle-like cells in the lungs. The precise molecular mechanisms that modulate LAM cell growth remain unknown. We demonstrate that TSC2 regulates LAM cell growth. Cells dissociated from LAM nodules from the lungs of five different patients with LAM have constitutively activated S6K1, hyperphosphorylated ribosomal protein S6, activated Erk, and increased DNA synthesis compared with normal cells from the same patients. These effects were augmented by PDGF stimulation. Akt activity was unchanged in LAM cells. Rapamycin, a specific S6K1 inhibitor, abolished increased LAM cell growth. The full-length TSC2 was necessary for inhibition of S6 hyperphosphorylation and DNA synthesis in LAM cells, as demonstrated by co-microinjection of the C-terminus, which contains the GTPase activating protein homology domain, and the N-terminus, which binds TSC1. Our data demonstrate that increased LAM cell growth is associated with constitutive S6K1 activation, which is extinguishable by TSC2 expression. Loss of TSC2 GAP activity or disruption of the TSC1/TSC2 complex dysregulates S6K1 activation, which leads to abnormal cell proliferation associated with LAM disease.  相似文献   

9.
Smooth muscle lesions of the large bowel, excluding the rectum, are generally rare, and diffuse smooth muscle lesions, termed leiomyomatosis, are even rarer. In this report, we document, for the first time, leiomyomatosis-like lymphangioleiomyomatosis (LAM) of the ascending, transverse, and descending colon in association with bilateral renal angiomyolipoma (AML) in a 30-year-old Chinese female with tuberous sclerosis complex (TSC). She presented with protracted constipation for which a colectomy was performed. Histology disclosed multiple confluent nodular CD34 and CD117 negative smooth muscle proliferation within the large bowel wall, whereas the renal biopsy revealed typical features of AML. Interestingly, the epithelioid smooth muscle cells of both the colonic and renal lesions were HMB45 positive, suggesting that leiomyomatosis-like LAM of the colon, pulmonary LAM and AML are closely related entities. The patient remained free of complications for the last five years after surgery. Leiomyomatosis-like LAM of the large bowel probably represents another manifestation of the tendency of TSC to be associated with proliferative lesions.  相似文献   

10.
Lymphangioleiomyomatosis (LAM) is a rare multisystem disease leading to cystic destruction of the lung parenchyma and is associated with abnormal smooth muscle proliferation affecting airways, lymphatics, and blood vessels. LAM occurs sporadically or in association with the tuberous sclerosis complex (TSC). Recent evidence demonstrates the role of aberrant β-catenin signaling in TSC. To further understand the pathogenesis of LAM and to examine the diagnostic usefulness of β-catenin, we examined protein expression in 28 pulmonary LAM cases and 10 cases of renal angiomyolipoma resected from patients with sporadic LAM. Immunohistochemical analysis was performed for established markers of LAM cells (HMB45, estrogen receptor [ER]-α, and progesterone receptor [PR]) and β-catenin. All LAM cases were positive for β-catenin and demonstrated high specificity with overall immunoreactivity superior to HMB45, ER-α, and PR. Similar expression was demonstrated in renal angiomyolipoma. Our results indicate that β-catenin is a useful marker of LAM and may be clinically useful in the diagnostic setting.  相似文献   

11.
Tuberous sclerosis (TSC) is a rare, genetically determined disorder / familial tumor syndrome, currently diagnosed using specific clinical criteria proposed by Gomez, including the presence of multiorgan hamartomas. Pulmonary involvement in TSC is well known as pulmonary lymphangioleiomyomatosis (LAM), which has an incidence of 1-2.3% in TSC patients. LAM has immunohistochemical expression of both smooth-muscle actin and a monoclonal antibody specific for human melanoma, HMB-45. It has recently been reported that multifocal micronodular pneumocyte hyperplasia (MMPH) associated with TSC should be considered as a distinct type of lung lesion, whether it occurs with or without LAM. Two predisposing genes have been found in families affected by TSC; approximately half of the families show linkage to TSC1 at 9q34.3, and the other half show linkage to TSC2 at 16p13.3. TSC genes are considered to be tumor suppressor genes, and mutations in them may lead to abnormal differentiation and proliferation of cells. Tuberin, the TSC2 gene product, has recently been found to be expressed in LAM and MMPH. In this article we discuss the histogenesis and genetic abnormalities of neoplastic lesions associated with TSC, and we review the current understanding of the pathogenesis of pulmonary hamartomatous lesions such as LAM and MMPH in TSC.  相似文献   

