首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preterm birth often results in significant learning disability, and previous magnetic resonance imaging (MRI) studies of preterm children have demonstrated reduction in overall cortical tissue with particular vulnerability in the temporal lobe. We measured cortical gyrification in 73 preterm and 33 term control children at 8 years of age and correlated these findings with tests of language ability to determine the associations among preterm birth, neurodevelopment and functional outcome. Preterm children demonstrated significantly increased bilateral temporal lobe gyrification index compared to term controls. Left temporal gyrification index was significantly negatively correlated with left temporal lobe gray matter volume as well as reading recognition scores in the preterm group. Cortical development in the temporal lobe appears to be differentially vulnerable to preterm birth.  相似文献   

2.
This study tested the hypothesis that preterm early adolescents' short-term memory is compromised when presented with increasingly complex verbal information and that associated neuroanatomical volumes would differ between preterm and term groups. Forty-nine preterm and 20 term subjects were evaluated at age 12 years with neuropsychological measures and magnetic resonance imaging (MRI). There were no differences between groups in simple short-term and working memory. Preterm subjects performed lower on learning and short-term memory tests that included increased verbal complexity. They had reduced right parietal, left temporal, and right temporal white matter volumes and greater bilateral frontal gray and right frontal white matter volumes. There was a positive association between complex working memory and the left hippocampus and frontal white matter in term subjects. While not correlated, memory scores and volumes of cortical regions known to subserve language and memory were reduced in preterm subjects. This study provides evidence of possible mechanisms for learning problems in former preterm infants.  相似文献   

3.
On the basis of findings in normative samples that different cortical brain regions covary in gray matter volume, most likely as a result of mutually trophic influences during cortical development, we aimed to study whether patterns of covariation in regional gray matter, i.e., structural covariance, differed between adolescents who were born very preterm and full‐term controls. Optimized voxel‐based morphometry was used to study structural magnetic resonance imaging scans from 218 very preterm adolescents (gestational age <33 weeks) and 127 controls at 14–15 years of age. Local gray matter volumes were obtained for 18 regions of interest involved in sensorimotor and higher‐order cognitive functions. These were then used to predict local volumes in the remaining areas of the cortex, with total gray matter volume, age and gender used as confounding variables. Very preterm adolescents compared with controls demonstrated differential (i.e., both increased and decreased) structural covariance between medial, frontal and cingulate gyri, caudate nucleus, thalamus, primary visual cortex, cerebellum and several other cortical and subcortical regions of the cortex. These findings support previous research indicating that preterm birth is associated with altered cortical development, and suggest that developmental changes in one brain region may result in a cascade of alterations in multiple regions. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Those born very preterm (VPT; <32 weeks gestational age) have an increased risk in developing a wide range of cognitive deficits. In early‐to‐late childhood, brain structure has been shown to be altered in VPT compared to full‐term (FT) children; however, the results are inconsistent. The current study examined subcortical volumes, cortical thickness, and surface area in a large cohort of VPT and FT children aged 4–12 years. Structural magnetic resonance imaging (MRI) was obtained on 120 VPT and 146 FT children who returned up to three times, resulting in 176 VPT and 173 FT unique data points. For each participant, Corticometric Iterative Vertex‐based Estimation of Thickness was used to obtain global measurements of total brain, cortical grey and cortical white matter volumes, along with surface‐based measurements of cortical thickness and surface area, and Multiple Automatically Generated Templates (MAGeT) brain segmentation tool was used to segment the subcortical structures. To examine group differences and group–age interactions, mixed‐effects models were used (controlling for whole‐brain volume). We found few differences between the two groups in subcortical volumes. The VPT children showed increased cortical thickness in frontal, occipital and fusiform gyri and inferior pre–post–central areas, while thinning occurred in the midcingulate. Cortical thickness in occipital regions showed more rapid decreases with age in the VPT compared to the FT children. VPT children also showed both regional increases, particularly in the temporal lobe, and decreases in surface area. Our results indicate a delayed maturational trajectory in those born VPT.  相似文献   

