首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Background: Restenosis is a common adverse event of endovascular procedures and troubles cardiologists. However, the mechanism underlying restenosis is still not fully understood. To evaluate whether disheveled-1 (Dvl-1) is involved in the Wnt4/β-catenin signaling pathway to participate in the mechanisms of vascular restenosis. Methodology: Rat model of balloon-injured carotid artery was established and atorvastatin was used to treat artery injury. Vascular smooth muscle cells (VSMC) were isolated from rats and cultured in DMEM exposed to AngII. Down-regulation and overexpression of Dvl-1 were conducted in cells to explore the role underlying its effects on VSMC proliferation and collagen expression. Adenovirus with overexpressing Dvl-1 was injected into rats to evaluate the role of Dvl-1 in artery injury rats. Results: The results in vivo found that Wnt4, Dvl-1 and β-catenin expression as well as collagen volume fraction (CVF) in injured artery were significantly increased. The results in vitro showed that Dvl-1 overexpression reversed the treatment effects of atorvastatin on VSMCs proliferation and collagen expression. It was also canceled by overexpressing Dvl-1 that the decrease of β-catenin protein treated with atorvastatin in cells exposed to AngII. In addition, treated artery injury rats with atorvastatin, the group with injection of Ad-Dvl-1 had higher levels of intima thickness, intimal/medial area ratio and CVF. Conclusion: Dvl-1 was probably a key regulator in the pathway of wnt4/β-catenin to take part in the vascular restenosis partly, and Dvl-1 is a potential gene to anti- restenosis.  相似文献   

3.
Objective: Our previous studies have shown that integrin subunits β1, β2 and β3 were the core proteins of venous thrombi and potential useful biomarker of venous thromboembolism (VTE). Patients with acute infection have a high risk of VTE. In this study we explored that is there any relevance between core proteins and acute infection.Methods: A total of 230 patients (112 females) with clinically proven acute infection in the emergency unit were recruited into this study, meanwhile 230 patients without acute infection matched in sex and age were recruited as control group. Flow cytometry was done to measure the expressions of blood integrin β1, β2, β3 and cellular immunity (CD3, CD4, CD8, CD4/CD8, CD16CD56 and CD19). The association degree between increased core proteins and acute infection was analyzed by calculating the relative risk (RR).Results: The expression of integrin β1, β2 and β3 was markedly increased in patients with acute infection (P=0.000, 0.000 and 0.015, respectively). The relative risk ratio (RR) of increased integrin β1, β2 and β3 in acute infection patients was 1.424 (95%CI: 1.156-1.755, P=0.001), 1.535 (95%CI: 1.263-1.865, P=0.000) and 1.20 (95%CI: 0.947-1.521, P=0.148), respectively. Combined integrin β1, β2 and β3 analysis showed that the relative risk ratio (RR) of increased in patients with acute infection was 2.962 (95%CI: 1.621-5.410, P=0.001), and this relative risk (RR) rise to 3.176 (95%CI: 1.730-5.829, P=0.000) in patients with respiratory tract infection (RTI).Conclusion: As the core proteins of venous thrombi, integrinβ1, β2 and β3 were markedly increased expression in patients with acute infection, which maybe explain the increased risk of VTE in acute infection patients. A weakened immune system could be the basic condition of VTE occurrence.  相似文献   

4.
Mutations in the α7 integrin gene cause congenital myopathy characterized by delayed developmental milestones and impaired mobility. Previous studies in dystrophic mice suggest the α7β1 integrin may be critical for muscle repair. To investigate the role that α7β1 integrin plays in muscle regeneration, cardiotoxin was used to induce damage in the tibialis anterior muscle of α7 integrin-null mice. Unlike wild-type muscle, which responded rapidly to repair damaged myofibers, α7 integrin-deficient muscle exhibited defective regeneration. Analysis of Pax7 and MyoD expression revealed a profound delay in satellite cell activation after cardiotoxin treatment in α7 integrin-null animals when compared with wild type. We have recently demonstrated that the muscle of α7 integrin-null mice exhibits reduced laminin-α2 expression. To test the hypothesis that loss of laminin contributes to the defective muscle regeneration phenotype observed in α7 integrin-null mice, mouse laminin-111 (α1, β1, γ1) protein was injected into the tibialis anterior muscle 3 days before cardiotoxin-induced injury. The injected laminin-111 protein infiltrated the entire muscle and restored myogenic repair and muscle regeneration in α7 integrin-null muscle to wild-type levels. Our data demonstrate a critical role for a laminin-rich microenvironment in muscle repair and suggest laminin- 111 protein may serve as an unexpected and novel therapeutic agent for patients with congenital myopathies.  相似文献   

