首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the performance test results of the CFVAD3 continuous flow blood pump in an artificial human circulation system. The CFVAD3 utilizes magnetic bearings that support a thin pancake impeller, the shape of which allows for a very compact pump whose total axial length is less than 5 cm with a radial length of about 10 cm. This gives a total volume of about 275 cc. The impeller itself has 4 vanes with a designed operating point of 6 L/min at 100 mm Hg of differential pressure and 2,000 rpm. The advantages of magnetic bearings, such as large clearance spaces and no mechanical wear, are elaborated upon. Furthermore, bearing model parameters such as load capacity and current gains are described. These parameters in conjunction with the operating conditions during testing are then used to estimate the fluid forces, stiffness, and damping properties while pumping. Knowledge of these parameters is desirable because of their effects on pump behavior. In addition, a better plant model will allow more robust control algorithms to be devised that can boost pump performance and reliability.  相似文献   

2.
A new centrifugal continuous flow ventricular assist device, the CFVAD III, which is fully magnetic bearing suspended, has been developed. It has only one moving part (the impeller), has no contact (magnetic suspension), is compact, and has minimal heating. A centrifugal impeller of 2 inch outer diameter is driven by a permanent magnet brushless DC motor. This paper discusses the design, construction, testing, and performance of the magnetic bearings in the unit. The magnetic suspension consists of an inlet side magnetic bearing and an outlet side magnetic bearing, each divided into 8 pole segments to control axial and radial displacements as well as angular displacements. The magnetic actuators are composed of several different materials to minimize size and weight while having sufficient load capacity to support the forces on the impeller. Flux levels in the range of 0.1 T are employed in the magnetic bearings. Self sensing electronic circuits (without physical sensors) are employed to determine the impellar position and provide the feedback control signal needed for the magnetic bearing control loops. The sensors provide position sensitivity of approximately 0.025 mm. A decentralized 5 axis controller has been developed using modal control techniques. Proportional integral derivative controls are used for each axis to levitate the magnetically supported impeller.  相似文献   

3.
Waters  Allaire  Tao  Adams  Bearnson  Wei  Hilton  Baloh  Olsen  & Khanwilkar 《Artificial organs》1999,23(6):480-486
The response of a continuous flow magnetic bearing supported ventricular assist device, the CFVAD3 (CF3) to human physiologic pressure and flow needs is varied by adjustment of the motor speed. This paper discusses a model of the automatic feedback controller designed to develop the required pump performance. The major human circulatory, mechanical, and electrical systems were evaluated using experimental data from the CF3 and linearized models developed. An open-loop model of the human circulatory system was constructed with a human heart and a VAD included. A feedback loop was then closed to maintain a desired reference differential pressure across the system. A proportional-integral (PI) controller was developed to adjust the motor speed and maintain the system reference differential pressure when changes occur in the natural heart. The effects of natural heart pulsatility on the control system show that the reference blood differential pressure is maintained without requiring CF3 motor pulsatility.  相似文献   

4.
Abstract This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.  相似文献   

5.
Blood Flow in a Continuous Flow Ventricular Assist Device   总被引:1,自引:0,他引:1  
A numerical analysis was performed to predict the shear stresses, flow rates, and the velocity profiles in a continuous flow ventricular assist device, the CFVAD3. The problem was modeled as a rotating disk over a stationary disk. A variety of clearances was tested for the CFVAD3 coupled with a range of rotational speeds and pressure gradients. Velocity fields were generated using solutions obtained with FLOW3D software (AEA Technology, Pittsburgh, PA, U.S.A.) Analysis of these solutions shows that the pressure differential effect has a stronger influence on the flow than the rotational effect of the impeller Ekman layer. The predicted shear stresses reflect these changes in the volume flow rates and the speeds shown in the velocity profiles. Based on the predictions of the software, the optimum clearance and rotational speed were chosen. The conclusion is that a speed in the range of 2,200-2,400 rpm should be chosen depending on the efficiency of the pump.  相似文献   

