首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

BACKGROUND AND PURPOSE

Preclinical pharmacological characterization of GSK1004723, a novel, dual histamine H1 and H3 receptor antagonist.

EXPERIMENTAL APPROACH

GSK1004723 was characterized in vitro and in vivo using methods that included radioligand binding, intracellular calcium mobilization, cAMP production, GTPγS binding, superfused human bronchus and guinea pig whole body plethysmography.

KEY RESULTS

In cell membranes over-expressing human recombinant H1 and H3 receptors, GSK1004723 displayed high affinity, competitive binding (H1 pKi = 10.2; H3 pKi = 10.6). In addition, GSK1004723 demonstrated slow dissociation from both receptors with a t1/2 of 1.2 and 1.5 h for H1 and H3 respectively. GSK1004723 specifically antagonized H1 receptor mediated increases in intracellular calcium and H3 receptor mediated increases in GTPγS binding. The antagonism exerted was retained after cell washing, consistent with slow dissociation from H1 and H3 receptors. Duration of action was further evaluated using superfused human bronchus preparations. GSK1004723 (100 nmol·L−1) reversed an established contractile response to histamine. When GSK1004723 was removed from the perfusate, only 20% recovery of the histamine response was observed over 10 h. Moreover, 21 h post-exposure to GSK1004723 there remained almost complete antagonism of responses to histamine. In vivo pharmacology was studied in conscious guinea pigs in which nasal congestion induced by intranasal histamine was measured indirectly (plethysmography). GSK1004723 (0.1 and 1 mg·mL−1 intranasal) antagonized the histamine-induced response with a duration of up to 72 h.

CONCLUSIONS AND IMPLICATIONS

GSK1004723 is a potent and selective histamine H1 and H3 receptor antagonist with a long duration of action and represents a potential novel therapy for allergic rhinitis.  相似文献   

2.
Summary The effect of (R)-methylhistamine (MH) and thioperamide (selective agonist and antagonist respectively of histamine H3 receptors) was examined in conscious gastric fistula dogs to investigate the role of histamine H3 receptors in the control of basal and stimulated gastric acid secretion. Intravenous infusion of MH at 0.3 and 0.6 mol/kg/h caused a significant reduction of the 2-deoxy-d-glucose (2-DG)-stimulated acid output, maximal inhibition being 60%. The inhibitory effect of MH was counteracted by thioperamide (0.1 mol/kg/h), which, by itself, did not modify the 2-DG-induced acid secretion. The increase in plasma gastrin levels induced by 2-DG was not significantly affected either by MH or by thioperamide. Under basal conditions MH (0.3 mol/kg/h) did not induce any significant change in acid secretion and in plasma gastrin levels; by contrast, thioperamide (0.1 mol/kg/h) produced a significant increase both in acid output and in plasma gastrin.These results suggest that activation of H3 receptors can exert a negative control in stimulated acid secretion in conscious dogs, when cholinergic pathways to acid secretion are activated by 2-DG; moreover, the slight, but significant, stimulatory effect of thioperamide on basal acid output and basal plasma gastrin may be suggestive for a tonic inhibitory role of H3 receptors in the regulation of basal acid secretion, however, a nonspecific effect of this drug cannot be excluded.Correspondence to G. Bertaccini at the above address  相似文献   

3.
The central histaminergic actions are mediated by H1, H2, H3 and H4 receptors. The histamine H3 receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H3 receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H3 receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H3 receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.  相似文献   

4.
The histamine H3 receptor, first described in 1983 as a histamine autoreceptor and later shown to also function as a heteroreceptor that regulates the release of other neurotransmitters, has been the focus of research by numerous laboratories as it represents an attractive drug target for a number of indications including cognition. The purpose of this review is to acquaint the reader with the current understanding of H3 receptor localization and function as a modulator of neurotransmitter release and its effects on cognitive processes, as well as to provide an update on selected H3 antagonists in various states of preclinical and clinical advancement. Blockade of centrally localized H3 receptors by selective H3 receptor antagonists has been shown to enhance the release of neurotransmitters such as histamine, ACh, dopamine and norepinephrine, among others, which play important roles in cognitive processes. The cognitive-enhancing effects of H3 antagonists across multiple cognitive domains in a wide number of preclinical cognition models also bolster confidence in this therapeutic approach for the treatment of attention deficit hyperactivity disorder, Alzheimer's disease and schizophrenia. However, although a number of clinical studies examining the efficacy of H3 receptor antagonists for a variety of cognitive disorders are currently underway, no clinical proof of concept for an H3 receptor antagonist has been reported to date. The discovery of effective H3 antagonists as therapeutic agents for the novel treatment of cognitive disorders will only be accomplished through continued research efforts that further our insights into the functions of the H3 receptor.  相似文献   

5.

