共查询到20条相似文献,搜索用时 15 毫秒
1.
《Expert opinion on therapeutic patents》2013,23(11):1531-1551
Poly(ADP-ribose) polymerase-1 (PARP-1), the most prominent member of the PARP family, is a DNA-binding protein that is activated by nicks in DNA occurring during inflammation, ischaemia, neurodegeneration or cancer therapy. Activated PARP-1 consumes NAD+ that is cleaved into nicotinamide and ADP-ribose and polymerises the latter onto nuclear acceptor proteins. This highly energy consuming process is pivotal for the maintenance of genomic stability although over-activation can culminate in cell dysfunction and necrosis. Therefore, PARP-1 is regarded as a promising target for the development of drugs useful in various forms of inflammation, ischaemia–reperfusion injury and as an adjunct in cancer therapy. This review summarises the structural classes of known PARP-1 inhibitors, with a focus on new inhibitors published for this target, between 2002 and July 2004. The chemistry and biological data disclosed in these patent applications are discussed in light of new structural knowledge of the catalytic domain of the PARP family and recent work with potent inhibitors demonstrating the effects of PARP inhibition in various animal disease models. 相似文献
2.
3.
聚腺苷二磷酸核糖聚合酶(PARP)是人体重要的酶之一,参与染色质松弛、信号转录、DNA修复和细胞凋亡等生理过程。PABP过度激活则引起细胞坏死,从而介导多种病理过程。因此,抑制PARP可能会起到对某些疾病的治疗作用。本文综述了PARP的功能及PARP抑制剂的潜在临床应用。 相似文献
4.
G Costantino A Macchiarulo E Camaioni R Pellicciari 《Journal of medicinal chemistry》2001,44(23):3786-3794
Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme that has recently emerged as an important player in the mechanisms leading to postischemic neuronal death, and PARP inhibitors have been proposed as potential neuroprotective agents. With the aim of clarifying the structural basis responsible for PARP inhibition, we carried out a computational study on 46 inhibitors available through the literature. Our computational approach is composed of three parts. In the first one, representative PARP inhibitors have been docked into the crystallographic structure of the catalytic domain of PARP by using the Autodock 2.4 program. The docking studies thus carried out have provided an alignment scheme that has been instrumental for superimposing all the remaining inhibitors. Upon the basis of this alignment scheme, a quantitative structure-activity relationship (QSAR) analysis has been carried out after electrostatic and steric interaction energies have been computed with the RECEPTOR program. The QSAR analysis yielded a predictive model able to explain much of the variance of the 46-compound data set. The inspection of the QSAR coefficients revealed that the major driving force for potent inhibition is given by the extension of the contact surface between enzyme and inhibitors while electrostatic energy and hydrogen bonding capability play a minor role. Finally, the projection of the QSAR coefficients back onto the X-ray structure of the catalytic domain of PARP provides insights into the role played by specific amino acid residues. This information will be useful to address the design of new selective and potent PARP inhibitors. 相似文献
5.
聚腺苷二磷酸核糖聚合酶(PARP)在癌症治疗中是一个非常重要的新靶点,通过碱基切除修复方式对单股DNA进行修复。近年来,新的协同放疗或化疗的PARP抑制剂已经进入了I、II或III期临床试验。众多的试验数据表明PARP抑制剂不仅可以作为化疗和放疗的增敏剂,而且在BRCA1和BRCA2基因突变的乳腺癌中可单独使用,选择性杀死DNA修复缺陷的癌细胞。本文综述了PARP抑制剂的作用机制和临床研究结果,评估了其不良反应和潜在药效,并提出了临床策略中可能存在的问题以及未来发展方向。 相似文献
6.
