首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
BACKGROUND: Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. OBJECTIVE: To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. DESIGN: Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. PATIENT: The proband was a child who displayed the clinical features of LS. RESULTS: Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. CONCLUSIONS: Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.  相似文献   

2.
Mitochondrial respiratory chain diseases represent one of the most common inherited neurometabolic disorders of childhood, affecting a minimum of 1 in 7500 live births. The marked clinical, biochemical, and genetic heterogeneity means that accurate genetic counselling relies heavily upon the identification of the underlying causative mutation in the individual and determination of carrier status in the parents. Isolated complex I deficiency is the most common respiratory chain defect observed in children, resulting in organ-specific or multisystem disease, but most often presenting as Leigh syndrome, for which mitochondrial DNA mutations are important causes. Several recurrent, pathogenic point mutations in the MTND3 gene - including m.10191T>C (p.Ser45Pro) - have been previously identified. In this short clinical review we evaluate the case reports of the m.10191T>C mutation causing complex I-deficient Leigh syndrome described in the literature, in addition to two new ones diagnosed in our laboratory. Both of these appear to have arisen de novo without transmission of the mutation from mother to offspring, illustrating the importance not only of fully characterizing the mitochondrial genome as part of the investigation of children with complex I-deficient Leigh syndrome but also of assessing maternal samples to provide crucial genetic advice for families.  相似文献   

3.
Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children’s Hospital in 2001–2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I + III + IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.  相似文献   

4.
OBJECTIVE: To report a novel mutation that is associated with Leber hereditary optic neuropathy (LHON) within the same family affected by spastic dystonia. DESIGN: Leber hereditary optic neuropathy is a mitochondrial disorder characterized by isolated central visual loss. Of patients with LHON, 95% carry a mutation in 1 of 3 mitochondrial DNA-encoded complex I genes. The complete mitochondrial DNA was screened for mutations in a patient with LHON without 1 of these 3 primary mutations. The heteroplasmy level and biochemical consequence of the mutation were determined. RESULTS: A pathogenic 3697G>A/ND1 mutation was detected and seemed associated with an isolated complex I deficiency. This family has similar clinical characteristics as the previously described families with LHON and dystonia with an ND6 mutation. CONCLUSIONS: The 3697G>A/ND1 mitochondrial DNA mutation causes the LHON and spastic dystonia phenotype in the same family. This mutation can also cause MELAS syndrome (which encompasses mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke), and other genetic factors may contribute to the clinical expression.  相似文献   

5.
An extensive range of molecular defects have been identified in the human mitochondrial genome (mtDNA), many associated with well-characterised, progressive neurological syndromes. We describe a patient who presented to a mitochondrial clinic with progressive bilateral ptosis, external opthalmoplegia and increasing difficulty with walking. He had previously been diagnosed with a dominant, demyelinating polyneuropathy due to PMP22 gene duplication and had also developed gout, presenting in acute renal failure, due to an X-linked recessive HPRT gene mutation. Muscle biopsy revealed many COX-deficient fibres which we show contain high levels of a third genetic defect – a novel, mitochondrial tRNALeu(CUN) (MTTL2) gene mutation.  相似文献   

6.
The objective of this study was to investigate clinical, biochemical, and genetic features in 7 probands (a total of 11 patients) with nicotine-amide adenine dinucleotide (NADH) dehydrogenase (complex I) deficiency. We screened the mitochondrial DNA for mutations and found pathogenic mutations in complex I genes (mitochondrial NADH dehydrogenase subunit (MTND) genes) in three probands. The 10191T>C mutation in MTND3 and the 14487T>C mutation in MTND6 were present in two probands with Leigh's-like and Leigh's syndrome, respectively. Four siblings with a syndrome consisting of encephalomyopathy with hearing impairment, optic nerve atrophy, and cardiac involvement had the 11778G>A mutation in MTND4, previously associated with Leber hereditary optic neuropathy. These findings demonstrate that mutations in MTND genes are relatively frequent in patients with complex I deficiency. Biochemical measurements of respiratory chain function in muscle mitochondria showed that all patients had a moderate decrease of the mitochondrial adenosine triphosphate production rate. Interestingly, the complex I deficiency caused secondary metabolic alterations with decreased oxaloacetate-induced inhibition of succinate dehydrogenase (complex II) and excretion of Krebs cycle intermediates in the urine. Our results thus suggest that altered regulation of metabolism may play an important role in the pathogenesis of complex I deficiency.  相似文献   