5.
Alzheimer's disease (AD) can present with atypical clinical forms where the prominent domain of deficit is not memory, that is, atypical AD. Atypical AD patients show cortical atrophy on MRI, hypometabolism on [18F]fluorodeoxyglucose (FDG) PET, tau uptake on [18F]AV‐1451 PET, and white matter tract degeneration on diffusion tensor imaging (DTI). How these disease processes relate to each other locally and distantly remains unclear. We aimed to examine multimodal neuroimaging relationships in individuals with atypical AD, using univariate and multivariate techniques at region‐ and voxel‐level. Forty atypical AD patients underwent MRI, FDG‐PET, tau‐PET, beta‐amyloid PET, and DTI. Patients were all beta‐amyloid positive. Partial Pearson's correlations were performed between tau and FDG standardized uptake value ratios, gray matter MRI‐volumes and white matter tract fractional anisotropy. Sparse canonical correlation analysis was applied to identify multivariate relationships between the same quantities. Voxel‐level associations across modalities were also assessed. Tau showed strong local negative correlations with FDG metabolism in the occipital and frontal lobes. Tau in frontal and parietal regions was negatively associated with temporoparietal gray matter MRI‐volume. Fractional anisotropy in a set of posterior white matter tracts, including the splenium of the corpus callosum, cingulum, and posterior thalamic radiation, was negatively correlated with parietal and occipital tau, atrophy and, predominantly, with hypometabolism. These results support the view that tau is the driving force behind neurodegeneration in atypical AD, and that a breakdown in structural connectivity is related to cortical neurodegeneration, particularly hypometabolism.  相似文献   

6.
OBJECTIVE: The authors investigated the relationship between depression duration and cerebral gray matter volume in female patients with recurrent major depressive disorder. METHOD: Magnetic resonance imaging was used to measure intracranial and total brain volumes as well as gray matter and white matter volumes of the cerebrum; frontal, temporal, parietal, and occipital lobes; cerebellum; and the lateral and third ventricles in 23 female patients with DSM-IV major depression. RESULTS: Correlation and regression analyses showed a significant relationship between total illness duration and cerebral gray matter (including cortical lobe) volume after correction for intracranial volume and age. CONCLUSIONS: Depressive states may lead to changes in global cerebral gray matter volume.  相似文献   

7.
Huntington's disease (HD) is an inherited neurodegenerative disease with clinical manifestations that involve motor, cognitive and psychiatric deficits. Cross‐sectional magnetic resonance imaging (MRI) studies have described the main cortical and subcortical macrostructural atrophy of HD. However, longitudinal studies characterizing progressive atrophy are lacking. This study aimed to describe the cortical and subcortical gray matter atrophy using complementary volumetric and surface‐based MRI analyses in a cohort of seventeen early HD patients in a cross‐sectional and longitudinal analysis and to correlate the longitudinal volumetric atrophy with the functional decline using several clinical measures. A group of seventeen healthy individuals was included as controls. After obtaining structural MRIs, volumetric analyses were performed in 36 cortical and 7 subcortical regions of interest per hemisphere and surface‐based analyses were performed in the whole cortex, caudate, putamen and thalamus. Cross‐sectional cortical surface‐based and volumetric analyses showed significant decreases in frontoparietal and temporo‐occipital cortices, while subcortical volumetric analysis showed significant decreases in all subcortical structures except the hippocampus. The longitudinal surface‐based analysis showed widespread cortical thinning with volumetric decreases in the superior frontal lobe, while a subcortical volumetric decrease occurred in the caudate, putamen and thalamus with shape deformation on the anterior, medial and dorsal side. Functional capacity and motor status decline correlated with caudate progressive atrophy, while cognitive decline correlated with left superior frontal and right paracentral progressive atrophy. These results provide new insights into progressive volumetric and surface‐based morphometric atrophy of gray matter in HD.  相似文献   