5.
The present study was performed to investigate the effect of retinoic acid amide (RAA) on the expression of integrin α3β1, rate of cell proliferation and migration in p53-deficient glioma cell line, LN-308. The results revealed promotion of integrin α3 expression, reduction in proliferation and migration in RAA treated cells compared to the control LN-308 glioma cells. Promotion of RAA induced integrin α3β1 expression led to the enhancement in cyclin-dependent kinase nuclear localization and activation of Akt pathway. In addition, RAA treatment inhibited the expression of nuclear factor-κB, Bcl-2 and epidermal growth factor receptor (EGFR). These factors are responsible for promoting the rate of cell proliferation and survival in the carcinoma cells. Thus RAA treatment inhibits rate of LN-308 glioma cell proliferation and migration through increase in integrin α3β1 expression and activation of Akt pathway. Therefore, RAA can be of therapeutic importance for the treatment of glioma.  相似文献   

6.

Purpose

Gastrointestinal integrity and immune surveillance are affected by stress. Stress also adversely affects mucosal barrier function. β-defensins constitute an integral component of the innate immune system as antimicrobial peptides, serving as the first line of defense against microbial pathogens at the epithelial surfaces of the upper digestive mucosa. The primary objective of this study was to determine the effects of stress on the expression profile of mouse β-defensin-3 in the upper digestive mucosa of mice with diabetes.

Materials and Methods

We established a mouse model of restraint stress by using NSY/Hos mice with type 2 diabetes mellitus. We used real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry to investigate the effects of stress and glucocorticoid administration on mouse β-defensin-3 expression in the upper digestive mucosa of the gingiva, esophagus, and stomach.

Results

Mouse β-defensin-3 mRNA expression was higher in the esophagus than in the gingiva or stomach (p<0.05). In the esophagus, mouse β-defensin-3 mRNA expression was lower in stressed mice than in non-stressed mice (p<0.05). Furthermore, immunoreactivity to mouse β-defensin-3 protein was lower in the esophagus of stressed mice than non-stressed mice, consistent with the results of mRNA expression analysis. Systemic glucocorticoid administration also downregulated esophageal mouse β-defensin-3 mRNA expression.

Conclusion

Our novel findings show that stress decreases mouse β-defensin-3 expression in the esophagus of mice with diabetes, possibly due to increased endogenous glucocorticoid production. It appears to be highly likely that stress management may normalize mucosal antimicrobial defenses in patients with diabetes.  相似文献   

7.
In this study, we demonstrate that Porphyromonas gingivalis fimbriae use molecules of β2 integrin (CD11/CD18) on mouse peritoneal macrophages as cellular receptors and also show that the β chain (CD18) may play a functional role in signalling for the fimbria-induced expression of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) genes in the cells. Using a binding assay with 125I-labeled fimbriae, we observed that fimbrial binding to the macrophages was inhibited by treatment with CD11a, CD11b, CD11c, or CD18 antibody but not by that with CD29 antibody. Western blot assays showed that the fimbriae bound to molecules of β2 integrin (CD11/CD18) on the macrophages. Furthermore, Northern blot analyses showed that the fimbria-induced expression of IL-1β and TNF-α genes in the cells was inhibited strongly by CD18 antibody treatment and slightly by CD11a, CD11b, or CD11c antibody treatment. Interestingly, intracellular adhesion molecule 1 (ICAM-1), a ligand of CD11/CD18, inhibited fimbrial binding to the cells in a dose-dependent manner. In addition, ICAM-1 clearly inhibited the fimbria-induced expression of IL-1β and TNF-α genes in the cells. However, such inhibitory action was not observed with laminin treatment. These results suggest the importance of β2 integrin (CD11/CD18) as a cellular receptor of P. gingivalis fimbriae in the initiation stage of the pathogenic mechanism of the organism in periodontal disease.  相似文献   