聚腺苷酸二磷酸核糖转移酶(poly(ADP-ribose)polymerase,PARP)是当今癌症治疗的一个新靶点,其能够催化ADP-核糖单元从烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)转移至各种受体蛋白。PARP参与DNA修复和转录调控,不但在调节细胞存活和死亡过程中具有关键作用,同时也是肿瘤发展和炎症发生过程中的主要转录因子。PARP在碱基切除修复的DNA单链缺口(SSBs)修复中具有关键作用,抑制其活性能够增强放疗和DNA损伤类化疗药物的效果。目前已有至少8个PARP抑制剂进入临床,最新的体内外实验表明PARP抑制剂不但能够作为放化疗增敏剂,单独使用也能选择性杀伤DNA修复缺陷的肿瘤细胞,如BRCA1和BRCA2缺陷的乳腺癌细胞。大量的临床试验证明:该类药物毒副作用小、效果明确且短期耐受性良好,对于癌症治疗前景广阔。本文主要对PARP抑制剂的原理及其研究进展进行综述。 相似文献
7.
The therapeutic potential of poly(ADP-ribose) polymerase inhibitors 总被引:43,自引:0,他引:43
8.
Park Y Moriyama A Kitahara T Yoshida Y Urita T Kato R 《Anti-cancer agents in medicinal chemistry》2012,12(6):672-677
Recent gene profiling studies have identified at least 5 major subtypes of breast cancer, including normal type, luminal A type, luminal B type, human epidermal growth factor receptor (HER)-2 positive type, and basal-like type. Triple-negative breast cancer (TNBC), showing no or low expressions of estrogen receptor (ER), progesterone receptor (PgR), and HER2, considered important clinical biomarkers, accounts for 10% to 20% of all breast cancers. Hormonal therapy and molecular targeted therapy are not indicated for the management of TNBC, resulting in poor outcomes. Because TNBC lacks clear-cut therapeutic targets, effective treatment strategies remain to be established. However, TNBC is known to share similar biologic characteristics with basal-like type breast cancer and is often accompanied by loss of functional BRCA, a gene-modifying enzyme. Breast cancer with BRCA1 or BRCA2 mutations is accompanied by activation of the enzyme poly(ADP-ribose) polymerase (PARP). PARP, a DNA base-excision repair enzyme, is known to play a central role in gene repair, along with BRCA. Because some breast cancers with BRCA1 or BRCA2 mutations are TNBC, the suppression of PARP has attracted attention as a new treatment strategy for TNBC. In this article, we review the clinical characteristics of TNBC, discuss problems in treatment, and briefly summarize the international development status of PARP inhibitors. 相似文献
9.
Eltze T Boer R Wagner T Weinbrenner S McDonald MC Thiemermann C Bürkle A Klein T 《Molecular pharmacology》2008,74(6):1587-1598
We have identified three novel structures for inhibitors of the poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA and implicated in DNA repair, apoptosis, organ dysfunction or necrosis. 2-[4-(5-Methyl-1H-imidazol-4-yl)-piperidin-1-yl]-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK49187), 2-(4-pyridin-2-yl-phenyl)-4,5-dihydro-imidazo[4,5,1-i,j]quinolin-6-one (BYK236864), 6-chloro-8-hydroxy-2,3-dimethyl-imidazo-[1,2-alpha]-pyridine (BYK20370), and 4-(1-methyl-1H-pyrrol-2-ylmethylene)-4H-isoquinolin-1,3-dione (BYK204165) inhibited cell-free recombinant human PARP-1 with pIC(50) values of 8.36, 7.81, 6.40, and 7.35 (pK(i) 7.97, 7.43, 5.90, and 7.05), and murine PARP-2 with pIC(50) values of 7.50, 7.55, 5.71, and 5.38, respectively. BYK49187, BYK236864, and BYK20370 displayed no selectivity for PARP-1/2, whereas BYK204165 displayed 100-fold selectivity for PARP-1. The IC(50) values for inhibition of poly(ADP-ribose) synthesis in human lung epithelial A549 and cervical carcinoma C4I cells as well in rat cardiac myoblast H9c2 cells after PARP activation by H(2)O(2) were highly significantly correlated with those at cell-free PARP-1 (r(2) = 0.89-0.96, P < 0.001) but less with those at PARP-2 (r(2) = 0.78-0.84, P < 0.01). The infarct size caused by coronary artery occlusion and reperfusion in the anesthetized rat was reduced by 22% (P < 0.05) by treatment with BYK49187 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. during 2-h reperfusion), whereas the weaker PARP inhibitors, BYK236864 and BYK20370, were not cardioprotective. In conclusion, the imidazoquinolinone BYK49187 is a potent inhibitor of human PARP-1 activity in cell-free and cellular assays in vitro and reduces myocardial infarct size in vivo. The isoquinolindione BYK204165 was found to be 100-fold more selective for PARP-1. Thus, both compounds might be novel and valuable tools for investigating PARP-1-mediated effects. 相似文献
10.
