首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coffin-Siris Syndrome (CSS) is a rare multi-system dominant condition with a variable clinical presentation mainly characterized by hypoplasia/aplasia of the nail and/or distal phalanx of the fifth digit, coarse facies, hirsutism/hypertrichosis, developmental delay and intellectual disability of variable degree and growth impairment. Congenital anomalies may include cardiac, genitourinary and central nervous system malformations whereas congenital diaphragmatic hernia (CDH) is rarely reported. The genes usually involved in CSS pathogenesis are ARID1B (most frequently), SMARCA4, SMARCB1, ARID1A, SMARCE1, DPF2, and PHF6. Here, we present two cases of CSS presenting with CDH, for whom Whole Exome Sequencing (WES) identified two distinct de novo heterozygous causative variants, one in ARID1B (case 1) and one in SMARCA4 (case 2). Due to the rarity of CDH in CSS, in both cases the occurrence of CDH did not represent a predictive sign of CSS but, on the other hand, prompted genetic testing before (case 1) or independently (case 2) from the clinical hypothesis of CSS. We provide further evidence of the association between CSS and CDH, reviewed previous cases from literature and discuss possible functional links to related conditions.  相似文献   

2.
3.
Marfan syndrome (MFS) due to mutations in FBN1 is a known cause of thoracic aortic aneurysms and acute aortic dissections (TAAD) associated with pleiotropic manifestations. Genetic predisposition to TAAD can also be inherited in families in the absence of syndromic features, termed familial TAAD (FTAAD), and several causative genes have been identified to date. FBN1 mutations can also be identified in FTAAD families, but the frequency of these mutations has not been established. We performed exome sequencing of 183 FTAAD families and identified pathogenic FBN1 variants in five (2.7%) of these families. We also identified eight additional FBN1 rare variants that could not be unequivocally classified as disease‐causing in six families. FBN1 sequencing should be considered in individuals with FTAAD even without significant systemic features of MFS.  相似文献   

4.
目的:对1例不明原因生长发育过快及心脏畸形的患儿进行临床表型及遗传学病因分析。方法:对先证者进行全外显子测序分析,应用Sanger测序技术对全外显子筛出的可疑致病基因的变异位点进行验证,并利用生物信息学软件进行功能预测分析。结果:全外显子测序结果显示,先证者在 FBN1基因的第48外显子上存在c.5846_...  相似文献   

5.
6.
We present 12 children with typical Brachmann-de Lange syndrome and congenital diaphragmatic hernia. Affected children were more likely to be of low birth weight and to have major upper limb malformations. Hernia repair was attempted in 4 of these children, and only one survived past 12 months, Newborn infants with congenital diaphragmatic hernia should be examined carefully for evidence of the Brachmann-de Lange syndrome because diagnosis of thes condition may influence their clinical management and prognosis. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Fibrillin-1 gene ( FBN1 ) mutations cause Marfan syndrome (MFS), an inherited connective tissue disorder with autosomal dominant transmission. Major clinical manifestations affect cardiovascular and skeletal apparatuses and ocular and central nervous systems. We analyzed FBN1 gene in 99 patients referred to our Center for Marfan Syndrome and Related Disorders (University of Florence, Florence, Italy): 85 were affected by MFS and 14 by other fibrillinopathies type I. We identified mutations in 80 patients. Among the 77 different mutational events, 46 had not been previously reported. They are represented by 49 missense (61%), 1 silent (1%), 13 nonsense (16%), 6 donor splice site mutations (8%), 8 small deletions (10%), and 3 small duplications (4%). The majority of missense mutations were within the calcium-binding epidermal growth factor-like domains. We found preferential associations between The Cys-missense mutations and ectopia lentis and premature termination codon mutations and skeletal manifestations. In contrast to what reported in literature, the cardiovascular system is severely affected also in patients carrying mutations in exons 1–10 and 59–65. In conclusion, we were able to detect FBN1 mutations in 88% of patients with MFS and in 36% of patients with other fibrillinopathies type I, confirming that FBN1 mutations are good predictors of classic MFS.  相似文献   