8.
We have investigated the expression and function of the VLA-4 heterodimer α4β1, a member of the β1 integrin subfamily, on human thymic epithelial cells (TEC) derived from cortical epithelium. The expression of the α4 integrin chain was studied in four different cloned TEC lines derived from either fetal or post-natal human thymus by both flow cytometry and immunoprecipitation techniques with anti-α4 MoAbs. All different cell lines assayed expressed significant levels of α4, as revealed by their reactivity with MoAbs specific for distinct α4epitopes. The α4 subunit expressed by TEC was associated to β1 but not to β7 chain, and displayed the characteristic 80/70 kD pattern of proteolytic cleavage. The VLA-4 integrin in these cells was constitutively active in terms of adhesiveness to both fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In addition, this heterodimer localized to punctate regions of the cell in the area of contact with the substratum, named point contacts assessed by staining with the anti-β1 activation epitope 15/7 MoAb. According to the cortical origin of the TEC lines expressing VLA-4, human thymus sections stained with different anti-α4 antibodies revealed the presence of cortical, and in smaller numbers medullary epithelial cells bearing α4 integrin. The expression of α4 in the thymus was also found in both adult and fetal rats, in which epithelial cells were also specifically stained. Altogether, our data show that VLA-4 is an additional component of the integrin repertoire of TEC, and suggest that it could have an important role in thymus epithelial cell–thymocyte interactions.  相似文献   

9.
B-class ephrins, ligands for EphB receptor tyrosine kinases, are critical regulators of growth and patterning processes in many organs and species. In the endothelium of the developing vasculature, ephrin-B2 controls endothelial sprouting and proliferation, which has been linked to vascular endothelial growth factor (VEGF) receptor endocytosis and signaling. Ephrin-B2 also has essential roles in supporting mural cells (namely, pericytes and vascular smooth muscle cells [VSMCs]), but the underlying mechanism is not understood. Here, we show that ephrin-B2 controls platelet-derived growth factor receptor β (PDGFRβ) distribution in the VSMC plasma membrane, endocytosis, and signaling in a fashion that is highly distinct from its role in the endothelium. Absence of ephrin-B2 in cultured VSMCs led to the redistribution of PDGFRβ from caveolin-positive to clathrin-associated membrane fractions, enhanced PDGF-B-induced PDGFRβ internalization, and augmented downstream mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) activation but impaired Tiam1–Rac1 signaling and proliferation. Accordingly, mutant mice lacking ephrin-B2 expression in vascular smooth muscle developed vessel wall defects and aortic aneurysms, which were associated with impaired Tiam1 expression and excessive activation of MAP kinase and JNK. Our results establish that ephrin-B2 is an important regulator of PDGFRβ endocytosis and thereby acts as a molecular switch controlling the downstream signaling activity of this receptor in mural cells.  相似文献   

10.
目的 探讨细胞能量代谢的关键调节因子 AMP激活的蛋白激酶AMPK在血管平滑肌细胞(vascular smooth muscle cells, VSMCs)响应生理性周期性张应变力学刺激后对VSMCs迁移的影响。方法 采用 Flexcell-5000T体外细胞张应变加载系统,对大鼠原代培养的 VSMCs 施加10%幅度、1.25 Hz 频率的周期性张应变,模拟VSMCs在体内的生理性力学环境;以未加载周期性张应变的静态细胞为对照组,Western blotting 检测 VSMCs的 p-AMPK蛋白表达;划痕实验检测 VSMCs 迁移功能。结果 与静态组的细胞相比,生理性周期性张应变加载24 h后显著减少划痕愈合面积,提示生理性周期性张应变抑制VSMCs迁移;生理性周期性张应变加载3 h后,VSMCs的p-AMPK蛋白表达显著升高,而加载24 h后p-AMPK蛋白表达显著降低。在生理性周期性张应变加载条件下,孵育AMPK抑制剂可以在张应变加载3 h后显著降低 p-AMPK蛋白表达,而在张应变加载24 h后显著促进VSMCs迁移;在静态条件下孵育AMPK激活剂 AICAR 3 h后显著诱导p-AMPK蛋白表达,孵育24 h后显著抑制VSMCs迁移;提示p-AMPK蛋白表达参与调控VSMCs迁移。结论 生理性周期性张应变能通过激活p-AMPK蛋白表达,进而抑制VSMCs迁移,提示生理性周期性张应变调控VSMCs迁移对维持血管稳态具有重要意义。  相似文献   

