首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical simulation tool was developed to calculate the echo amplitudes of J-coupled resonances within a series of radiofrequency (RF) refocused echoes. The signal modulation due to J-coupling in rapid acquisition with relaxation enhancement (RARE) is suppressed only when the inverse of the pulse interval (tau) is large compared to both the chemical shift (CS) difference (Deltadelta) of the coupled spins and the coupling constant. In contrast, the echo amplitudes in ultrafast low-flip-angle RARE (U-FLARE) oscillate around a quasi-steady-state value that is greater than zero (neglecting relaxation and diffusion) even when Deltadelta > 1/tau. The flip-angle distribution over the measured slice caused by the use of Gaussian-shape slice-selective refocusing pulses further reduces the echo oscillations. When the pulse interval falls short of the fast pulse rate regime, spectroscopic U-FLARE provides an improved spatial impulse response in the phase-encoding (PE) direction compared to spectroscopic RARE.  相似文献   

2.
A new fast spectroscopic imaging method is presented which allows both a very short minimum total measurement time and effective homonuclear decoupling. After each excitation, all data points from N(GE) k(x)-k(y)-slices at different k(omega)-values are acquired by using a gradient and spin echo (GRASE) imaging sequence. The delay between consecutive gradient echoes, which are measured with uniform phase encoding between consecutive refocusing alpha-pulses, is the inverse of the spectral width (SW). A refocusing 180 degrees pulse, which is applied within a constant delay between excitation and the GRASE sequence, is shifted in a series of measurements by an increment N(GE)/(2 * SW) to cover the whole k(omega)-k(x)-k(y)-space. Spectroscopic GRASE was implemented on a 4.7 T imaging system and tested on phantoms and normal rat brain in vivo. Measurements were performed with a nominal voxel size of 1.5 x 1.5 x 3 mm(3) and a spatial 64 x 64 matrix. The total measurement time was 2 or 4 min using a repetition time of 1.9 sec, 96 chemical shift encoding steps, SW = 800 Hz, N(GE) = 3, and 2 or 4 accumulations.  相似文献   

3.
The combination of the principles of two fast spectroscopic imaging (SI) methods, spectroscopic missing pulse steady‐state free precession and echo planar SI (EPSI) is described as an approach toward fast 3D SI. This method, termed missing pulse steady‐state free precession echo planar SI, exhibits a considerably reduced minimum total measurement time Tmin, allowing a higher temporal resolution, a larger spatial matrix size, and the use of k‐space weighted averaging and phase cycling, while maintaining all advantages of the original spectroscopic missing pulse steady‐state free precession sequence. The minor signal‐to‐noise ratio loss caused by using oscillating read gradients can be compensated by applying k‐space weighted averaging. The missing pulse steady‐state free precession echo planar SI sequence was implemented on a 3 T head scanner, tested on phantoms and applied to healthy volunteers. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
A fast multislice imaging technique has been developed. RASTER (Rapid Acquisition with Stimulated Echo Refocusing) is based on RARE (Rapid Acquisition with Relaxation Enhancement), and creates multiple spin echoes/each 180° pulse utilizing stimulated echoes, and phase encode each differently. The sequence can be much faster than RARE while keeping the same spin echo image contrast. The main limitation of the technique is reduced signal-to-noise ratio.  相似文献   

5.
Whole-brain echo-planar spectroscopic imaging (EPSI) often substantially lengthens MRI/MRSI (magnetic resonance spectroscopic imaging) protocols. To halve acquisition time, application of a blipped phase-encoding (PE) gradient during the EPSI readout (RO) was previously suggested by PE of the even RO echoes in k-space at an interstitial location along k(PE), separated from the odd RO echoes, effectively reducing the number of PEs by a factor of 2. However, the approach is very susceptible to phase inconsistencies between even and odd RO echoes in the presence of B(0) inhomogeneities and gradient imbalance, leading to ghosting in the PE direction. In this work, the blipped PE gradient is placed in between pairs of even/odd RO gradient lobes to avoid these problems. This approach is demonstrated in a phantom and in normal human brain in vivo at 4T. While the proposed method allows substantial reduction in metabolite ghosting, it may be limited by the presence of a relatively large spurious signal at the Nyquist frequency.  相似文献   