Background and purpose:

The histamine H3 receptor antagonist radioligand [3H]-A-349821 was characterized as a radiotracer for assessing in vivo receptor occupancy by H3 receptor antagonists that affect behaviour. This model was established as an alternative to ex vivo binding methods, for relating antagonist H3 receptor occupancy to blood levels and efficacy in preclinical models.

Experimental approach:

In vivo cerebral cortical H3 receptor occupancy by [3H]-A-349821 was determined in rats from differences in [3H]-A-349821 levels in the isolated cortex and cerebellum, a brain region with low levels of H3 receptors. Comparisons were made to relate antagonist H3 receptor occupancy to blood levels and efficacy in a preclinical model of cognition, the five-trial inhibitory avoidance response in rat pups.

Key results:

In adult rats, [3H]-A-349821, 1.5 µg·kg−1, penetrated into the brain and cleared more rapidly from cerebellum than cortex; optimally, [3H]-A-349821 levels were twofold higher in the latter. With increasing [3H]-A-349821 doses, cortical H3 receptor occupancy was saturable with a binding capacity consistent with in vitro binding in cortex membranes. In studies using tracer [3H]-A-349821 doses, ABT-239 and other H3 receptor antagonists inhibited H3 receptor occupancy by [3H]-A-349821 in a dose-dependent manner. Blood levels of the antagonists corresponding to H3 receptor occupancy were consistent with blood levels associated with efficacy in the five-trial inhibitory avoidance response.

Conclusions and implications:

When employed as an occupancy radiotracer, [3H]-A-349821 provided valid measurements of in vivo H3 receptor occupancy, which may be helpful in guiding and interpreting clinical studies of H3 receptor antagonists.  相似文献   

6.
Summary Rat brain cortex slices preincubated with 3H-serotonin were superfused with physiological salt solution (containing citalopram, an inhibitor of serotonin uptake) and the effect of histamine on the electrically (3 Hz) evoked 3H overflow was studied. Histamine decreased the evoked overflow in a concentration-dependent manner. The inhibitory effect of histamine was antagonized by impromidine and burimamide, but was not affected by pheniramine, ranitidine, metitepine and phentolamine. Given alone, impromidine facilitated the evoked overflow, whereas burimamide, pheniramine and ranitidine had no effect. The results suggest that histamine inhibits serotonin release in the rat brain cortex via histamine H3 receptors, which may be located presynaptically. Send offprint requests to E. Schlicker at the above address  相似文献   

7.
Two applications claim novel bicyclic azole carboxamide derivatives as histamine H4 receptor antagonists. Benzoimidazole, benzoxazole, indoles, benzothiazole, furopyrroles and thienopyrrole carboxamide derivatives, mostly as piperazine amides, are claimed. These amides are claimed to be useful in the treatment of diseases such as asthma and allergic rhinitis.  相似文献   

8.
This application claims dual receptor specificity antihistamines, active as H1 and H3 antagonists, which additionally have a long duration of action that renders them suitable for once daily administration via inhalation for the treatment of allergic rhinitis. The compounds lack CNS penetration and have a high affinity for both histamine receptors.  相似文献   

9.
Considerable evidence has been collected indicating that histamine can modulate proliferation of different normal and malignant cells. High histamine biosynthesis and content together with histamine receptors have been reported in different human neoplasias including melanoma, colon and breast cancer, as well as in experimental tumours in which histamine has been postulated to behave as an important paracrine and autocrine regulator of proliferation. The discovery of the human histamine H4 receptor in different tissues has contributed to our understanding of histamine role in numerous physiological and pathological conditions revealing novel functions for histamine and opening new perspectives in histamine pharmacology research. In the present review we aimed to briefly summarize current knowledge on histamine and histamine receptor involvement in cancer before focusing on some recent evidence supporting the novel role of histamine H4 receptor in cancer progression representing a promising molecular target and avenue for cancer drug development.