12.
AIMS: Lymphangioleiomyomatosis is categorized by proliferation of abnormal smooth muscle cells (LAM cells) in the lungs and lymphatics and the presence of angiomyolipomas. Recently mutations in the tuberous sclerosis complex-2 gene (TSC-2) have been described in LAM cells and angiomyolipomas. The TSC-2 protein tuberin is a tumour suppressor and its loss may result in cellular proliferation. We used immunohistochemistry to test the hypothesis that uncontrolled cellular proliferation in lymphangioleiomyomatosis is the result of reduced tuberin protein expression. METHODS AND RESULTS: Tissue from normal lung, normal kidney, lymphangioleiomyomatosis and angiomyolipomas was immunostained with three separate anti-tuberin antibodies. Tuberin staining in normal tissues was similar to that previously described. Surprisingly, tuberin was strongly expressed in the LAM cells of all cases of lymphangioleiomyomatosis and angiomyolipoma at a greater level than in normal smooth muscle cells. The perivascular cells of angiomyolipomas, however, did not stain for tuberin. CONCLUSIONS: Our results suggest that a loss of tuberin protein in LAM cells is not the cause of the cellular proliferation seen in lymphangioleiomyomatosis. Lymphangioleiomyomatosis may result either from the expression of a mutant tuberin with abnormal function, as a result of mutations in functionally related proteins, or from more than one mechanism.  相似文献   

13.
Lymphangioleiomyomatosis (LAM) is a potentially fatal lung disease characterized by nodules of proliferative smooth muscle-like cells. The exact nature of these LAM cells and their proliferative stimuli are poorly characterized. Herein we report the novel findings that the lymphangiogenic vascular endothelial growth factors (VEGF) C and D induce LAM cell proliferation through activation of their cognate receptor VEGF-R3 and activation of the signaling intermediates Akt/mTOR/S6. Furthermore, we identify expression of the proteoglycan NG2, a marker of immature smooth muscle cells, as a characteristic of LAM cells both in vitro and in human lung tissue. VEGF-C-induced LAM cell proliferation was in part a result of autocrine stimulation that resulted from cross talk with lymphatic endothelial cells. Ultimately, these findings identify the lymphangiogenic VEGF proteins as pathogenic growth factors in LAM disease and at the same time provide a novel pharmacotherapeutic target for a lung disease that to date has no known effective treatment.The understanding of lymphatic biology has expanded rapidly with the discovery of the lymphangiogenic proteins vascular endothelial growth factors (VEGF) C and D and their cognate receptor VEGF-R3.1,2 They are members of the VEGF family of growth factors, having 40% homology with VEGF-A, and their importance in lymph vasculature biology is well demonstrated by the finding that VEGF-C null mice die as a result of abnormal lymphatic development.3 Increasingly it has become clear that the biological role of these VEGF proteins have expanded beyond effects on the lymphatic endothelium alone to include the peri-lymphatic milieu and the investing immature vascular smooth muscle or pericytes.4 Furthermore, they have now been implicated in both pathogenic and non-pathogenic human processes including cancer growth and metastasis, wound healing, and immune regulation.The lymphatic endothelial cell (LEC) is distinct from blood vessel endothelium with respect to their biological function, structure, and protein repertoire.5 As such they represent a unique cell that may play a distinctive role in the pathogenesis of human disease. Like blood vessel endothelium they share their basement membrane with surrounding immature smooth muscle cells called pericytes. It is clear that along with VEGF, pericyte-endothelial cell interactions play an important role in modulating vascular biology.4Until recently the lymphatic vasculature has been considered an innocent bystander in the pathogenesis of pulmonary disease. Historically, one such disease has been pulmonary lymphangioleiomyomatosis (LAM), a progressive and fatal lung disease that almost exclusively affects women in their reproductive years.6,7 Pathologically, LAM is characterized by proliferation of abnormal smooth muscle-like cells that form lung nodules distributed in a peri-lymphatic manner. The etiology of LAM has been linked to mutations in the TSC2 gene; however, the nature and site-of-origin of LAM cells remains speculative.8 Based on the LAM cells proximity to lymphatic vessels, we hypothesized that the LEC and lymphangiogenic proteins VEGF-C and/or -D might play a role in their proliferation; and that these smooth muscle- like LAM cells represented perivascular mural cells that were proliferating through a mechanism involving LEC cross talk.Using both in vitro primary LAM-derived cells (LDC)9 and immunohistochemistry of human lung LAM tissues, we report that VEGF-C and -D induce LDC proliferation through activation of their cognate receptor VEGF-R3 and subsequently phosphatidylinositol 3-kinase (PI3K)/mTOR/S6 signaling. Of note, this VEGF-R3 proliferative signaling pathway did not appear to be inhibited by functional tuberin. Furthermore, LDC proliferation was induced by cross talk between LEC and LDC and mediated through LDC production of VEGF-C. Taken together, these results identify the lymphangiogenic VEGF proteins as novel pathogenic growth factors in LAM disease and the lymphatic endothelium as a modifying factor in LAM cell proliferation.  相似文献   