6.
Parallel spectroscopic imaging with spin-echo trains.   总被引:1,自引:0,他引:1  
A reduction in scan time in spectroscopic imaging (SI) can be achieved by both fast and reduced k-space sampling. This work presents an ultrafast SI technique that combines the two approaches. The synergy of multiple spin-echo (MSE) acquisition and sensitivity encoding (SENSE) enables high-resolution SI to be performed within a clinically acceptable scan time. MSE-SENSE-SI with echo train lengths ranging from one to four echoes is evaluated with respect to SNR and spatial response function by means of in vitro experiments. It is shown that acquiring two spin-echoes (SEs) per acquisition yields a good practical trade-off among scan time, SNR, and spatial response. The clinical feasibility of the technique is demonstrated in a patient with an astrocytoma, and SI data are obtained with an image matrix of 24 x 24 in just over 2 min.  相似文献   

7.
This work describes a novel method for rapid acquisition with relaxation enhancement (RARE)/fast spin-echo (FSE) imaging that removes the constraint of compliance with the Carr-Purcell-Meiboom-Gill (CPMG) condition. In a multiecho sequence, echoes with either odd or even parities are acquired. The refocusing angles are chosen using a recursive algorithm, so that the signal amplitude satisfies a predetermined modulation function. In the examples given in this article an exponential decay to a plateau is used. At each echo the echo parity that gives the desired signal amplitude for the minimum refocusing angle is selected. It is further shown that in the presence of an initial magnetization having an arbitrary phase distribution, the complex conjugate of the signal of one echo parity has to be taken and its k-space coordinates reversed. T(2) (*)-weighted images are presented and initial applications to diffusion-weighted imaging (DWI) and functional imaging shown.  相似文献   

8.
Three-dimensional (3D) (1)H MR spectroscopic imaging (SI) allows metabolic changes in human tissue to be identified. In clinical practice, fast acquisition techniques are required to achieve an adequate spatial resolution within acceptable total measurement times. In this study a novel fast pulse sequence for 3D (1)H SI based on the condition of steady-state free precession (SSFP), termed "spectroscopic missing-pulse SSFP" (spMP-SSFP), is proposed. It combines 3D spatial preselection with the acquisition of full spin echoes (SEs), and thus makes subsequent phase correction of spectra redundant. The sequence was applied to a phantom and healthy human brains in vivo at 3 Tesla. Metabolic images are acquired with a spatial resolution of 1.8 cm(3) within a total measurement time of about 6 min. With a lower signal-to-noise ratio (SNR) per unit measurement time compared to previous spectroscopic SSFP implementations, 3D spatial preselection can now be realized with spMP-SSFP. Since the method does not require separate techniques for water and lipid suppression, and employs a simple data-processing approach, spMP-SSFP is a robust, fast SI method that requires only minimal user interaction.  相似文献   

9.
Sensitivity-encoded spectroscopic imaging.   总被引:11,自引:0,他引:11  
Sensitivity encoding (SENSE) offers a new, highly effective approach to reducing the acquisition time in spectroscopic imaging (SI). In contrast to conventional fast SI techniques, which accelerate k-space sampling, this method permits reducing the number of phase encoding steps in each phase encoding dimension of conventional SI. Using a coil array for data acquisition, the missing encoding information is recovered exploiting knowledge of the distinct spatial sensitivities of the individual coil elements. In this work, SENSE is applied to 2D spectroscopic imaging. Fourfold reduction of scan time is achieved at preserved spectral and spatial resolution, maintaining a reasonable SNR. The basic properties of the proposed method are demonstrated by phantom experiments. The in vivo feasibility of SENSE-SI is verified by metabolic imaging of N-acetylaspartate, creatine, and choline in the human brain. These results are compared to conventional SI, with special attention to the spatial response and the SNR.  相似文献   

10.
A new two-scan method for localized 1H in vivo NMR spectroscopy (MRS) without water suppression (WS) is described. In one of the scans, two chemical shift selective 180 degrees pulses are applied prior to a standard localization sequence to invert all metabolite signals upfield and downfield from water, which remains unaffected. The difference spectrum records the metabolites whereas water and accompanying gradient induced artifacts are widely suppressed. The method was implemented on a 4.7-T system using point resolved spectroscopy with a short echo time of 18 ms. Phantom measurements proved the feasibility of absolute quantification using water as an internal reference. Measurements on healthy rat brain yielded comparable spectrum quality as measurements with water presaturation. The method does not require additional adjustments or sophisticated data postprocessing and scales favorably with increasing B(0) field. Therefore, the method should be useful for 1H MRS without WS. Although the two-step method doubles the minimum total measurement time, it may also be of interest for spectroscopic imaging (SI) without WS, in particular if fast SI techniques are applied.  相似文献   