11.
Appropriate staging and evaluation of residual disease is critical to improving the treatment of patients with lymphoma. The specific expression of homing receptors may determine the preferential dissemination pattern of tumoral cells. We investigated the expression of the mucosal homing receptor α4β7 on tumoral cells from peripheral lymph node in patients with newly diagnosed mantle cell lymphoma (MCL) to check whether it is associated with gastrointestinal involvement. Expression of the α4β1 integrin and the peripheral lymph node addressin CD62L were also examined. Thirteen MCL patients presenting with peripheral lymphadenopathy were studied. Expression of the mucosal homing receptor integrin α4β7 by peripheral lymph node lymphoma cells was found to be frequent (5/13) and associated with gastrointestinal involvement (5/7). In contrast, lymphoma cells from patients without gastrointestinal involvement did not express α4β7 (6/6) (P = 0.03). These data suggest that α4β7 integrin is expressed by a subset of MCLs and that its expression may predict digestive tract involvement in MCL, furnishing a basis for recognizing two distinct clinical and phenotypic forms, ie, “digestive homing (or digestive primitive)” versus “peripheral” MCL. Further studies on more patients will be needed to understand the impact of biological differences on the prognosis of these two clinical forms.  相似文献   

12.
Epithelial cancer of the ovary spreads by implantation of tumor cells onto the mesothelial cells that line the peritoneal cavity. The aim of this study was to identify the cell–matrix interactions that mediate ovarian carcinoma cell migration toward components of the mesothelial cell-associated extracellular matrix. The human ovarian carcinoma cell lines NIH:OVCAR5 and SKOV3 were analyzed by flow cytometry for the expression of cell surface receptors. The ability of those receptors to mediate ovarian carcinoma cell migration toward fibronectin, type IV collagen, and laminin was determined. A monoclonal antibody against the β1 integrin subunit abrogated the migration of both cell lines toward the extracellular matrix proteins. Blocking antibodies against alpha integrin subunits suggest that ovarian carcinoma cell migration toward fibronectin is primarily mediated by the ∝5β1 integrin, type IV collagen by the ∝2β1 integrin, and laminin by the ∝6β1 integrin. These results suggest that ovarian carcinoma cell migration is regulated by multiple β1 integrin–matrix interactions. Significant reduction of cell migration was observed with a monoclonal antibody against CD44 that blocks the hyaluronan-binding site of CD44, but not with an antibody that binds at an alternate site on CD44. Intact hyaluronan and/or hyaluronan oligomers also inhibited cell migration, suggesting that the CD44–hyaluronan interaction provides an integrin-independent mechanism of control for ovarian carcinoma cell migration. These results suggest that ovarian carcinoma cell migration is regulated by both integrin-dependent mechanisms, involving the interaction of β1 integrins with extracellular matrix proteins, and an integrin-independent mechanism that involves the interaction of CD44 and hyaluronan.  相似文献   