6.
Abstract: A cooperative effort between Baylor College of Medicine and NASA/Johnson Space Center is under way to develop an implantable left ventricular assist device for either pulmonary or systemic circulatory support for more than 3 months' duration. Using methodical evaluation and testing, an implantable axial pump has been systematically improved. These improvements include the addition of an inducer as a pumping element in front of the impeller and the construction of an efficient brushless direct current motor. To date, less than 10 W of power is required to generate 5 L/min flow against 100 mm Hg. An index of hemolysis of 0.021 g/100 L has been achieved. Two-day in vivo feasibility studies in calves are under way to evaluate the antithrombogenic nature of the pump. Further improvements in system efficiency, hemolytic performance, and the antithrombogenic nature of the pump are expected with the use of empirical studies, computer flow modeling, and in vivo testing in calves.  相似文献   

7.
The DeBakey ventricular assist device (VAD) is a miniaturized, electromagnetically driven axial flow pump capable of generating in excess of 10 L/min output. The VAD was evaluated in 19 calves during experiments designed to test iterative modifications in the system and to determine the safety of the DeBakey VAD for intermediate to long-term implant. Five of the animals died or were euthanized during the perioperative period (i.e., Days 1-5) due to complications associated with bleeding (n = 3), sudden cardiac arrest (n = 1), or pump occlusion due to a muscle remnant associated with coring (n = 1). The remaining 14 animals survived from 7-145 days. Ten of the 14 animals survived 30 or more days, and 2 animals survived 93 and 145 days before elective euthanasia. Pump function was evaluated in the 14 calves that survived beyond the perioperative period. Pump output at implantation averaged 3 L/min while output at 100 days (n = 2) averaged 4.22 L/min. The electrical current did not change across time during the study, indicating normal operation of the bearings. Pumps consumed less than 10.5 W of power for all support durations. Hemolysis did not occur; the average daily plasma free hemoglobin varied from 2.0 to 8.0 mg/dl. Evaluation of serum biochemical data showed that implantation of the DeBakey VAD in calves with normal hearts did not impair end organ function; BUN, creatinine, and total bilirubin varied minimally within the normal range. The white blood cell count of implanted animals remained within the normal range throughout the study.  相似文献   

8.
Abstract: A small ventricular assist device intended for long-term implantation has been developed by a cooperative effort between the Baylor College of Medicine and the NASA/Johnson Space Center. To date, in vitro tests have been performed to address hemolysis and pump performance issues. In this Phase 1 study, we assessed the durability and atraumatic features aiming for 2 day implantation. Eight pumps were implanted in 2 calves as paracorporeal left ventricular assist devices. The pump running times ranged from 18 to 203 h (78.1 ± 23.7; mean ± SEM). All the pump implantations were terminated because of thrombus formation. Plasma-free hemoglobin levels were below 13.7 mg/dl, except for 1 case complicated by inflow cannula obstruction. The pump speed was maintained between 10,100 and 11,400 rpm. Pump outputs were from 3.6 to 5.2 L/min. The electrical power required by the system ranged between 9 and 12 W. Clinically there was no detectable organ dysfunction noted, and postmortem evaluation demonstrated no pump related adverse effects in either calf except for small kidney infarctions. Thrombus deposition was observed mainly at the hub portions and the flow straightener.  相似文献   

9.
Abstract: A small axial flow ventricular assist device (VAD) measuring 3 inches long and 1 inch in diameter is in development. The pump consists of a spinning inducer/ impeller, a flow straightener (FLS), and a diffuser enclosed in a cylindrical flow tube. The impeller has rod-shaped permanent magnets embedded within its 6 blades and is activated magnetically by the motor stator which is positioned outside the flow tube. At the completion of a previous study, the FLS was identified as a thrombogenic area. The aim of the present study was to evaluate the thrombogenicity of redesigned FLSs (swept-back and bulbous types), compared with standard type (STD) FLS. A total of 15 pumps (STD, n = 7; swept-back, n = 4; and bulbous, n = 4) were sequentially implanted into 4 calves paracorporeally in a short-term ex vivo test. The STD and bulbous FLSs experienced thrombus formation, but the swept-back FLS was thrombus free during a 48 h screening test.  相似文献   