Accumulating evidence suggests that the reactive oxygen and nitrogen species are generated in cardiomyocytes and endothelial cells during myocardial ischemia/reperfusion injury, various forms of heart failure or cardiomyopathies, circulatory shock, cardiovascular aging, diabetic complications, myocardial hypertrophy, atherosclerosis, and vascular remodeling following injury. These reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation, on the one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to the functional impairment or death of the endothelial cells and cardiomyocytes. On the other hand, PARP activation modulates important inflammatory pathways, and PARP-1 activity can also be modulated by several endogenous factors such as various kinases, purines, vitamin D, thyroid hormones, polyamines, and estrogens, just to mention a few. Recent studies have demonstrated that pharmacological inhibition of PARP provides significant benefits in animal models of cardiovascular disorders, and novel PARP inhibitors have entered clinical development for various cardiovascular indications. Because PARP inhibitors can enhance the effect of anticancer drugs and decrease angiogenesis, their therapeutic potential is also being explored for cancer treatment. This review discusses the therapeutic effects of PARP inhibitors in myocardial ischemia/reperfusion injury, various forms of heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, diabetic cardiovascular complications, myocardial hypertrophy, atherosclerosis, vascular remodeling following injury, angiogenesis, and also summarizes our knowledge obtained from the use of PARP-1 knockout mice in the various preclinical models of cardiovascular diseases. 相似文献
11.
Poly(ADP-ribose) polymerase inhibitors 总被引:7,自引:0,他引:7
12.
Lewis C Low JA 《Current opinion in investigational drugs (London, England : 2000)》2007,8(12):1051-1056
Poly(ADP-ribose) polymerase (PARP) is believed to play a critical role in the detection of DNA damage and initiation of DNA repair. Although inhibition of PARP has received increasing attention for therapeutic application in a wide variety of acute and chronic diseases, most of the current clinical data surrounding PARP inhibition is in the field of oncology. At least eight different PARP inhibitors have been, or are expected to be evaluated in the clinical oncology setting in 2007 and 2008. This review summarizes the most recently presented or published data on these therapeutic molecules, and discusses how these drugs may continue to be developed in the future. 相似文献
13.
Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. 总被引:1,自引:0,他引:1
Cathleen Cover Peter Fickert Tamara R Knight Andrea Fuchsbichler Anwar Farhood Michael Trauner Hartmut Jaeschke 《Toxicological sciences》2005,84(1):201-208
DNA fragmentation in hepatocytes occurs early after acetaminophen (AAP) overdose in mice. DNA strandbreaks can induce excessive activation of poly(ADP-ribose) polymerases (PARP), which may lead to oncotic necrosis. Based on controversial findings with chemical PARP inhibitors, the role of PARP-1 activation in AAP hepatotoxicity remains unclear. To investigate PARP-1 activation and evaluate a pathophysiological role of PARP-1, we used both PARP inhibitors (3-aminobenzamide; 5-aminoisoquinolinone) and PARP gene knockout mice (PARP-/-). Treatment of C3Heb/FeJ mice with 300 mg/kg AAP resulted in DNA fragmentation and alanine aminotransferase (ALT) release as early as 3 h, with further increase of these parameters up to 12 h. Few nuclei of hepatocytes stained positive for poly-ADP-ribosylated nuclear proteins (PAR) as indicator for PARP-1 activation at 4.5 h. However, the number of PAR-positive cells and staining intensity increased substantially at 6 and 12 h. Pretreatment with 500 mg/kg 3-aminobenzamide before AAP attenuated hepatic glutathione depletion and completely eliminated DNA fragmentation and liver injury. Delayed treatment several hours after AAP was still partially protective. On the other hand, liver injury was not attenuated in PARP-/- mice compared to wild-type animals. Similarly, the specific PARP-1 inhibitor 5-aminoisoquinolinone (5 mg/kg) was not protective. However, 3-aminobenzamide attenuated liver injury in WT and PARP-/- mice. In summary, PARP-1 activation is a consequence of DNA fragmentation after AAP overdose. However, PARP-1 activation is not a relevant event for AAP-induced oncotic necrosis. The protection of 3-aminobenzamide against AAP-induced liver injury was due to reduced metabolic activation and potentially its antioxidant effect but independent of PARP-1 inhibition. 相似文献
14.