11.
Orbital lesions: proton spectroscopic phase-dependent contrast MR imaging   总被引:1,自引:0,他引:1  
Thirteen orbital lesions in 12 patients were evaluated with both conventional spin-echo magnetic resonance (MR) imaging and phase-dependent proton spectroscopic imaging. This technique, which makes use of small differences in the resonant frequencies of water and fat protons, provides excellent high-resolution images with simultaneous chemical shift information. In this method, there is 180 degrees opposition of phase between fat protons and water protons at the time of the gradient echo, resulting in signal cancellation in voxels containing equal signals from fat and water. In this preliminary series, advantages of spectroscopic images in orbital lesions included better lesion delineation, with superior anatomic definition of orbital apex involvement; more specific characterization of high-intensity hemorrhage with a single pulse sequence; elimination of potential confusion from chemical shift misregistration artifact; further clarification of possible intravascular flow abnormalities; and improved apparent intralesional contrast.  相似文献   

12.
A spectroscopic imaging technique with high spatial resolution was used for the study of human skin in vivo. The measurements were performed using a whole-body magnetic resonance system (1.5 T) with standard gradients and a standard 8-cm diameter circular surface coil. A decisive gain in signal-to-noise ratio was achieved by reducing the receiver bandwidth of the imaging system to values less than +/-5 kHz. The chemical shift misregistration was eliminated by post-detection data processing. The method was tested on different kinds of skin, on the foot sole and head. Water, fat, and chemical shift artifact-free images were obtained with resolution 0.107 x 0.143 mm in plane and slice thickness 1 mm. A major advantage of the spectroscopic imaging procedure is that the pulse sequence can be optimized for the maximum signal-to-noise ratio. There is no need for special modification of the sequence to circumvent the chemical shift artifacts (water, fat suppression, etc.).  相似文献   

13.
The classical CPMG sequence and its extension as an imaging sequence, fast spin echo (FSE, based on RARE), suffer from signal magnitude variations in the early echoes when the re-focusing pulses are not set exactly to 180°. It has been suggested that by varying the value of the nutation angle of each refocusing pulse the signal magnitude could be made constant. This article describes an algorithm permitting the generation of sequences of nutation angles yielding series of echsoes with constant signal magnitudes. This result is then usesd to design selective pulses for the FSE imaging technique.  相似文献   

14.
Simultaneous multislice proton spectroscopic imaging (SI) is presented using a pulse sequence with multifrequency selective RF excitation and Hadamard encoding in the slice direction, and conventional Fourier phase encoding in the in-plane directions. Double-echo data acquisition is used to increase the spectral information of the experiment. Tests on a phantom demonstrate the quality of the slice selection. Results of in vivo measurements on the healthy rat brain show that spectra with a high signal-to-noise ratio can be acquired from four slices within 32 min. The measurements were performed at 4.7 T using a field of view of 32 × 32 mm2, a slice thickness of 3 mm, and a voxel size of 12 μl. The proposed method is a useful alternative to sequential multislice SI and 3D SI. Furthermore, it is possible to combine sequential and simultaneous multi-slice SI.  相似文献   

15.
Echo-planar spectroscopic imaging (EPSI) can be used for fast spectroscopic imaging of water and fat resonances at high resolution to improve structural and functional imaging. Because of the use of oscillating gradients during the free induction decay (FID), spectra obtained with EPSI are often degraded by Nyquist ghost artifacts arising from the inconsistency between the odd and even echoes. The presence of the spectral ghost lines causes errors in the evaluation of the true spectral lines, and this degrades images derived from high-resolution EPSI data. A technique is described for reducing the spectral ghost artifacts in EPSI of water and fat resonances, using echo shift and zero-order phase corrections. These corrections are applied during the data postprocessing. This technique is demonstrated with EPSI data acquired from human brains and breasts at 1.5 Tesla and from a water phantom at 4.7 Tesla. Experimental results indicate that the present approach significantly reduces the intensities of spectral ghosts. This technique is most useful in conjunction with high-resolution EPSI of water and fat resonances, but is less applicable to EPSI of metabolites due to the complexity of the spectra.  相似文献   