10.
To date, ventricular assist devices (VADs) have become accepted as a therapeutic solution for end‐stage heart failure patients when a donor heart is not available. Newer generation VADs allow for a significant reduction in size and an improvement in reliability. However, the invasive implantation still limits this technology to critically ill patients. Recently, expandable/deployable devices have been investigated as a potential solution for minimally invasive insertion. Such a device can be inserted percutaneously via peripheral vessels in a collapsed form and operated in an expanded form at the desired location. A common structure of such foldable pumps comprises a memory alloy skeleton covered by flexible polyurethane material. The material properties allow elastic deformation to achieve the folded position and withstand the hydrodynamic forces during operation; however, determining the optimal geometry for such a structure is a complex challenge. The numerical finite element method (FEM) is widely used and provides accurate structural analysis, but computation time is considerably high during the initial design stage where various geometries need to be examined. This article details a simplified two‐dimensional analytical method to estimate the mechanical stress and deformation of memory alloy skeletons. The method was applied in design examples including two popular types of blade skeletons of a foldable VAD. Furthermore, three force distributions were simulated to evaluate the strength of the structures under different loading conditions experienced during pump operation. The results were verified with FEM simulations. The proposed two‐dimensional method gives a close stress and deformation estimation compared with three‐dimensional FEM simulations. The results confirm the feasibility of such a simplified analytical approach to reveal priorities for structural optimization before time‐consuming FEM simulations, providing an effective tool in the initial structural design stage of foldable minimally invasive VADs.  相似文献   

11.
Ventricular assist devices (VADs) are increasingly used for supporting blood circulation in heart failure patients. To protect or even to restore the myocardial function, a defined loading of the ventricle for training would be important. Therefore, a VAD control strategy was developed that provides an explicitly definable loading condition for the failing ventricle. A mathematical model of the cardiovascular system with an axial flow VAD was used to test the control strategy in the presence of a failing left ventricle, slight physical activity, and a recovering scenario. Furthermore, the proposed control strategy was compared to a conventional constant speed mode during hemodynamic changes (reduced venous return and arterial vasoconstriction). The physiological benefit of the control strategy was manifested by a large increase in the ventricular Frank–Starling reserve and by restoration of normal hemodynamics (5.1 L/min cardiac output at a left atrial pressure of 10 mm Hg vs. 4.2 L/min at 21 mm Hg in the unassisted case). The control strategy automatically reduced the pump speed in response to reduced venous return and kept the pump flow independent of the vasoconstriction condition. Most importantly, the ventricular load was kept stable within 1%, compared to a change of 75% for the constant speed. As a key feature, the proposed control strategy provides a defined and adjustable load to the failing ventricle by an automatic regulation of the VAD speed and allows a controlled training of the myocardium. This, in turn, may represent a potential additional tool to increase the number of patients showing recovery.  相似文献   

12.
Abstract: We have developed a compact, seal-less, allpurpose centrifugal pump, the Baylor C-Gyro pump, which is intended as a long-term ventricular assist device (VAD) as well as a cardiopulmonary bypass pump. In attaining this goal, we began with eliminating the shaft seals by adopting a pivot bearing system at the impeller shaft. In addition, a ring magnet encased in the bottom of the impeller was coupled magnetically to a driver magnet placed outside the pump housing (Cl Prototype). This first model yielded satisfactory performance in vitro with a flow rate of 8 L/min against 250 mm Hg at 2,400 rpm, and an index of hemolysis (IH) of 0.0083 g/100 L using bovine blood. In the second model, the C1 Eccentric Inlet Port Model, the inlet bearing support bar in the prototype were eliminated without reducing the prototype's performance. These designs for antithrombogenicity are being tested by the first in vivo experiment, which has lasted for more than 2 weeks.  相似文献   