7.
BACKGROUND: The number of molecular causes of MELAS (a syndrome consisting of mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) and Leigh syndrome (LS) has steadily increased. Among these, mutations in the ND5 gene (OMIM 516005) of mitochondrial DNA are important, and the A13513A change has emerged as a hotspot. OBJECTIVE: To describe the clinical features, muscle pathological and biochemical characteristics, and molecular study findings of 12 patients harboring the G13513A mutation in the ND5 gene of mitochondrial DNA compared with 14 previously described patients with the same mutation. DESIGN: Clinical examinations and morphological, biochemical, and molecular analyses. SETTING: Tertiary care university hospital and molecular diagnostic laboratory. PATIENTS: Three patients had the typical syndrome features of MELAS; the other 9 had typical clinical and radiological features of LS. RESULTS: Family history suggested maternal inheritance in a few cases; morphological studies of muscle samples rarely showed typical ragged-red fibers and more often exhibited strongly succinate dehydrogenase-reactive blood vessels. Biochemically, complex I deficiency was inconsistent and generally mild. The mutation load was relatively high in the muscle and blood specimens. CONCLUSION: The G13513A mutation is a common cause of MELAS and LS, even in the absence of obvious maternal inheritance, pathological findings in muscle, or severe complex I deficiency.  相似文献   

8.
BACKGROUND: The mitochondrial DNA gene encoding subunit 5 of complex I (ND5) has turned out to be a hot spot for mutations associated with mitochondrial encephalomyopathy with lactic acidosis and strokelike episodes (MELAS) and various overlap syndromes. OBJECTIVE: To describe a novel mutation in the ND5 gene in a young man man with an overlap syndrome of MELAS and myoclonus epilepsy with ragged-red fibers. DESIGN: Case report. PATIENT: A 25-year-old man had recurrent strokes, seizures, and myoclonus. His mother also had multiple strokes. A muscle biopsy specimen showed no ragged-red fibers but several strongly succinate dehydrogenase-reactive blood vessels. RESULTS: Biochemical analysis showed isolated complex I deficiency and molecular analysis revealed a novel heteroplasmic mutation (G13042A) in the ND5 gene. CONCLUSIONS: These data confirm that ND5 is a genetic hot spot for overlap syndromes, including MELAS and strokelike and myoclonus epilepsy with ragged-red fibers.  相似文献   

9.
Chronic progressive external ophthalmoplegia (CPEO) is a frequent clinical manifestation of disorders caused by pathogenic mitochondrial DNA mutations. However, for diagnostic purposes skeletal muscle tissue is used, since extraocular muscle tissue is usually not available for work-up. In the present study we aimed to identify causative factors that are responsible for extraocular muscle to be primarily affected in CPEO. We performed comparative histochemical and molecular genetic analyses of extraocular muscle and skeletal muscle single fibers in a case of isolated CPEO caused by the heteroplasmic m.5667G>A mutation in the mitochondrial tRNAAsn gene (MT-TN). Histochemical analyses revealed higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle (41%) compared to skeletal muscle (10%). However, genetic analyses of single fibers revealed no significant difference either in the mutation loads between extraocular muscle and skeletal muscle cytochrome c oxidase deficient single fibers (extraocular muscle 86% ± 4.6%; skeletal muscle 87.8 %± 5.7%, p = 0.246) nor in the mutation threshold (extraocular muscle 74% ± 3%; skeletal muscle 74% ± 4%). We hypothesize that higher proportion of cytochrome c oxidase deficient fibers in extraocular muscle compared to skeletal muscle might be due to facilitated segregation of the m.5667G>A mutation into extraocular muscle, which may explain the preferential ocular manifestation and clinically isolated CPEO.  相似文献   

10.
Sulfite oxidase is a mitochondrial enzyme encoded by the SUOX gene and essential for the detoxification of sulfite which results mainly from the catabolism of sulfur-containing amino acids. Decreased activity of this enzyme can either be due to mutations in the SUOX gene or secondary to defects in the synthesis of its cofactor, the molybdenum cofactor. Defects in the synthesis of the molybdenum cofactor are caused by mutations in one of the genes MOCS1, MOCS2, MOCS3 and GEPH and result in combined deficiencies of the enzymes sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Although present in many ethnic groups, isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are rare inborn errors of metabolism, which makes awareness of key clinical and laboratory features of affected individuals crucial for early diagnosis. We report clinical, radiologic, biochemical and genetic data on a Brazilian and on a Turkish child with sulfite oxidase deficiency due to the isolated defect and impaired synthesis of the molybdenum cofactor, respectively. Both patients presented with early onset seizures and neurological deterioration. They showed no sulfite oxidase activity in fibroblasts and were homozygous for the mutations c.1136A>G in the SUOX gene and c.667insCGA in the MOCS1 gene, respectively. Widely available routine laboratory tests such as assessment of total homocysteine and uric acid are indicated in children with a clinical presentation resembling that of hypoxic ischemic encephalopathy and may help in obtaining a tentative diagnosis locally, which requires confirmation by specialized laboratories.  相似文献   