16.
17.
Proton MR spectroscopic imaging ((1)H-MRSI) of the human prostate, which has an interesting clinical potential, may be improved by increasing the magnetic field strength from 1.5T to 3T. Both theoretical and practical considerations are necessary to optimize the pulse timing for spectroscopic imaging of the human prostate at 3T. For in vivo detection of the strongly coupled spin system of citrate, not only should the spectral shape of the signal be easy to identify, but the timing used should produce MR signals at reasonably short echo times (TEs). In this study the spectral shape of the methylene protons of citrate was simulated with density matrix calculations and checked with phantom measurements. Different calculated optimal spectral shapes were measured in patients with prostate cancer with a 2D spectroscopic imaging sequence. T(1) and T(2) relaxation times were calculated for citrate and choline, the two major metabolites of interest in the prostate. We conclude that the optimum timing for in vivo point-resolved spectroscopy (PRESS) imaging at 3T is an interpulse timing sequence of 90 degrees-25 ms-180 degrees- 37.5 ms-180 degrees-12.5 ms-echo. A short repetition time (TR) of 750 ms partially saturates choline signals, but increases the SNR per unit time for citrate, and accommodates a maximum number of weighted averages of an elliptically sampled k-space for accurate localization and minimal contamination of the individual spectra. This is illustrated by means of a 3D spectroscopic imaging experiment in a complete prostate in vivo.  相似文献   

18.
Complete coverage of the in vivo proton metabolite spectrum, including downfield resonances, requires a spectral bandwidth of approximately 9 ppm. Spectral bandwidth of in vivo echo-planar spectroscopic imaging (EPSI) is primarily limited by gradient strength of the oscillating readout gradient, gradient slew rate, and limits on peripheral nerve stimulation for human subjects. Furthermore, conventional EPSI reconstruction, which utilizes even and odd readout echoes separately, makes use of only half the spectral bandwidth. In order to regain full spectral bandwidth in EPSI, it has previously been suggested to apply an interlaced Fourier transform (iFT), which uses even and odd echoes simultaneously. However, this method has not been thoroughly analyzed regarding its usefulness for in vivo 3D EPSI. In this Note, limitations of the iFT method are discussed and an alternative, cyclic spectral unwrapping, is proposed, which is based on prior knowledge of typical in vivo spectral patterns.  相似文献   

19.
Monitoring the signal levels of lactate (Lac) and N-acetylaspartate (NAA) by chemical shift imaging can provide additional knowledge about tissue damage in acute stroke. Despite the need for this metabolic information, spectroscopic imaging (SI) has not been used routinely for acute stroke patients, mainly due to the long acquisition time required. The presented data demonstrate that the application of a fast multiple spin-echo (MSE) SI sequence can reduce the measurement time to 6 min (four spin echoes per echo train, 32 x 32 matrix). Quantification of Lac and NAA in terms of absolute concentrations (i.e., mmol/l) can be achieved by means of the phantom replacement approach, with correction terms for the longitudinal and transversal relaxation adapted to the multiple spin-echo sequence. In this pilot study of 10 stroke patients (symptom onset < 24 hr), metabolite concentrations obtained from MSE-SI add important information regarding tissue viability that is not provided by other sequences (e.g., diffusion-weighted imaging (DWI) and perfusion-weighted imaging (PWI)). Metabolic changes extended beyond the borders of the apparent diffusion coefficient (ADC) lesion in nine of the 10 patients, showing a rise in Lac concentrations up to 18 mmol/l, while NAA levels sometimes dropped below the detection level. Considerable differences among the patients in terms of the Lac concentrations and the size of the SI-ADC mismatch were observed.  相似文献   

20.
The RARE method and its variants have become popular, rapid-imaging alternatives to conventional spin-echo imaging, particularly for long repetition time proton density and T2-weighted imaging. One variant is to generate both early and late echo images using the same pulse sequence, which has the added benefit of reduced edge artifacts and blurring. Described in this paper is variable-averaging RARE (VARARE), a method by which independent amounts of averaging can be set for the early and late echo images generated by a single scanning sequence. Through the use of this method, the signal-to-noise ratio (SNR) of late echo images can be improved without unnecessarily increasing the number of averages for the early echo image, thus saving scanning time. Comparisons to various alternatives are made with respect to scanning time and image quality. Phantom measurements and in vivo images are given to demonstrate the effectiveness of VA-RARE as an efficient method for improving SNR of late echo time images in RARE imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号