8.
Event-related potentials (ERPs) and brain magnetic resonance images (MRIs) were acquired from 28 normal men, age 21–60 years. ERPs were recorded during 3 paradigms designed to elicit automatic or effortful attention, and a combination of both. MRI-derived measures of brain gray matter, white matter and cerebral spinal fluid (CSF) volumes were computed from frontal, parietal and temporal lobes. P300 amplitude correlated significantly with gray matter volumes but not with white matter or CSF volumes. Furthermore, the relationships between P300 amplitude and gray matter volumes reflected functional rather than direct topographical relationships: P300 recorded at Pz during automatically elicited attention correlated significantly with frontal but not parietal lobe gray matter volumes, P300 recorded during effortful attention correlated significantly with parietal but not frontal lobe gray matter volumes, and P300 recorded when both types of attention were invoked correlated significantly with both frontal and parietal gray matter volumes. Startle blinks, also elicited during automatic attention-engaging paradigms, were significantly correlated with frontal but not parietal lobe gray matter volumes. There was no evidence for a direct spatial relationship between P300 amplitude and the gray matter volumes underlying the recording electrode.  相似文献   

9.
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe(superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe(postcentral and inferior parietal gyri), right temporal lobe(caudate nucleus), right occipital lobe(middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.  相似文献   

10.
Forty-eight healthy adults aged 65-85 were recruited for structural magnetic resonance scans after an extensive neuropsychological battery that ensured a high degree of variability across the sample in performance on long-term memory tests, and on tests traditionally thought to rely on prefrontal cortex. Gray matter volumes were measured for three gyri in the frontal lobe (superior, middle, inferior), six gyri in the temporal lobe (superior, middle, inferior, fusiform, parahippocampal, and hippocampus), and the occipital lobe. Gray matter volumes declined across the age range evaluated, but with substantial regional variation--greatest in the inferior frontal, superior temporal, and middle temporal gyri but negligible in the occipital lobe. Both memory performance and executive function declined as the number of hyperintense regions in the subcortical white matter increased. Memory performance was also significantly correlated with gray matter volumes of the middle frontal gyrus (MFG), and several regions of temporal neocortex. However, the correlations were all in the negative direction; better memory performance was associated with smaller volumes. Several previous reports of significant negative correlations between gray matter volumes and memory performance are described, so that the possible reasons for this surprising finding are discussed.  相似文献   

11.
BACKGROUND: Larger gray matter (GM) volume in healthy children is correlated with higher IQ. Children with neurofibromatosis type 1 (NF1) have larger brains, their magnetic resonance images frequently show T2-weighted hyperintensities, and their IQs are lower. OBJECTIVES: To confirm the hypotheses that (1) children with NF1 have larger GM and white matter volumes, (2) the greatest volume differences are in the frontal and parietal regions and in children with NF1 with hyperintensities, and (3) GM volume is inversely related to IQ in children with NF1. DESIGN: Wechsler Intelligence Scale for Children-Third Edition IQ testing and measurement of cerebral volumes and hyperintensities in brain magnetic resonance images were performed on 36 children with NF1 and on 36 matched relatives who served as control subjects. RESULTS: Gray matter and white matter volumes were significantly larger in children with NF1. The greatest difference was observed in cerebral white matter volume, predominantly in the frontal lobes, whereas the greatest difference in GM volume was in the temporal, parietal, and occipital regions. In controls, IQ was significantly related to GM volume, but in children with NF1, IQ was not inversely associated with GM volume, although IQs of children with NF1 were significantly lower. CONCLUSIONS: Children with NF1 do not have the normal relationship between GM volume and IQ. Larger GM volume in the posterior brain regions and larger white matter volumes in the frontal brain regions contribute to the larger brain volume in children with NF1.  相似文献   

