首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Glucocorticoids have been shown to be effective in the treatment of autoimmune diseases of the CNS such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the mechanisms and the site of glucocorticoids' actions are still not completely defined. The aim of this study was to investigate the in vivo effect of the synthetic glucocorticoid methylprednisolone (MP) on the expression and production of proinflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17 by cells infiltrating CNS tissue.  相似文献   

2.
NK cells are multicompetent lymphocytes of the innate immune system with a central role in host defense and immune regulation. Studies in experimental animal models of multiple sclerosis (MS) provided evidence for both pathologic and protective effects of NK cells. Humans harbor two functionally distinct NK-cell subsets exerting either predominantly cytotoxic (CD56(dim)CD16(+)) or immunoregulatory (CD56(bright)CD16(-)) functions. We analyzed these two subsets and their functions in the peripheral blood of untreated patients with relapsing-remitting MS compared with healthy blood donors. While ex vivo frequencies of CD56(bright)CD16(-) and CD56(dim)CD16(+) NK cells were similar in patients and controls, we found that cytokine-driven in vitro accumulation and IFN-γ production of CD56(bright)CD16(-) NK cells but not of their CD56(dim)CD16(+) counterparts were substantially diminished in MS. Impaired expansion of CD56(bright)CD16(-) NK cells was cell intrinsic because the observed effects could be reproduced with purified NK cells in an independent cohort of patients and controls. In contrast, cytolytic NK-cell activity toward the human erythromyeloblastoid leukemia cell line K562, the allogeneic CD4(+) T cell line CEM and allogeneic primary CD4(+) T-cell blasts was unchanged. Thus, characteristic functions of CD56(bright)CD16(-) NK cells, namely cytokine-induced NK cell expansion and IFN-γ production, are compromised in the NK cell compartment of MS patients.  相似文献   

3.
Interleukin (IL)-33, a member of the IL-1 cytokine family, is an important modulator of the immune system associated with several immune-mediated disorders. High levels of IL-33 are expressed by the central nervous system (CNS) suggesting a potential role of IL-33 in autoimmune CNS diseases. We have investigated the expression and function of IL-33 in the development of experimental autoimmune encephalomyelitis (EAE) in mice. We report here that IL-33 and its receptor ST2 (IL-33Rα) are highly expressed in spinal cord tissue, and ST2 expression is markedly increased in the spinal cords of mice with EAE. Furthermore, ST2-deficient (ST2(-/-) ) mice developed exacerbated EAE compared with wild-type (WT) mice while WT, but not ST2(-/-) EAE mice treated with IL-33 developed significantly attenuated disease. IL-33-treated mice had reduced levels of IL-17 and IFN-γ but produced increased amounts of IL-5 and IL-13. Lymph node and splenic macrophages of IL-33-treated mice showed polarization toward an alternatively activated macrophage (M2) phenotype with significantly increased frequency of MR(+) PD-L2(+) cells. Importantly, adoptive transfer of these IL-33-treated macrophages attenuated EAE development. Our data therefore demonstrate that IL-33 plays a therapeutic role in autoimmune CNS disease by switching a predominantly pathogenic Th17/Th1 response to Th2 activity, and by polarization of anti-inflammatory M2 macrophages.  相似文献   

4.
γδ T cells are highly abundant in the blood and spleen of pigs but little is known about their functional differentiation. In this study the potential of the type-1 polarizing cytokines IL-12 and IL-18 in combination with IL-2 and Concanavalin A (ConA) to stimulate porcine γδ T cells was investigated. Stimulation of purified γδ T cells with ConA and IL-2 induced a strong proliferation of CD2 γδ T cells, whereas additional stimulation with IL-12 and IL-18 caused a stronger proliferation of CD2+ γδ T cells. IFN-γ could only be detected in supernatants of γδ T-cell cultures supplemented with IL-12 and IL-18. Experiments with sorted CD2/SWC5-defined γδ T-cell subsets revealed that CD2+SWC5 γδ T cells are the main producers of IFN-γ following stimulation with IL-2/IL-12/IL-18. Additional stimulation with ConA led to an upregulation of CD2 within the CD2 γδ T cell subsets, indicating a previously unnoticed plasticity of CD2-defined γδ T cell subsets.  相似文献   