13.
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. l-NAME salt–induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2–deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2–null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1–dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology.Alport syndrome is characterized by delayed-onset progressive glomerulonephritis associated with sensorineural hearing loss and retinal flecks.1 The most common form (80%) is X-linked and caused by mutations in the type IV collagen COL4A5 gene.2 The two autosomal forms of the disease account for the remaining 20% of Alport patients, and result from mutations in the COL4A3 and COL4A4 genes.3 The α3(IV), α4(IV), and α5(IV) proteins form a heterotrimer that is assembled into a subepithelial network in the glomerular basement membrane (GBM) that is physically and biochemically distinct from a subendothelial type IV collagen network comprising α1(IV) and α2(IV) heterotrimers.4 Mutations in any one of the three type IV collagen genes that cause Alport syndrome result in the absence of all three proteins in the GBM due to an obligatory association to form functional heterotrimers.5 Thus, the net result for all genetic forms of Alport syndrome is the absence of the α3(IV) α4(IV) α5(IV) subepithelial collagen network, resulting in a GBM type IV collagen network comprising only α1(IV) and α2(IV) heterotrimers.This change in basement membrane composition does not result in immediate pathology. The GBM appears to function adequately for the first few years of life and sometimes past the first decade.6 This delayed onset predicts a triggering mechanism for glomerular disease initiation and a theoretical window for therapeutic intervention that may arrest or significantly ameliorate Alport renal disease in its earliest stages. The activation of genes encoding GBM matrix molecules, matrix metalloproteinases (MMPs), and proinflammatory cytokines have all been linked to the progression of Alport glomerular disease. These, however, are events that occur after the onset of proteinuria, and therefore, downstream of disease initiation events.7–11 Consistent with this notion, experiments aimed at blocking these pathways have offered only limited therapeutic benefit in mouse models for Alport syndrome.8–10,12 One of the earliest events we have documented is the appearance of an irregular deposition of laminin 211 in the GBM of Alport mice,8 an observation confirmed in both Alport dogs and human patients with the disease.13 This laminin is normally found only in the mesangium of the glomerulus, and is not expressed in the GBM at any stage of embryonic development.14 Indeed, several other mesangial matrix proteins appear in the GBM of Alport mice, including laminin 111 and fibronectin.15,16In the Alport glomerulus, the podocytes are exposed to GBM that has an embryonic type IV collagen composition.17,18 This could result in altered cell signaling that may trigger the onset of the disease. It has been proposed that this type of mechanism may account for the reactivation of laminin 111 expression in podocytes,19 because laminin 111 is found in the GBM during development.14 Because the α1(IV)/α2(IV) collagen network contains significantly fewer interchain disulfide crosslinks,20 and the Alport GBM is thinner than normal,21 the Alport GBM is likely to be more elastic, resulting in elevated biomechanical strain on the glomerular cells at their points of contact with the GBM. Consistently, glomeruli from Alport mice have been shown to have elevated deformability relative to wild-type glomeruli,22 and salt-induced hypertension has been shown to accelerate glomerular disease progression in Alport mice.23In this work, we show that the cellular origin of GBM laminin 211 in Alport glomeruli is mesangial cell process invasion, and that deletion of laminin 211 in Alport mice ameliorates the mesangial process invasion of the glomerular capillary loops in Alport mice. Salt-mediated hypertension exacerbates this mesangial process invasion. A knockout mouse for the integrin α3β1 coreceptor CD151 also develops mesangial process invasion of the capillary loops with GBM deposition of laminin 211, demonstrating the same phenotype for a completely unrelated component of the capillary structural barrier. The CD151 knockout mouse model also shows accelerated glomerular disease progression in response to hypertension.24 We show that biomechanical stretching of cultured mesangial cells induces promigratory cytokines transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF), both known to be induced in Alport glomeruli.7,12 Inhibitor studies indicate that mesangial cell migration is mediated by integrin α1β1 signaling through the Rho GTPases RAC1 and CDC42. Consistently, integrin α1 deletion in Alport mice was previously shown to ameliorate glomerular disease progression and slow the accumulation of laminin 211 in Alport GBM.8 Here, we show that mesangial process invasion of the capillary loops is ameliorated in integrin α1–null Alport mice. These data define a role for biomechanical strain-mediated induction of mesangial cell process invasion as a key aspect of Alport glomerular disease initiation, and set the stage for defining novel therapeutic targets aimed at blocking this process.  相似文献   