14.
A 45-year-old woman with a long-standing diagnosis of tuberous sclerosis (TSC) is presented. She has multifocal micronodular pneumocyte hyperplasia (MMPH) and lymphangioleiomyomatosis (LAM) of the lung, together with the detection of TSC2 gene mutation. During surgery for spontaneous pneumothorax, an open-lung biopsy was performed. Micronodules were well defined, measuring approximately 4 mm in diameter. These MMPHs were histologically composed of papillary proliferation of Type II pneumocytes, with positive immunoreactivity of keratin and surfactant apoprotein. The cystlike spaces, with dilatation and destruction of air spaces, were diffusely formed, and the walls were composed of the spindle cells. Such LAM showed positive immunoreactivity for HMB-45 (a monoclonal antibody specific for human melanoma) and tuberin (the gene product of TSC2). On germline mutation analysis using leukocytes of the present patient, a TSC2 gene mutation was confirmed as a deletion of G (or g) on Exon 9 by polymerase chain reaction-single-strand conformational polymorphism. However, no mutation was detected in her son. With microdissection analysis using paraffin-embedding lung tissues, LOH of the TSC2 gene preliminarily was detected in a LAM lesion but not in MMPH. It is suggested that MMPH, in addition to LAM, could be another pulmonary lesion in TSC patients and that the detection of TSC2 and/or TSC1 gene could essentially be useful for the pathogenesis of MMPH and LAM in TSC patients.  相似文献   

15.
16.
Lymphangiomyomatosis (LAM) consists of smooth muscle (SM) cell proliferation of unknown origin involving the lymph nodes and the lung interstitium. From morphological studies showing both SM differentiation of the proliferating cells and lymphatic hyperplasia, hypotheses were suggested concerning the origin of the proliferation. Two cases of LAM were investigated by electron microscopy and immunohistochemistry; tissues were obtained by lymph node and open lung biopsies. Cytoplasmic and matrix protein markers were used in order to clarify the pattern of differentiation of the proliferating cells and to characterize their connective tissue environment. The proliferating cells present ultrastructural characteristics of SM cells; they contain vimentin, desmin, and alpha-SM actin and are devoid of Factor VIII, favouring a parieto-arterial origin. The connective tissue matrix inside the infiltrate is composed of interstitial collagens and basement membrane components. At the late stage of the disease, remodelling of the interstitial matrix accompanies the infiltrate and remains perilesional.  相似文献   