5.
Background: Allergic inflammation is mainly driven by type 2 T helper cells. The aim was to assess the changes in production of type 1 and 2 cytokines by CD3+ T cells dependent on natural exposure to allergens in subjects with intermittent allergic rhinitis (IAR) and in non-atopic subjects.Material: A total of 13 patients with IAR and 13 healthy non-atopics were recruited into the study. 11 patients with IAR were examined during the grass pollen season and 11 patients outside the season, 9 of them were assessed on both occasions.Methods: A flow cytometric assessment of intracellular expression of IL-2, IL-4 and IFN- by CD3+ cells was performed. For statistical analysis non-parametric tests were used.Results: A tendency to decreased production of IL-4 outside the season was observed (6.94% [3.42–13.33] in season vs. 2.06% [0.7–3.6] out of season). The production of IL-4 was higher in the rhinitic group in the season than in the control group (1.93% [1.07–4.97], p = 0.0034) and production of IL-2 was higher both in and outside the season (9.1% [3.94–15.09] and 10.0% [4.79–25.35] vs. 3.64% (2.64–5.03), p = 0.037 and 0.045, respectively). IL-4/IL-2 and IL-4/IFN- ratios were higher in the IAR group in the season than outside the season.Conclusion: A tendency towards a switch from a predominant type 2 response during natural allergen exposure to its suppression outside the season was found, together with a stable type 1 response.Received 22 July 2004; returned for revision 27 August 2004; accepted by M. J. Parnham 2 November 2004  相似文献   

6.
7.
8.
《Molecular immunology》2015,66(2):259-266
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance.  相似文献   

9.
The human β-defensin-2 (hBD-2) is expressed in epithelial cells of skin and respiratory and gastrointestinal tracts. Defensins are arginine-rich small cationic peptides with six intramolecular disulfide bonds and are antimicrobially active against a broad spectrum of pathogens. In addition, they have cytokine-like immunomodulatory properties. We hypothesized that hBD-2 also might influence epithelial cells themselves, thereby altering fluid composition in the gastrointestinal tract. We therefore tested its impact on electrogenic ion transport properties of distal colon in Ussing chamber experiments. Application of hBD-2 did not affect transepithelial voltage or resistance in cAMP-stimulated distal colon. However, it increased cholinergic Ca2+-dependent Cl? secretion. After 20 min of incubation with hBD-2, the effect of carbachol (CCh) on the equivalent short circuit current (Isc) was enhanced twofold compared to vehicle-treated colon. Modulation of Ca2+ signaling by hBD-2 was validated by Fura-2 measurements in human colon carcinoma HT29 cells. Twenty-minute incubation with hBD-2 increased the CCh-induced Ca2+ transient by 20–30% compared to either vehicle-treated cells or cells treated with the defensins hBD-1, hBD-3, or HD-5. This effect was concentration-dependent, with an EC50 of 0.043 µg/ml, and still present in the absence of extracellular Ca2+. Also, the ionomycin-induced Ca2+ transient was increased by hBD-2 treatment. We conclude that hBD-2 facilitates cholinergic Ca2+-regulated epithelial Cl? secretion. These findings contribute to the concept of a specific interaction of antimicrobial peptides with epithelial function.  相似文献   