14.
Integrins are cell surface adhesion molecules (CAM) that regulate via intercellular and cell-matrix signaling various cellular processes including wound healing, cell differentiation, division, growth, migration and metastatic dissemination. Although a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, has been reported, its role in colorectal liver metastases remains unclear. This study aimed to evaluate the expression of β1 integrin in colorectal liver metastases and to correlate the pattern of expression with clinicopathological features and to investigate the putative role of β1 integrin expression on survival of these patients. Methods: Formalin-fixed, paraffin-embedded (FFPE) tumor samples of 81 patients who were operated because of colorectal liver metastases without any neoadjuvant therapy were obtained and stained with hematoxylin and eosin (H & E). An immunohistochemical examination was performed using Dako, Peroxidase/DAB kit and a primary monoclonal β1 integrin (CD29, fibronectin receptor subunit beta; ab3167, Abcam plc). β1 integrin expression was evaluated according to the immunoreactive score of Remmele and Stegner and was related with clinicopathological features of prognostic significance and with disease-free and overall survival as well. Statistical analysis was performed using SPSS version 21.0. Results: β1 integrin was overexpressed in tumor cells in 37 (48%) patients and in stromal cell in 27 (33%) patients. The β1 expression was not statistically correlated with clinicopathological features of the primary tumors but it was statistically correlated (p=0.03) with the histological grading of liver metastases. Kaplan-Meier survival analysis showed that there is a tendency but no statistically significant correlation in disease-free and overall survival. Conclusion: Considering that expression of β1 integrin in colorectal liver metastases remains controversial, specially its relation with survival of patients, we showed that the β1 expression represents a reliable prognostic factor regarding the grading of liver metastases of CRC and our findings imply that β1 integrin expression profiles may have further potential in identifying the stage of colorectal liver metastases and being a marker of prognosis in these patients.  相似文献   