8.
Zinc finger protein, FOG2 family member 2 (ZFPM2) (previously named FOG2) gene defects result in the highly morbid congenital diaphragmatic hernia (CDH) in humans and animal models. In a cohort of 275 CDH patient exomes, we estimated the prevalence of damaging ZFPM2 mutations to be almost 5%. Genetic analysis of a multigenerational family identified a heritable intragenic ZFPM2 deletion with an estimated penetrance of 37.5%, which has important implications for genetic counseling. Similarly, a low penetrance ZFPM2 frameshift mutation was observed in a second multiplex family. Isolated CDH was the predominant phenotype observed in our ZFPM2 mutation patients. Findings from the patients described herein indicate that ZFPM2 point mutations or deletions are a recurring cause of CDH.  相似文献   

9.
Congenital contractural arachnodactyly (CCA) is an autosomal dominant condition phenotypically related to Marfan syndrome (MFS). CCA is caused by mutations in FBN2, whereas MFS results from mutations in FBN1. FBN2 mRNA extracted from 12 unrelated CCA patient cell strains was screened for mutations, and FBN2 mutations were identified in six of these samples. All of the identified FBN2 mutations cluster in a limited region of the gene, a region where mutations in FBN1 produce the severe, congenital form of MFS (so-called neonatal MFS). Furthermore, three of the identified mutations occur in the FBN2 locations exactly corresponding to FBN1 mutations that have been reported in cases of neonatal MFS. These mutations indicate that this central region of both of the fibrillins plays a critical role in human embryogenesis. The limited region of FBN2 that can be mutated to cause CCA may also help to explain the rarity of CCA compared to MFS. Am. J. Med. Genet. 78:350–355, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24–32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23–32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25–27 of the FBN1 gene in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24–32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Defects at the level of pre-mRNA splicing are a common source of genetic mutation but such mutations are not always easy to identify from DNA sequence data alone. Clinical practice has only recently begun to incorporate analysis for this type of abnormality. Some base changes at the DNA level currently viewed as unclassified variants or missense mutations may influence RNA splicing. To address this problem for fibrillin 1 (FBN1) gene missense mutations we have carried out RNA analysis and in silico analysis with splice site prediction programs on 40 cases with 36 different mutations. Direct analysis of RNA from blood was performed by cDNA preparation, PCR amplification of specific FBN1 fragments, gel electrophoresis and sequencing of the PCR products. Of the 36 missense base changes, direct RNA analysis identified 2 which caused an abnormality of splicing. In silico analysis using five splice site prediction programs did not always accurately predict the splicing seen by direct RNA analysis. In conclusion, some apparent missense mutations have an effect on splicing which can be identified by direct RNA analysis, however, in silico analysis of splice sites is not always accurate, should be carried out with more than one prediction program and results should be used with caution.  相似文献   

14.
In large congenital diaphragmatic hernias (CDHs), direct suture of the diaphragm is impossible. Surgeons can use a triangular internal oblique muscle (IOM) plus transverse abdominis muscle (TAM) flap. Its caudal limit faces the medial extremity of the 11th rib. Clinical studies show that the flap is not hypotonic but that the procedure could expose patients already presenting a hypoplastic lung to external oblique muscle (EOM) hypotonia. The aims of this study were to study EOM innervation by the 10th intercostal nerve (ICN) and ICN innervation to the IOM and TAM. Forty cadaveric abdominal hemi-walls were dissected. The number of branches and the trajectory of each specimen's 10th ICN were studied medially to the medial extremity of the 11th rib (MEK11) using surgical goggles and a microscope (Carl Zeiss®). The 10th ICN was consistently found between the IOM and TAM. There was a median of nine branches from the 10th ICN to the EOM, 77% of them medial to the MEK11. Median values of nine and 12 branches for the IOM and TAM were found, 60% and 51%, respectively, medial to the MEK11. These results argue in favor of good innervation to the IOM plus TAM flap but also indicate postoperative abdominal weakness exposing patients to herniation risks, as more than 75% of the branches from the 10th ICN to the EOM were sectioned or pulled away during flap detachment. Clin. Anat., 33:759–766, 2020. © 2019 Wiley Periodicals, Inc.  相似文献   

15.
Congenital diaphragmatic hernia (CDH) is a common major malformation affecting 1/3000–1/4000 births, which continues to be associated with significant perinatal mortality. Much current research is focused on elucidating the genetics and pathophysiology contributing to CDH to develop more effective therapies. The latest data suggest that many cases of CDH are genetically determined and also indicate that CDH is etiologically heterogeneous. The present review will provide a brief summary of diaphragm development and model organism work most relevant to human CDH and will primarily describe important human phenotypes associated with CDH and also provide recommendations for diagnostic evaluation of a fetus or infant with CDH.  相似文献   