13.
Abstract: Our newly developed axial flow pump consists of a flow tube, an internal rotating impeller, and a fixed flow stator (we call the stator) behind the impeller. This pump produces a flow of 3 to 8 L/min against 50 to 150 mm Hg pressure difference, respectively, in the range of 10,000 to 16,000 rpm. An axial flow pump that will be used as a ventricular assist device (VAD) has to have low hemolytic and good antithrombogenic characteristics. This paper will show how to decrease the hemolytic properties of this axial flow pump systematically using a test matrix. The test variables evaluated were impeller blade tip geometry, impeller flow tube clearance (radial clearance), impeller stator clearance (axial clearance), impeller blade number, stator blade number, and impeller length. All in vitro hemolysis tests were performed at 5.0 L/min against 100 mm Hg pressure difference using a total of 83 bags of fresh bovine blood. The results were as follows: the impeller blade tip geometry did not significantly effect hemolysis, a 0.005-inch and a 0.009-inch radial clearance were significantly (p < 0.01 or 0.001) less hemolytic than the other clearances, a 0.075-inch axial clearance was significantly (p < 0.05) more hemolytic than the other clearances, two-and six-bladed impellers were significantly (p < 0.01 and 0.02, respectively) less hemolytic than a four-bladed impeller, a five-bladed stator was significantly (p < 0.05 or 0.01) less hemolytic than the other stators, and the impeller length did not make a significant difference. Currently, the best index of hemolysis is 0.031 ± 0.018 g/100 L, and using parameters from these results, implantable devices are being fabricated.  相似文献   

14.
The current recommended anticoagulation regimen during continuous flow centrifugal left ventricular device support is a combination of antiplatelet therapy as well as oral anticoagulation. Despite this, pump thrombosis occurs in rare situations. We report the risk factors and nonsurgical management and outcomes of five patients implanted with continuous flow centrifugal left ventricular assist devices who displayed clinical, hemodynamic, and laboratory features of intrapump thrombosis. This information may support the use of intravenous thrombolytics for suspected pump thrombus in these newer generation devices.  相似文献   

15.
16.
This study describes the present state of progress in the development of the vibrating flow pump (VFP) ventricular assist system. We have proceeded with development aiming at a totally implantable ventricular assist system with smaller size and lighter weight appropriate for Asians like the Japanese by increasing the drive frequency. An actuator is important for the development of the miniature sized and lightweight artificial heart. We applied a linear motor for the mechanical part at first. The step motor was applied after that. This form may be best if we want the lightweight small sized motor for an actuator. The cross slider form is applied at present. It succeeded in the miniaturization compared with the linear motor. In the VFP-type ventricular assist system, the blood contact parts are a central vibration tube with inflow and outflow chambers. We designed round diaphragms to prevent thrombus formation. In addition, we developed an energy transmission system for total implantation. The VFP creates a high frequency oscillated blood flow. It has a unique flow pattern. Brain blood flow increased although the total flow of the circulation did not change in the frequency of 25 to 30 Hz. The quantitative evaluation of the autonomic nerve function during the left heart assistance with an oscillated blood flow was carried out by spectral analysis. Some influences on an autonomic nerve were observed by the VFP left heart assistance. We will continue development research with the aim of clinical application.  相似文献   

17.
Monitoring of cardiac rhythms is of major importance in the treatment of heart failure patients with left ventricular assist devices (LVADs) implanted. A continuous surveillance of these rhythms could improve out‐of‐hospital care in these patients. The aim of this study was to investigate cardiac rhythms using available pump data only. Datasets (n = 141) obtained in the normal ward, in the intensive care unit, and during bicycle ergometry were analyzed in 11 recipients of a continuous flow LVAD (59.1 ± 9.7 years; male 82%). Tachograms and arrhythmic patterns derived from the pump flow waveform, and a simultaneously recorded ECG were compared, as well as heart rate variability parameters such as: the average heart beat duration (RR interval), the standard deviation of the beat duration (SDNN), the root‐mean‐square of the difference of successive beat durations (RMSSD), and the number of pairs of adjacent beat duration differing by >50 ms divided by the number of all beats (pNN50). A very good agreement of cardiac rhythm parameters from the pump flow compared with ECG was found. Tachycardia, atrial fibrillation, and extrasystoles could be accurately identified from the tachograms derived from the pump flow. Also, Bland–Altman analysis comparing pump flow with ECG indicated a very small difference in average RR interval of 0.3 ± 1.0 ms, in SSDN of 0.5 ± 2.7 ms, in RMSSD of 1.0 ± 5.6 ms, and in pNN50 of 0.3 ± 1.0%. Continuous monitoring of cardiac rhythms from available pump data is possible. It has the potential to reduce the out‐of‐hospital diagnostic burden and to permit a more efficient adjustment of the level of mechanical support.  相似文献   