15.
Alport syndrome is a common hereditary basement membrane disorder caused by mutations in the collagen IV α3, α4, or α5 genes that results in progressive glomerular and interstitial renal disease. Interstitial monocytes that accumulate in the renal cortex from Alport mice are immunopositive for integrin α1β1, while only a small fraction of circulating monocytes are immunopositive for this integrin. We surmised that such a disparity might be due to the selective recruitment of α1β1-positive monocytes. In this study, we report the identification of collagen XIII as a ligand that facilitates this selective recruitment of α1β1 integrin-positive monocytes. Collagen XIII is absent in the vascular endothelium from normal renal cortex and abundant in Alport renal cortex. Neutralizing antibodies against the binding site in collagen XIII for α1β1 integrin selectively block VLA1-positive monocyte migration in transwell assays. Injection of these antibodies into Alport mice slows monocyte recruitment and protects against renal fibrosis. Thus, the induction of collagen XIII in endothelial cells of Alport kidneys mediates the selective recruitment of α1β1 integrin-positive monocytes and may potentially serve as a therapeutic target for inflammatory diseases in which lymphocyte/monocyte recruitment involves the interaction with α1β1 integrin.Alport syndrome is a relatively common (1 in 5000) hereditary basement membrane disorder caused by mutations in the collagen IV α3, α4, or α5 genes.1,2,3 The disease manifests with progressive renal disease associated with hearing loss and retinal flecks. There are several models for Alport’s Syndrome including a collagen IV α3 knockout mouse.4,5 In the 129 Sv Alport mouse model, animals develop glomerular and interstitial fibrosis followed by end stage renal failure between 8 and 9 weeks of age. Increased extracellular matrix deposition, mesangial matrix expansion, impaired glomerular filtration, scarring and tubular atrophy observed in this model correlate with Alport’s syndrome pathogenesis reported in humans. In this model two biochemical pathways are known to contribute to disease progression. The first pathway requires transforming growth factor-β, while the second is α1-integrin dependent.6Monocytes express transforming growth factor-β which facilitates myofibroblast accumulation and matrix deposition in Alport mice. Monocytes also express matrix metalloproteinases and associated proteins capable of degrading tubular basement membranes and promoting tubular epithelial cell death.7 These findings suggest that monocytes are of principal importance in promoting scarring and tubular atrophy in chronic renal fibrosis. This connection has been corroborated in other models of renal fibrosis.8,9 Thus the cellular mechanisms that facilitate transmigration and proliferation of interstitial monocytes are important factors in promoting the progression of interstitial disease.In an earlier report, we showed that nearly all of the monocytes in Alport kidneys express α1β1 integrin.10 We also have shown that integrin α1-null Alport mice live nearly twice as long as Alport mice, an observation that correlates well with a marked reduction in interstitial monocyte accumulation.6,10 Alpha1beta1 integrin (also known as VLA-1, or very late antigen 1) mediates collagen dependent cell proliferation and adhesion.11,12 However, a role for α1β1 integrin in transmigration of inflammatory cells across the microvascular barrier into the interstitial spaces has not been directly demonstrated.Monocyte and lymphocyte transmigration into the interstitial space is a principal event underlying both acute and chronic inflammatory response mechanisms.13 Many aspects of the cellular events underlying the initiation and progression of monocyte efflux have been elaborated in recent years, as these pathways are central to pathobiology of many inflammatory diseases. The initiation of the inflammatory response involves cellular expression of chemokines and inflammatory cytokines, which have profound effects on adjacent cells. The vascular and capillary endothelial cells respond by up-regulating expression of selectins and intercellular adhesion molecules.14,15 The selectins loosely adhere to lymphocytes and monocytes resulting in a “slow rolling” effect that can be visualized directly using intravital microscopy.16 Intercellular adhesion molecules and related inducible endothelial cell surface ligands provide the substrate for firm adhesion through interactions with the integrin family of heterodimeric receptors on the surface of the monocytes.13 Firm adhesion results in monocyte activation, inducing the expression of proteins needed to degrade the capillary basal lamina, allowing invasion into the interstitial space.17,18 The activated monocyte produces additional chemokines and cytokines, which further accelerate monocyte recruitment and the progression of the inflammatory response.Research aimed at defining the specific cellular mechanisms underlying monocyte and lymphocyte recruitment has been prolific. The discovery of integrins, a vastly important family of cell surface receptors that mediate adhesion, cell migration and signal transduction, resulted from studies aiming to identify the adhesion receptors on peripheral blood monocytes and lymphocytes, as well as their cognate ligands on activated vascular endothelium.19 Monoclonal antibodies that block the interaction of these cells with endothelial cell surface receptors have emerged as potentially effective therapeutic approaches for treating chronic inflammatory diseases such as multiple scleroses and psoriasis. A large number of such agents are currently in various stages of preclinical and clinical trials.20,21The α1-integrin heterodimerizes only with β1-integrin. The heterodimer is found in the plasma membrane of a variety of cell types, and is widely viewed as a collagen binding integrin, although binding to other matrix molecules has been demonstrated.22,23 We used a monocyte-specific cell trafficking assay to determine whether selective transmigration of α1β1 integrin-positive monocytes contributes to the accumulation of these cells in the Alport mouse kidneys. Our results suggest that α1β1 integrin-positive monocytes are indeed selectively recruited to the interstitium and the rate of transendothelial migration increases over time. We used Phage display and biopanning strategies to identify the α1β1 integrin ligand involved in selective recruitment as collagen XIII (a membrane bound collagen). Collagen XIII mRNA and protein are induced in the vascular endothelium of Alport mice. Monoclonal antibodies raised against the binding site on collagen XIII for α1β1 integrin block monocyte adhesion to collagen XIII on embryonic fibroblasts, and when administered systemically to Alport mice, markedly decrease monocyte efflux into the tubulointerstitial space. Matrix accumulation and tubulointerstitial damage are also markedly reduced. Collectively, these data suggest that collagen XIII is an inducible endothelial cell ligand for α1β1 integrin on peripheral blood monocytes, and mediates monocyte adhesion and transmigration. Blocking collagen XIII may provide a novel therapeutic target for chronic inflammatory diseases where α1β1 integrin-positive interstitial monocytes (or T-cells) play a role.  相似文献   