17.
Lymphangioleiomyomatosis (LAM) of the lung is a rare low-grade malignancy affecting primarily women of childbearing age. LAM is characterized by the proliferation of SMA and HMB-45 positive spindle-shaped and epithelioid cells throughout the lung in the form of discrete lesions causing cystic destruction and ultimately respiratory insufficiency. LAM occurs sporadically or in patients with tuberous sclerosis complex (TSC) and is etiologically linked to mutations in the TSC1 and TSC2 genes. Although LAM cells are known to express estrogen and progesterone receptors (ER and PR, respectively), their respective expression level was never determined. Therefore, here we measured the immunohistochemical expression of ERs and PRs in a large series of pulmonary LAM cases using the Aperio Spectrum Analysis Platform. Our case series comprised open lung biopsy specimens from 20 LAM patients and lungs explanted during the course of lung transplant from 24 patients. All cases were positive for ER and PR. PR expression was statistically significantly higher than ER in 80 % of the biopsies while ER predominated only in one case. Specimens from explanted cases of LAM had relatively fewer PR-positive nuclei. As a result, PR expression was significantly higher than ER in 38 % of the cases, whereas ER predominated in 33 %. Overall, PR expression predominated in 57 % of cases and ER in 21 %. These data indicate that PR frequently prevails over ER in pulmonary LAM. LAM is unusual in its high PR/ER ratio; other female neoplasms show a definite prevalence of ER. Our findings therefore warrant further study of PR function in LAM.  相似文献   

18.
The blood vessel wall's response to injury is an important determinant of luminal size and vessel function. The physiologic migration of endothelial cells from the edges of a wound and the pathophysiologic migration of medial smooth muscle cells into the intima are two important components of the vessel wall's response to injury. The influence of the angiotensin system on endothelial and smooth muscle cell migration have not been examined. In the present study, the influence of angiotensin system components on bovine aortic endothelial cell (BAEC) and bovine aortic smooth muscle cell (BASMC) migration after release of cultured cell monolayers from contact inhibition was determined. The angiotensin-converting enzyme (ACE) inhibitor lisinopril increased BAEC migration 41% +/- 3% (P less than 0.001), as did the specific angiotensin II antagonist sar1, ile8-angiotensin II (SAR) (41% +/- 3% (P less than 0.001). Exogenous angiotensin I and angiotensin II did not affect BAEC migration. Exogenous angiotensin II abolished the effect of lisinopril on BAEC migration. Lisinopril increased cell-associated u-plasminogen activator (u-PA) 23% +/- 3% (P less than 0.001) in migrating BAEC and angiotensin II abolished this increase. SAR increased u-PA 33% +/- 0% (P less than 0.001). In contrast, these agents had the opposite effect on smooth muscle cells. Angiotensin II increased smooth muscle cell migration 40% +/- 3% (P less than 0.001), and this effect was abolished by SAR. Angiotensin II also increased cell-associated u-PA 83% +/- 7% (P less than 0.001) in migrating BASMC. The increase in BAEC migration with inhibition of endothelial cell angiotensin II stimulation, either with lisinopril or SAR, also was associated with an increase in cell-associated u-PA. These results indicate that lisinopril interrupts an autocrine pathway in endothelial cells, in which endothelial cell-derived angiotensin I is converted to angiotensin II by ACE, and imply that angiotensin-converting enzyme inhibitors in vivo would act to reduce vessel wall injury by directly increasing the rate of endothelial cell wound closure; by increasing the antithrombotic tendency of the endothelium via enhanced u-PA; and indirectly, by decreasing production of angiotensin II and thereby the rate of smooth muscle cell migration into the intima.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号