《Regulatory toxicology and pharmacology : RTP》2012,62(3):310-317
Despite the known adverse effects of abamectin pesticide, little is known about its action on male fertility. To explore the effects of exposure to abamectin on male fertility and its mechanism, low (1 mg/kg/day) and high dose (4 mg/kg/day) abamectin were applied to male rats by oral gavage for 1 week and for 6 weeks. Weight of testes, serum reproductive hormone levels, sperm dynamics and histopathology of testes were used to evaluate the reproductive efficiency of abamectin-exposed rats. Abamectin level was determined at high concentrations in plasma and testicular tissues of male rats exposed to this pesticide. The testes weights of animals and serum testosterone concentrations did not show any significant changes after abamectin exposure. Abamectin administration was associated with decreased sperm count and motility and increased seminiferous tubule damage. In addition, significant elevations in the 4-hydroxy-2-nonenal (4-HNE)-modified proteins and poly(ADP-ribose) (PAR) expression, as markers for oxidative stress and poly(ADP-ribose) polymerase (PARP) activation, were observed in testes of rats exposed to abamectin. These results showed that abamectin exposure induces testicular damage and affects sperm dynamics. Oxidative stress-mediated PARP activation might be one of the possible mechanism(s) underlying testicular damage induced by abamectin. 相似文献
15.
Prarthana V. Rewatkar Ganesh R. Kokil Mayuresh K. Raut 《Medicinal chemistry research》2011,20(7):877-886
Over activation of poly (ADP-ribose) polymerase has been involved in the pathogenesis of several diseases including stroke, myocardial infarction, diabetes, shock, neurodegenerative disorder, allergy, and several other inflammatory processes. Owing to the dual response of PARP-1 to DNA damage and its involvement in cell death, pharmacological modulation of PARP-1 activity may constitute a useful tool to increase the activity of DNA-binding antitumor drugs. Quantitative structure activity relationship (QSAR) study vis-à-vis physico-chemical parameters and forward feed neural network analysis for a series of phthalazinone derivatives as potent inhibitors of poly (ADP-ribose) polymerase was performed. The result of QSAR studies obtained allows us to recognize such physico-chemical parameters of phthalazinone derivatives which can be strictly related to the PARP-1 inhibitory activity. 相似文献
16.
《Expert opinion on therapeutic patents》2013,23(7):1047-1071
Poly(ADP-ribose) polymerase (PARP) is a DNA-binding protein that is activated by nicks in the DNA molecule. It regulates the activity of various enzymes, including itself, that are involved in the control of DNA metabolism. Evidence obtained with both benzamide and isoquinolinone PARP inhibitors and the PARP-1(-/-) phenotype, clearly indicate that PARP plays an important role in NO/ROS-induced cell damage during inflammation, ischaemia and neurodegeneration. PARP is involved in the maintenance of genomic stability and PARP inhibition may also potentiate the cytotoxic action of agents used in cancer therapy. Benzamides, although not very potent (IC50 ~ 20 – 50 μM) PARP inhibitors, have been widely used to probe PARP functions, because of their lack of toxicity both in vitro and in vivo, even at high doses. In the early 1990s, a new class of very potent PARP inhibitors (i.e., at least 100-fold more potent thatn benzamide), the dihydroisoquinolinones, benzamide derivatives with the carbamoyl group constrained into the antiorientation, was discovered. At the same time, a large structure–activity surevey identified over 13 chemical classes of PARP inhibitors, the most potent calss sharing a common structural feature, the presence of a carbonyl group built into a polyaromatic heterocyclic skeleton or a carbamoyl group attached to an aromatic ring. Recently, a better knowledge of the PARP catalytic domain and the use of its crystal structure have led to the design and synthesis of the tricyclic lactam indoles, active at low nanomolar concentrations, and with favourable physical properties and in vivo characteristics. In the last few years the interest in PARP as a therapeutic target has been rapidly growing. This article reviews the patents filed for new PARP inhibitors over the last three years, up to February 2002, and their development status. 相似文献
17.