16.
Using exome sequencing we identify a heterozygous nonsense mutation in ZFPM2 as a cause of familial isolated congenital diaphragmatic hernia in 2 affected siblings. This mutation displays variable phenotypic expression being present in a third sibling with a mild diaphragmatic eventration and a cardiovascular malformation. The same variant is seen in 2 additional family members, both of whom are asymptomatic, thus highlighting that ZFPM2 haploinsufficiency is associated with reduced penetrance. Our finding adds further evidence for ZFPM2 having a role in diaphragm and cardiovascular development.  相似文献   

17.
Marfan Syndrome (MFS) is an autosomal dominant connective tissue disorder with a wide range of severities. Ninety‐five percent of MFS probands have a mutation in the fibrillin‐1 gene (FBN1); however, there are a high number of unique mutations complicating attempts at establishing any phenotype–genotype correlations for this disease (Tiecke et al., European Journal of Human Genetics, 2001, 9, 13–21). One of the few extant genotype–phenotype correlations is in exon 24–32 which have been associated with a severe pediatric presentation of neonatal MFS with predominately cardiovascular symptoms. We present a 24‐year‐old male patient with a heterozygous de novo variant NM_000138.4: c.3037G>A (p.G1013R) located in exon 25 of the FBN1 gene. The patient was found to have dysplastic mitral and tricuspid valves with dilated aortic root at 9 months of age. This is a notable case in that the location of this patient's mutation and his age of symptom onset would indicate a guarded prognosis. Further, this mutation, FBN1 G1013R, has been reported in the literature in four other unrelated patients all of whom presented at a young age with cardiac involvement and all of whom had relative longevity when compared to other patients with mutations in this exon 24–32 hot spot. These findings may represent a more specific genotype–phenotype correlation within this mutational hot spot.  相似文献   

18.
De novo heterozygous ADNP variants have been associated with a complex neurological phenotype characterized primarily by neurodevelopmental delay. Cardiac and renal anomalies have additionally been observed in a few patients. All reported cases to date have been ascertained postnatally. Congenital diaphragmatic hernia (CDH) has been previously observed in one child diagnosed with a de novo ADNP-related neurodevelopmental disorder. We report a fetus who presented with syndromic CDH associated with a de novo heterozygous ADNP variant.  相似文献   

19.
Mutations in the gene encoding fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study we performed SSCP to analyze all 65 exons of the FBN1 gene in 76 patients presenting with classical MFS or related phenotypes. We report 7 missense mutations, 3 splice site alterations, one indel mutation, one nonsense mutation and two mutations causing frameshifts: a 16bp deletion and a single nucleotide insertion. 5 of the missense mutations (Y1101C, C1806Y, T1908I, G1919D, C2251R) occur in calcium-binding Epidermal Growth Factor-like (EGFcb) domains of exons 26, 43, 46 and 55, respectively. One missense mutation (V449I) substitutes a valine residue in the non-calcium-binding epidermal growth factor like domain (EGFncb) of exon 11. One missense mutation (G880S) affects the "hybrid" motif in exon 21 by replacing glycine to serine. The 3 splice site mutations detected are: IVS1-1G>A in intron 1, IVS38-1G>A in intron 38 and IVS46+5G>A in intron 46. C628delinsK was identified in exon 15 leading to the substitution of a conserved cysteine residue. Furthermore two frameshift mutations were found in exon 15 (1904-1919del ) and exon 63 (8025insC) leading to premature termination codons (PTCs) in exon 17 and 64 respectively. Finally we identified a nonsense mutation (R429X) located in the proline rich domain in exon 10 of the FBN1 gene. Y1101C, IVS46+5G>A and R429X have been reported before.  相似文献   

20.
We report on a liveborn premature male with trisomy 22 who had multiple congenital anomalies, including congenital diaphragmatic hernia and absence of corpus callosum. He died of pulmonary hypoplasia associated with diaphragmatic hernia within 12 hours of age. Chromosome analysis by multiple banding techniques based on lymphocyte culture confirmed that he had trisomy 22. This may be the first report of congenital diaphragmatic hernia and isolated absence of corpus callosum associated with trisomy 22. © Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号