12.
Background: The relationship between corticolimbic involvement and cognitive dysfunction in non‐demented Parkinson’s disease (PD) patients has not yet been elucidated. Objectives: To delineate involvement of the cerebral cortex and limbic structures in non‐demented PD and to clarify distributional differences of gray matter loss between non‐demented PD with impaired cognition (PD‐CI) and without cognitive impairment (PD‐NC). Methods: Operational criteria based on the Clinical Dementia Rating were used to identify PD‐CI. Of 40 consecutive non‐demented patients with PD, 13 were classified as PD‐CI and 27 as PD‐NC. Comparisons of regional gray matter volume (rGMV) were made amongst the PD‐CI, PD‐NC, and control groups using voxel‐based morphometry. Results: Gray matter loss was found extensively in the frontal, temporal, parietal, and occipital cortices in the present non‐demented patients with PD. rGMV in the medial frontal and medial occipital cortices was reduced comparably in the PD‐NC and PD‐CI groups. The severity of gray matter loss in the perisylvian cortices increased in order from the control, to the PD‐NC, to the PD‐CI groups. rGMV reduction in the lateral and orbital frontal, medial and lateral temporal, medial and lateral parietal, and lateral occipital cortices and cerebellum was found specifically in PD‐CI. Conclusions: Our results suggest that corticolimbic degeneration occurs in non‐demented patients with PD, and extensive involvement of the limbic and posterior cortical regions as well as the frontal cortices is associated with cognitive impairment in PD.  相似文献   

13.
Cerebral metabolite disturbances occur among human immunodeficiency virus (HIV)-infected people, and are thought to reflect neuropathology, including proinflammatory processes, and neuronal loss. HIV-associated cortical atrophy continues to occur, though its basis is not well understood, and the relationship of cerebral metabolic disturbance to structural brain abnormalities in HIV has not been well delineated. We hypothesized that metabolite disturbances would be associated with reduced cortical and subcortical volumes. Cerebral volumes were measured in 67 HIV-infected people, including 10 people with mild dementia (acquired immunodeficiency syndrome [AIDS] dimentia complex [ADC] stage >1) via automated magnetic resonance imaging (MRI) segmentation. Magnetic resonance spectroscopy (MRS) was used to measure levels of cerebral metabolites N-acetylaspartate (NAA), myo-inositol (MI), choline-containing compounds (Cho), glutamate/glutamine (Glx), and creatine (Cr) from three brain regions (frontal gray matter, frontal white matter, basal ganglia). Analyses were conducted to examine the associations between MRS and cerebral volumetric measures using both absolute and relative metabolite concentrations. NAA in the mid-frontal gray matter was most consistently associated with cortical (global, frontal, and parietal), ventricular, and caudate volumes based on analysis of absolute metabolite levels, whereas temporal lobe volume was associated with basal ganglia NAA and Glx, and Cho concentrations in the frontal cortex and basal ganglia. Hippocampal volume was associated with frontal white matter NAA, whereas thalamic volume was associated with both frontal white matter NAA and basal ganglia Glx. Analyses of relative metabolite concentrations (referenced to Cr) yielded weaker effects, although more metabolites were retained as significant predictors in the models than the analysis of absolute concentrations. These findings demonstrate that reduced cortical and subcortical volumes, which have been previously found to be linked to HIV status and history, are also strongly associated with the degree of cerebral metabolite disturbance observed via MRS. Reduced cortical and hippocampal volumes were most strongly associated with decreased NAA, though reduced Glx also tended to be associated with reduced cortical and subcortical volumes (caudate and thalamus) as well, suggesting both neuronal and glial disturbances. Interestingly, metabolite-volumetric relationships were not limited to the cortical region from which MRS was measured, possibly reflecting shared pathophysiological processes. The relationships between Cho and volumetric measures suggest a complicated relationship possibly related to the effects of inflammatory processes on brain volume. The findings demonstrate the relationship between MRI-derived measures of cerebral metabolite disturbances and structural brain integrity, which has implication in understanding HIV-associated neuropathological mechanisms.  相似文献   