11.
The mitochondrial oxidative phosphorylation system is composed of five multiprotein complexes. The fourth complex of this system, cytochrome c oxidase (complex IV), consists of 13 subunits: 3 encoded by mitochondrial DNA and 10 encoded by the nuclear genome. Patients with an isolated complex IV deficiency frequently harbor mutations in nuclear genes encoding for proteins necessary for the assembly of the complex. Strikingly, until now, no mutations have been detected in the nuclear encoded structural subunits of complex IV in these patients. We report the results of a mutational analysis study in patients with isolated complex IV deficiency screened for mutations in all structural genes as well as assembly genes known to cause complex IV deficiency. Four patients carried mutations in the complex IV assembly gene SURF1. One patient harbored a mutation in the COX10 gene involved in heme A synthesis. Mutations in the 10 nuclear encoded structural genes were not present.  相似文献   

12.
Both nuclear and mitochondrial DNA mutations can cause energy generation disorders. Respiratory chain complex I deficiency is the most common energy generation disorder and a frequent cause of infantile mitochondrial encephalopathies such as Leigh's disease and lethal infantile mitochondrial disease. Most such cases have been assumed to be caused by nuclear gene defects, but recently an increasing number have been shown to be caused by mutations in the mitochondrially encoded complex I subunit genes ND4, ND5, and ND6. We report the first four cases of infantile mitochondrial encephalopathies caused by mutations in the ND3 subunit gene. Three unrelated children have the same novel heteroplasmic mutation (T10158C), only the second mutation reported in ND3, and one has the previously identified T10191C mutation. Both mutations cause disproportionately greater reductions in enzyme activity than in the amount of fully assembled complex I, suggesting the ND3 subunit plays an unknown but important role in electron transport, proton pumping, or ubiquinone binding. Three cases appear to have a de novo mutation, with no mutation detected in maternal relatives. Mitochondrial DNA disease may be considerably more prevalent in the pediatric population than currently predicted and should be considered in patients with infantile mitochondrial encephalopathies and complex I deficiency.  相似文献   

13.
We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNALys (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic. Muscle Nerve, 2009  相似文献   

14.
OBJECTIVES—To define the molecular genetic basisof the MELAS phenotype in five patients without any known mutation ofmitochondrial DNA.
METHODS—Systematic automated mitochondrial DNAsequencing of all mitochondrial transfer RNA and cytochrome c oxidasegenes was undertaken in five patients who had the MELAS phenotype.
RESULTS— A novel heteroplasmic mitochondrial DNAmutation was identified in the transfer RNA gene for phenylalanine inone case (patient 3). This mutation was not detected in the patient'sblood or in her mother's blood. No pathogenic mutations wereidentified in the other four patients.
CONCLUSIONS—This is the first point mutation inthe transfer RNA gene for phenylalanine to be associated with MELAS.The absence of mutations in the remaining four patients suggests thatthere is further genetic heterogeneity associated with thismitochondrial phenotype.

  相似文献   

15.
While mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is typically associated with mutations in the nuclear gene encoding for thymidine phosphorylase (ECGF1, TYMP), a similar clinical phenotype was described in patients carrying mutations in the nuclear-encoded polymerase gamma (POLG1) as well as a few mitochondrial tRNA genes. Here we report a novel mutation in the mitochondrial tRNAVal (MTTV) gene in a girl presenting with clinical symptoms of MNGIE-like gastrointestinal dysmotility and cachexia. Clinical, histological, biochemical and single cell investigations were performed. The heteroplasmic m.1630A>G mutation was detected in the mitochondrial tRNAVal (MTTV) gene in the patient’s muscle, blood leukocytes and myoblasts, as well as in blood DNA of the unaffected mother. We provide clinical, biochemical, histological, and molecular genetic evidence on the single cell level for the pathogenicity of this mutation. Our finding adds to the genetic heterogeneity of MNGIE-like gastrointestinal symptoms and highlights the importance of a thorough genetic workup in case of suspected mitochondrial disease.  相似文献   