10.
11.
Th1 and Th17 cells are distinct lineages of effector/memory cells, imprinted for re-expression of IFN-γ and IL-17, by upregulated expression of T-bet and retinoic acid-related orphan receptor γt (RORγt), respectively. Apparently, Th1 and Th17 cells share tasks in the control of inflammatory immune responses. Th cells coexpressing IFN-γ and IL-17 have been observed in vivo, but it remained elusive, how these cells had been generated and whether they represent a distinct lineage of Th differentiation. It has been shown that ex vivo isolated Th1 and Th17 cells are not interconvertable by TGF-β/IL-6 and IL-12, respectively. Here, we show that ex vivo isolated Th17 cells can be converted into Th1/Th17 cells by combined IFN-γ and IL-12 signaling. IFN-γ is required to upregulate expression of the IL-12Rβ2 chain, and IL-12 for Th1 polarization. These Th1/Th17 cells stably coexpress RORγt and T-bet at the single-cell level. Our results suggest a molecular pathway for the generation of Th1/Th17 cells in vivo, which combine the pro-inflammatory potential of Th1 and Th17 cells.  相似文献   

12.
Interleukin 12 (IL-12) is a pivotal Th1-associated cytokine and a potent immunoregulatory molecule. However, the role of IL-12 in inducing immune tolerance that prevents insulitis and inhibits type 1 diabetes (T1D) remains unknown. The aim of this study was to investigate whether intermittent administration of IL-12 could prevent the development of T1D in nonobese diabetic (NOD) mice. We examined whether IL-12 treatment prevented diabetes by injecting different doses of IL-12 into NOD mice and compared the incidence of diabetes and insulitis in NOD mice with the incidence in control mice. Furthermore, we investigated the potential mechanisms of IL-12-mediated prevention of diabetes and insulitis. The expression of pro-inflammatory and immunoregulatory cytokines was measured before and following therapeutic administration of IL-12 in NOD mice. Our data demonstrated that both the absolute number and the function of DCs were impaired in NOD mice and that the levels of the Th17-associated pro-inflammatory cytokines, IL-1β, IL-6 and IL-23, were elevated in NOD mice compared with age-matched BALB/c and C57BL/6 mice. However, treatment of NOD mice with IL-12 suppressed insulitis and increased the number of healthy islets, and the levels of IL-17, IL-1β, IL-6 and IL-23 were significantly decreased. Moreover, IL-12 treatment of NOD mice induced the secretion of IFN-γ, a potent inhibitor of Th17 cells. These data indicated that intermittent administration of IL-12 prevented diabetes by inducing IFN-γ, suppressing the pathogenic IL-17-producing cells and reducing the expression of Th17-associated pro-inflammatory cytokines. Our results suggest a promising strategy for the treatment of human T1D and other Th17 cell-mediated autoimmune diseases.  相似文献   

13.
A functional defect of T regulatory cells (Tregs) has been proposed as pathogenic mechanism of allergic reaction. Impairment of lung function frequently occurs in children with respiratory allergy. This study aimed at investigating the possible role of IL-10 and IFN-γ on lung function deterioration in allergic children. Forty children with mild asthma, monosensitized to house dust mites, were evaluated and followed-up for 2 years. Spirometry was performed in all children. IL-10 and IFN-γ were evaluated in in vitro experiments. FEV(1), FVC, and FEF(25-75), evaluated as percent of predicted, significantly diminished over time (p<0.0001, p=0.03, and p<0.0001 respectively). There was a strong relationship between changes in spirometric parameters and IL-10 production and between changes in FEV(1) values and IFN-γ production over time. This preliminary study provided evidence that IL-10 and IFN-γ production could be defective in allergic children prone to develop functional impairment.  相似文献   

14.
The T cell subsets involved in inflammatory reactions are mainly the IFN-γ secreting Th1 cells and IL17-producing Th17 cells. Although Th17 cells are primed in the thymus, there is evidence that Th17 cells can be generated from effector memory CD4+ T cells. Cytokines as IL-6, TGF-β, IL-21 and IL-23 involved in development of Th17 cells are well described. Here we analyzed the impact of a mutation in the IFN-γ receptor 2 (IFN-γR2) on the induction of Th17 cells. By isolation of T cells and monocytes of a patient with this mutation we could demonstrate an inhibitory role of IFN-γ signaling as IFN-γR2-deficient monocytes induce a higher percentage of IL-17+ cells from both healthy and IFN-γR2-deficient CD4+ T cells. This data confirm the interference of these two T helper subsets and points to a balance of Th1 and Th17 cells obtained by their own cytokine production and their interplay with APCs.  相似文献   