14.
Little is known about the effect of obesity on brain structures and cognition in healthy older adults. This study examined the association between body mass index (BMI), regional volume differences in gray and white matter measured by magnetic resonance imaging (MRI), and cognitive functioning in older females. Participants included 95 community‐dwelling older females (ages 52–92 years) who underwent extensive neuropsychological testing and high‐resolution MRI scanning. Optimized voxel‐based morphometry techniques were employed to determine the correlation between BMI and regional gray and white matter volumes. Volumes of significant regions were then correlated with cognitive functioning. Higher BMI was associated with decreased gray matter volumes in the left orbitofrontal, right inferior frontal, and right precentral gyri, a right posterior region including the parahippocampal, fusiform, and lingual gyri, and right cerebellar regions, as well as increased volumes of white matter in the frontal, temporal, and parietal lobes, even when hypertension was considered. Compared to normal weight women, obese women performed poorer on tests of executive functioning. Smaller gray matter volume in the left orbitofrontal region was associated with lower executive functioning. Additionally, despite the lack of significant group differences in memory and visuomotor speed, gray and white matter volumes predicted performance on these measures. The results provide additional evidence for a negative link between increased body fat and brain functioning in older females. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.

Background

A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism.

Methods

Twenty children with autism (mean age = 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values.

Results

Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development.

Conclusions

These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits.  相似文献   

16.
Working memory training (WMT) has been shown to have effects on cognitive performance, the precise effects and the underlying neurobiological mechanisms are, however, still a matter of debate. In particular, the impact of WMT on gray matter morphology is still rather unclear. In the present study, 59 healthy middle‐aged participants (age range 50–65 years) were pseudo‐randomly single‐blinded allocated to an 8‐week adaptive WMT or an 8‐week nonadaptive intervention. Before and after the intervention, high resolution magnetic resonance imaging (MRI) was performed and cognitive test performance was assessed in all participants. Vertex‐wise cortical volume, thickness, surface area, and cortical folding was calculated. Seven subcortical volumes of interest and global mean cortical thickness were also measured. Comparisons of symmetrized percent change (SPC) between groups were conducted to identify group by time interactions. Greater increases in cortical gyrification in bilateral parietal regions, including superior parietal cortex and inferior parietal lobule as well as precuneus, greater increases in cortical volume and thickness in bilateral primary motor cortex, and changes in surface area in bilateral occipital cortex (medial and lateral occipital cortex) were detected in WMT group after training compared to active controls. Structural training‐induced changes in WM‐related regions, especially parietal regions, might provide a better brain processing environment for higher WM load.  相似文献   

17.
As a critical component of cortico‐striato‐thalamo‐cortical loop in addiction, our understanding of the thalamus in impaired cognition of heroin users (HU) has been limited. Due to the complex thalamic connection with cortical and subcortical regions, thalamus was divided into prefrontal (PFC), occipital (OC), premotor, primary motor, sensory, temporal, and posterior parietal association subregions according to white matter tractography. We adopted seven subregions of bilateral thalamus as regions of interest to systematically study the implications of distinct thalamic nuclei in acute abstinent HU. The volume and resting‐state functional connectivity (RSFC) differences of the thalamus were investigated between age‐, gender‐, and alcohol‐matched 37 HU and 33 healthy controls (HCs). Trail making test‐A (TMT‐A) was adopted to assess cognitive function deficits, which were then correlated with neuroimaging findings. Although no significant different volumes were found, HU group showed decreased RSFC between left PFC_thalamus and middle temporal gyrus as well as between left OC_thalamus and inferior frontal gyrus and supplementary motor area relative to HCs. Meanwhile, the higher TMT‐A scores in HU were negatively correlated with PFC_thalamic RSFC with inferior temporal gyrus, fusiform, and precuneus. Craving scores were negatively correlated with OC_thalamic RSFC with accumbens, hippocampus, and insula. Opiate Withdrawal Scale scores were negatively correlated with left PFC/OC_thalamic RSFC with orbitofrontal cortex and medial PFC. We indicated two thalamus subregions separately involvement in cognitive control and craving to reveal the implications of thalamic subnucleus in pathology of acute abstinent HU.  相似文献   