16.
Objective: To investigate respiratory chain complex II deficiency resulted from mutation in succinate dehydrogenase gene (SDH) encoding complex II subunits in China. Methods: An 11-year-old boy was admitted to our hospital. He had a history of progressive psychomotor regression and weakness since the age of 4 years. His cranial magnetic resonance imaging revealed focal, bilaterally symmetrical lesions in the basal ganglia and thalamus, indicating mitochondrial encephalopathy. The activities of mitochondrial respiratory chain enzymes I−V in peripheral leukocytes were determined via spectrophotometry. Mitochondrial DNA and the succinate dehydrogenase A (SDHA) gene were analyzed by direct sequencing. Results: Complex II activity in the leukocytes had decreased to 33.07 nmol/min/mg mitochondrial protein (normal control 71.8 ± 12.9); the activities of complexes I, III, IV and V were normal. The entire sequence of the mitochondrial DNA was normal. The SDHA gene showed two heterozygous frame-shift mutations: c.G117G/del in exon 2 and c.T220T/insT in exon 3, which resulted in stop codons at residues 56 and 81, respectively. Conclusions: We have described the first Chinese case of mitochondrial respiratory chain complex II deficiency, which was diagnosed using enzyme assays and gene analysis. Two novel, compound, frame-shift mutations, c.G117G/del in exon 2 and c.T220T/insT in exon 3 of the SDHA gene, were found in our patient.  相似文献   

17.
Molecular diagnosis of complex dual genome mitochondrial disorders is a challenge. It requires the identification of deleterious mutations in one of the ~1,500 nuclear genes and the mitochondrial genome. If the molecular defect is in the mitochondrial genome, quantification of degree of mutation load (heteroplasmy) in affected tissues is important. Due to the extreme clinical and genetic heterogeneity, conventional sequence analysis of the candidate genes one-by-one is impractical, if not impossible. The newly developed massively parallel next generation sequencing (NGS) technique, that allows simultaneous sequence analysis of multiple target genes, when appropriately validated with deep coverage and proper quality controls, can be used as an effective comprehensive diagnostic approach in CLIA certified clinical laboratories.  相似文献   

18.
We report on two novel mtDNA mutations in patients affected with mitochondrial myopathy. The first patient, a 44-year-old woman, had bilateral eyelid ptosis and the m.8305C>T mutation in the MTTK gene. The second patient, a 56-year-old man, had four-limb muscle weakness and the MTTM gene m.4440G>A mutation. Muscle biopsies in both patients showed ragged red fibers and numerous COX-negative fibers as well as a combined defect of complex I, III and IV activities. The two mutations were heteroplasmic and detected only in muscle tissue, with a higher mutation load in COX-negative fibers. Additionally, both mutations occurred in highly conserved mt-tRNA sites, and were not found by an in silico search in 30,589 human mtDNA sequences. Our report further expands the mutational and phenotypic spectrum of diseases associated with mutations in mitochondrial tRNA genes and reinforces the notion that mutations in mitochondrial tRNAs represent hot spots for mitochondrial myopathies in adults.  相似文献   

19.
Isolated inherited dystonia—formerly referred to as primary dystonia—is characterized by abnormal motor functioning of a grossly normal appearing brain. The disease manifests as abnormal involuntary twisting movements. The absence of overt neuropathological lesions, while intriguing, has made it particularly difficult to unravel the pathogenesis of isolated inherited dystonia. The explosion of genetic techology enabling the identification of the causative gene mutations is transforming our understanding of dystonia pathogenesis, as the molecular, cellular and circuit level consequences of these mutations are identified in experimental systems. Here, I review the clinical genetics and cell biology of three forms of inherited dystonia for which the causative mutation is known: DYT1 (TOR1A), DYT6 (THAP1), DYT25 (GNAL).  相似文献   

20.
Human complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3) is the first and largest multi-protein assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system; the final biochemical cascade of events leading to the production of ATP. The complex consists of 46 subunits, 7 encoded by the mitochondrial DNA and the remainder by the nuclear genome. In recent years, numerous gene mutations leading to an isolated complex I deficiency have been characterized in both genomes. Disorders associated with complex I deficiency (OMIM 252010) mostly lead to multi-system disorders affecting brain, skeletal muscle and the heart. Of these, Leigh syndrome, a progressive fatal encephalopathy symmetrically affecting specific areas of the brain, brainstem and myelin, is the most frequently observed phenotype. Here, we review the current understanding of the cell biological consequences of isolated complex I deficiencies and propose further directions the field needs to take in order to develop rational treatment strategies for these devastating disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号