16.
目的 探讨活化激酶C受体1(receptor for actived C kinase 1, RACK1)在内皮细胞(endothelial cells, ECs)感受切应力刺激调控血管平滑肌细胞(vascular smooth muscle cells,VSMCs)增殖中的作用及其机制。方法 应用平行平板流动腔系统,对联合培养的大鼠ECs和VSMCs施加1.5 Pa正常切应力(normal shear stress, NSS)和0.5 Pa低切应力(low shear stress,LowSS),应用BrdU ELISA方法检测VSMCs增殖水平,对蛋白质组学研究发现的力学响应分子RACK1表达以及Akt磷酸化,应用Western blot技术进行检测。静态条件下,应用RNA干扰技术特异性抑制VSMCs的RACK1表达,检测其对细胞增殖和Akt磷酸化的作用。应用ECs与VSMCs隔开培养和联合培养模型,检测ECs对VSMCs的RACK1表达和Akt磷酸化水平的影响。结果 血管差异蛋白质组学的结果发现,与NSS组相比,RACK1在LowSS组血管组织的表达水平明显升高。细胞实验结果显示,LowSS诱导了与ECs联合培养的VSMCs增殖,上调VSMCs的RACK1表达和Akt磷酸化。静态条件下,特异性抑制VSMCs的RACK1表达后,VSMCs的增殖水平和Akt磷酸化水平均显著下降。与ECs联合培养VSMCs,其RACK1表达和Akt磷酸化水平较隔开培养组均上调。结论 VSMCs的RACK1表达受细胞接触与切应力的影响,并可能通过PI3K/Akt信号通路参与LowSS诱导的VSMCs增殖的调控。探讨VSMCs增殖功能变化及其力学生物学机制对于认识动脉粥样硬化等疾病发病机理和疾病防治有重要意义。  相似文献   

17.
The β1D integrin is a recently characterized isoform of the β1 subunit that is specifically expressed in heart and skeletal muscle. In this study we have assessed the function of the β1D integrin splice variant in mice by generating, for the first time, Cre-mediated exon-specific knockout and knockin strains for this splice variant. We show that removal of the exon for β1D leads to a mildly disturbed heart phenotype, whereas replacement of β1A by β1D results in embryonic lethality with a plethora of developmental defects, in part caused by the abnormal migration of neuroepithelial cells. Our data demonstrate that the splice variants A and D are not functionally equivalent. We propose that β1D is less efficient than β1A in mediating the signaling that regulates cell motility and responses of the cells to mechanical stress.  相似文献   

18.
Borrelia burgdorferi (sensu lato), the agent of Lyme disease, is able to cause chronic, multisystemic infections in human and animal hosts. Attachment of the spirochete to host cells is likely to be important for the colonization of diverse tissues. The platelet-specific integrin αIIbβ3 was previously identified as a receptor for all three species of Lyme disease spirochetes (B. burgdorferi sensu stricto, B. garinii, and B. afzelii). Here we show that B. burgdorferi also recognizes the widely expressed integrins αvβ3 and α5β1, known as the vitronectin and fibronectin receptors, respectively. Three representatives of each species of Lyme disease spirochete were tested for the ability to bind to purified αvβ3 and α5β1. All of the strains tested bound to at least one integrin. Binding to one integrin was not always predictive of binding to other integrins, and several different integrin preference profiles were identified. Attachment of the infectious B. burgdorferi strain N40 to purified αvβ3 and α5β1 was inhibited by RGD peptides and the appropriate receptor-specific antibodies. Binding to αvβ3 was also shown by using a transfected cell line that expresses this receptor but not αIIbβ3. Attachment of B. burgdorferi N40 to human erythroleukemia cells and to human saphenous vein endothelial cells was mediated by both α5β1 and αvβ3. Our results show that multiple integrins mediate attachment of Lyme disease spirochetes to host cells.  相似文献   

19.
20.
Collagen Type I and fibrin are polymeric proteins commonly used in the field of regenerative medicine as the foundational matrix of engineered tissues. We examined the response of vascular smooth muscle cells (VSMC) to both two-dimensional (2D) substrates as well as three-dimensional (3D) matrices of these biopolymers. Pure collagen Type I, pure fibrin and composite matrices consisting of 1:1 mixtures of collagen and fibrin were studied. Relative gene expression of three ECM molecules (collagen Type I and III, and tropoelastin) and three integrin subunits (integrins alpha1, beta1 and beta3) was determined over 7 days in culture using quantitative RT-PCR. Expression of all of these marker genes was up-regulated in 3D matrices, relative to 2D substrates. Tropoelastin, integrin alpha1 and integrin beta1 were highest in collagen matrices, while collagen III and integrin beta3 expression were highest in pure fibrin, and collagen I expression was highest in the collagen-fibrin composite materials. Both the compositional and temporal expression patterns of these specific ECM-related genes were suggestive of a wound healing response. These results illuminate the short-term responses of VSMC to 2D and 3D biopolymer matrices, and have relevance to tissue engineering and cardiovascular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号