15.
Natural killer T (NKT) cell activation is responsible for eliminating pathogens. However, the biological functions of NKT cells against influenza virus are not fully understood. We therefore investigated the effects of NKT cells in viral infection using CD1d knockout (KO) mice. When CD1d KO or wild-type (WT) mice were infected with a sub-lethal dosage of the influenza virus, the survival rate of CD1d KO mice was significantly lower than for WT mice in association with delayed viral clearance in the lungs. Consistently, IFN-γ production in bronchoalveolar lavage fluid of CD1d KO mice was largely reduced compared to WT mice during infection. Moreover, the cytotoxic activities of NK cells and viral antigen-specific CD8+ T cells were impaired in CD1d KO mice. It was concluded that activated NKT cell-induced IFN-γ release enhances both NK-cell activity and antigen-specific CD8+ T cells to eliminate the influenza virus, thus leading to an enhanced survival.  相似文献   

16.
17.
The addition of IL‐12p75 to naïve CD4+ T cells promotes their differentiation towards a TH1‐type cytokine pattern. Dendritic cells stimulated by LPS generate IL‐12p75, but only if the environment also contains IFN‐γ. Thus, it appears that IFN‐γ is needed to start the response that will result in further production of IFN‐γ. We previously reported that paradoxically DCs produce IL‐12p75 only after engaging primed, but not naïve T cells. This study examines the mechanism by which primed T cells trigger IL‐12p75 secretion and asks whether this induction is also dependent on the presence of IFN‐γ. Here, we show that, in contrast to LPS, primed T cells induce IL‐12p75 in an IFN‐γ‐independent manner. Addition of rIFN‐γ to cocultures of naïve T cells with DCs did not induce IL‐12p75. Moreover, antigen‐activated CD4+ T cells from wild type or IFN‐γ‐deficient mice both initiated IL‐12p75 production from DCs. Surprisingly, we found that synergies between three T‐cell‐derived factors – CD40 Ligand, IL‐4 and GM‐CSF – were necessary and sufficient for IL‐12p75 production. These results suggest that there are at least two distinct pathways for IL‐12p75 production in vivo. Furthermore, the T‐cell‐dependent pathway of IL‐12p75 production employs molecules that are not classically associated with a TH1‐type response.  相似文献   

18.
19.
20.
T-cell immune responses are critical for protection of the host and for disease pathogenesis during infection with Plasmodium species. We examined the regulation of CD4(+) T-cell cytokine responses during infection with Plasmodium berghei ANKA (PbA). CD4(+) T cells from PbA-infected mice produced IFN-γ, IL-4 and IL-10 in response to TCR stimulation at levels higher than those from uninfected mice. This altered cytokine response was dependent on parasitemia. To examine the specificity of the response, mice were adoptively transferred with CD4(+) T cells from OT-II TCR transgenic mice and were infected with PbA expressing OVA. Unexpectedly, CD4(+) T cells from the OT-II-transferred wild-type PbA-infected mice showed high levels of IFN-γ production after stimulation with OVA and the cells producing IFN-γ were not OT-II but were host CD4(+) T cells. Further investigation revealed that host CD4(+) T cells produced IFN-γ in response to IL-2 produced by activated OT-II cells. This IFN-γ response was completely inhibited by anti-CD25 mAbs, and this effect was not due to the block of the survival signals provided by IL-2. Furthermore, IFN-γ production by CD4(+) T cells in response to PbA antigens was dependent on IL-2. These findings suggest the importance of IL-2 levels during infection with malaria parasites and indicate that CD4(+) T cells can produce IFN-γ without TCR engagement via a bystander mechanism in response to IL-2 produced by other activated CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号