18.
Scientific and technological advances in blood pump developments have been driven by their importance in cardiac patient treatments and in the expansion of life quality in assisted people. To improve and optimize the design and development, numerical tools were incorporated into the analyses of these mechanisms and have become indispensable in their advances. This study analyzes the flow behavior with low impeller Reynolds number, for which there is no consensus on the full development of turbulence in ventricular assist devices (VAD). For supporting analyses, computational numerical simulations were carried out in different scenarios with the same rotation speed. Two modeling approaches were applied: laminar flow and turbulent flow with the standard, RNG and realizable κ ? ε; the standard and SST κ ? ω models; and Spalart–Allmaras models. The results agree with the literature for VAD and the range for transient flows in stirred tanks with an impeller Reynolds number around 2800 for the tested scenarios. The turbulent models were compared, and it is suggested, based on the expected physical behavior, the use of RNG, standard and SST , and Spalart–Allmaras models to numerical analyses for low impeller Reynolds numbers according to the tested flow scenarios.  相似文献   

19.
Aortic insufficiency (AI) is usually repaired prior to rotary blood pump (RBP) implantation but can develop during support due, in part, to the sustained RBP‐induced high pressure gradient across the aortic valve. Repair of the aortic valve before or during RBP support predisposes these critically ill patients to even higher risks. This study used an in vitro mock circulation loop to identify the severity of AI and/or left heart failure (LHF) that might benefit from valve repair while investigating RBP operating strategies to reduce the hemodynamic influence of AI. Reproduction of AI with RBP‐supported LHF reduced device efficiency, particularly in the more severe cases of AI and LHF. The requirement for repair or closure of the aortic valve was demonstrated in all conditions other than those with only mild AI. When a sinusoidal RBP speed pulse was induced, small changes in systemic flow rate and regurgitant volume were observed with all degrees of AI. Variation of the pulse phase delay only resulted in minor changes to systemic flow rate, with a maximum difference of 0.17 L/min. Although the clinical implications of these small changes may be insignificant, changes in systemic flow rate and transvalvular pressure were shown when the sinusoidal RBP speed pulse was applied with no AI. In these cases, transvalvular pressure was reduced by up to 8% through sinusoidal copulsation of the RBP, which may prevent or delay the onset of AI. This in vitro study suggests that surgical intervention is required with moderate or worse AI and that RBP operating strategies should be further explored to delay the onset and reduce the harmful effects of AI.  相似文献   

20.
Abstract: Flow patterns in a multiple disk centrifugal pump were analyzed so that the device could be incorporated as a ventricular assist or a bridge-to-transplant device. The pump operates either in pulsatile or steady flow modes with the ability to change modes within a fraction of a second. The pump was tested on a mock circulatory system consisting of an arterial fluid capacitor, a systemic resistor, and a venous capacitor. Arterial volume flow rate, arterial pressure, inlet (venous) pressure, and pump rotation speed are continually monitored. A glycerin/ water solution is used as a blood analog. Flow visualization was performed with a 3 mW yellow laser, sheet lens, neutrally buoyant amberlite particles, and both still and motion picture photography. Flow patterns matched theoretical predictions very well; inlet flow spread radially outward through the disk annular spaces while propelled by shear and centrifugal forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号