Inhibition of ADP-evoked platelet aggregation by selected poly(ADP-ribose) polymerase inhibitors 总被引:1,自引:0,他引:1
Alexy T Toth A Marton Z Horvath B Koltai K Feher G Kesmarky G Kalai T Hideg K Sumegi B Toth K 《Journal of cardiovascular pharmacology》2004,43(3):423-431
Pathologic platelet activation has been implicated in the pathogenesis of ischemic heart disease. Since cardiomyocytes can be protected from ischemia-reoxygenation injury by poly(ADP-ribose) polymerase (PARP) inhibitors mimicking the adenine/ADP part of NAD, their structural resemblance to ADP may also enable the blockade of platelet aggregation via binding to ADP receptors.Blood samples drawn from healthy volunteers were pre-incubated with different concentrations of PARP inhibitors: 4-hydroxyquinazoline, 2-mercapto-4(3 H)-quinazolinone, or HO-3089. ADP-, collagen- and epinephrine-induced platelet aggregation was evaluated according to the method described by Born. The effect of PARP inhibitors on thrombocyte aggregation was also examined when platelets were sensitized by heparin and in the presence of incremental concentrations of ADP.All examined PARP inhibitors reduced the ADP-induced platelet aggregation in a dose-dependent manner (significant inhibition at 20 microM for HO-3089 and at 500 microM for the other agents; P < 0.05), even if platelets were sensitized with heparin. However, their hindrance on platelet aggregation waned as the concentration of ADP rose (no effect at 40 microM ADP). PARP inhibitors had minimal effect on both collagen- and epinephrine-induced platelet aggregation.Our study first demonstrates the feasibility of a design for PARP inhibitors that does not only protect against ischemia-reperfusion-induced cardiac damage but may also prevent thrombotic events. 相似文献
18.
目的 设计合成一系列苯并咪唑类衍生物,并测定其聚腺苷二磷酸核糖聚合酶(PARP)抑制活性.方法 以3-硝基邻苯二甲酸酐为基本原料,经开环、Hofmann重排、酰胺化或酯化、还原得到邻二氨基苯化合物,再与相应的苯甲醛及其衍生物环合得到目标分子;采用体外抑酶试验初步筛选目标分子的PARO抑制活性.结果与结论 合成了22个苯... 相似文献
19.
Csaba Szabó 《Pharmacological research》2005,52(1):34-43
Free radical and oxidant production in cardiac myocytes during ischemia/reperfusion, cardiomyopathy, cardiotoxic drug exposure and ageing leads to DNA strand-breakage which activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) and initiates an energy consuming, inefficient cellular metabolic cycle with transfer of the ADP-ribosyl moiety of NAD+ to protein acceptors. These processes lead to the functional impairment of the myocytes and promote myocyte death. During the last decade a growing number of experimental studies demonstrated the beneficial effects of PARP inhibition in cell cultures through rodent models and more recently in pre-clinical large animal models of regional and global ischemia/reperfusion injury and various forms of heart failure. The current article provides an overview of the experimental evidence implicating PARP as a pathophysiological modulator of cardiac myocyte injury in vitro and in vivo. 相似文献
20.
The nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 has an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP have entered clinical testing as cytoprotective agents in cardiovascular diseases and as adjunct antitumor therapeutics. Initially, it was assumed that the regulation of PARP occurs primarily at the level of DNA breakage: recognition of DNA breaks was considered to be the primary regulator (activator) or the catalytic activity of PARP. Recent studies have provided evidence that PARP-1 activity can also be modulated by several endogenous factors, including various kinases, purines and caffeine metabolites. There is a gender difference in the contribution of PARP-1 to stroke and inflammatory responses, which is due, at least in part, to endogenous estrogen levels. Several tetracycline antibiotics are also potent PARP-1 inhibitors. In this article, we present an overview of novel PARP-1 modulators. 相似文献