18.
Noninvasive brain imaging methods provide useful information on cerebral involution and degenerative processes. Here we assessed cortical degeneration in 20 nondemented patients with Parkinson's disease (PD) and 20 healthy controls using three quantitative neuroanatomical approaches: voxel‐based morphometry (VBM), cortical folding (BrainVisa), and cortical thickness (FreeSurfer). We examined the relationship between global and regional gray matter (GM) volumes, sulcal indices, and thickness measures derived from the previous methods as well as their association with cognitive performance, age, severity of motor symptoms, and disease stage. VBM analyses showed GM volume reductions in the left temporal gyrus in patients compared with controls. Cortical folding measures revealed significant decreases in the left frontal and right collateral sulci in patients. Finally, analysis of cortical thickness showed widespread cortical thinning in right lateral occipital, parietal and left temporal, frontal, and premotor regions. We found that, in patients, all global anatomical measures correlated with age, while GM volume and cortical thickness significantly correlated with disease stage. In controls, a significant association was found between global GM volume and cortical folding with age. Overall these results suggest that the three different methods provide complementary and related information on neurodegenerative changes occurring in PD, however, surface‐based measures of cortical folding and especially cortical thickness seem to be more sensitive than VBM to identify regional GM changes associated to PD. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Depressed mood is a frequent co-morbidity of dementia suggesting that they might share a common neuropathological substrate. Gray matter (GM) atrophy and white matter lesions (WML) have been described in both conditions. Our aims were to determine the relationship of GM and WML with cognition and depressed mood in the same population. Structural brain images were obtained from 42 controls, 20 Alzheimer's disease (AD) patients and 32 subjects with cognitive impairment/dementia due to subcortical cerebrovascular disease (vascCIND/IVD). Images were segmented to obtain lobar GM, white matter and WML volumes. Lobar WML had a negative effect on GM in all lobes in controls, on frontal, parietal and occipital GM in AD and on frontal GM in vascCIND/IVD. Frontal, temporal and hippocampal GM were associated with cognitive functions and frontal WML load with depressed mood. Cognitive function is associated with GM atrophy and depressed mood is associated with frontal WML. This indicates that although both often occur together, depressed mood and cognitive impairment have different pathological correlates.  相似文献   

20.
BACKGROUND: White matter hyperintensities (WMH) on MRI scans indicate lesions of the subcortical fiber system. The regional distribution of WMH may be related to their pathophysiology and clinical effect in vascular dementia (VaD), Alzheimer's disease (AD) and healthy aging. METHODS: Regional WMH volumes were measured in MRI scans of 20 VaD patients, 25 AD patients and 22 healthy elderly subjects using FLAIR sequences and surface reconstructions from a three-dimensional MRI sequence. RESULTS: The intraclass correlation coefficient for interrater reliability of WMH volume measurements ranged between 0.99 in the frontal and 0.72 in the occipital lobe. For each cerebral lobe, the WMH index, i.e. WMH volume divided by lobar volume, was highest in VaD and lowest in healthy controls. Within each group, the WMH index was higher in frontal and parietal lobes than in occipital and temporal lobes. Total WMH index and WMH indices in the frontal lobe correlated significantly with the MMSE score in VaD. Category fluency correlated with the frontal lobe WMH index in AD, while drawing performance correlated with parietal and temporal lobe WMH indices in VaD. CONCLUSIONS: A similar regional distribution of WMH between the three groups suggests a common (vascular) pathogenic factor leading to WMH in patients and controls. Our findings underscore the potential of regional WMH volumetry to determine correlations between subcortical pathology and cognitive impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号