LINKED ARTICLES

BJP has previously published a Histamine themed issue (2009). To view this issue visit http://dx.doi.org/10.1111/bph.2009.157.issue-1  相似文献   

10.
11.
Summary Mouse brain cortex slices preincubated with 3H-noradrenaline were superfused with physiological salt solution containing desipramine plus a drug with 2-adrenoceptor antagonist properties, and the effects of histamine receptor ligands on the electrically (0.3 Hz) evoked tritium overflow were studied. The evoked overflow (from slices superfused with phentolamine) was inhibited by histamine (pIC35 6.53), the H3 receptor agonist R-(–)--methylhistamine (7.47) and its S-(+)-enantiomer (5.82) but not influenced by the H1 receptor agonist 2-(2-thiazolyl)-ethylamine 3.2 mol/l and the H2 receptor agonist dimaprit 10 mol/l. The inhibitory effect of histamine was not affected by the H1 receptor antagonist dimetindene 1 mol/l and the H2 receptor antagonist ranitidine 10 ol/l. The concentration-response curve of histamine (determined in the presence of rauwolscine) was shifted to the right by the H3 receptor antagonists thioperamide (apparent pA2 8.67), impromidine (7.30) and burimamide (6.82) as well as by dimaprit (6.16). The pA2 values of the four drugs were compared with their affinities for H3A and H3B binding sites in rat brain membranes (West et al. 1990 Mol Pharmacol 38:610); a significant correlation was obtained for the H3A, but not for the H3B sites. The results suggest that noradrenaline release in the mouse brain cortex is inhibited by histamine via H3A receptors and that dimaprit is an H3 receptor antagonist of moderate potency. Send offprint requests to E. Schlicker at the above address  相似文献   

12.
GSK207040 (5-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-2-pyrazinecarboxamide) and GSK334429 (1-(1-methylethyl)-4-({1-[6-(trifluoromethyl)-3-pyridinyl]-4-piperidinyl}carbonyl)hexahydro-1H-1,4-diazepine) are novel and selective non-imidazole histamine H(3) receptor antagonists from distinct chemical series with high affinity for human (pK(i)=9.67+/-0.06 and 9.49+/-0.09, respectively) and rat (pK(i)=9.08+/-0.16 and 9.12+/-0.14, respectively) H(3) receptors expressed in cerebral cortex. At the human recombinant H(3) receptor, GSK207040 and GSK334429 were potent functional antagonists (pA(2)=9.26+/-0.04 and 8.84+/-0.04, respectively versus H(3) agonist-induced changes in cAMP) and exhibited inverse agonist properties (pIC(50)=9.20+/-0.36 and 8.59+/-0.04 versus basal GTPgammaS binding). Following oral administration, GSK207040 and GSK334429 potently inhibited cortical ex vivo [(3)H]-R-alpha-methylhistamine binding (ED(50)=0.03 and 0.35 mg/kg, respectively). Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50)=0.02 and 0.11 mg/kg p.o. for GSK207040 and GSK334429, respectively). In more pathophysiologically relevant pharmacodynamic models, GSK207040 (0.1, 0.3, 1 and 3mg/kg p.o.) and GSK334429 (0.3, 1 and 3mg/kg p.o.) significantly reversed amnesia induced by the cholinergic antagonist scopolamine in a passive avoidance paradigm. In addition, GSK207040 (0.1, 0.3 and 1mg/kg p.o.) and GSK334429 (3 and 10mg/kg p.o.) significantly reversed capsaicin-induced reductions in paw withdrawal threshold, suggesting for the first time that blockade of H(3) receptors may be able to reduce tactile allodynia. Novel H(3) receptor antagonists such as GSK207040 and GSK334429 may therefore have therapeutic potential not only in dementia but also in neuropathic pain.  相似文献   

13.
We have investigated the presence of histamine H(3) receptors (H(3)Rs) on rat thalamic isolated nerve terminals (synaptosomes) and the effect of their activation on glutamate and GABA release. N-alpha-[methyl-(3)H]histamine ([(3)H]-NMHA) bound specifically to synaptosomal membranes with dissociation constant (K(d)) 0.78+/-0.20 nM and maximum binding (B(max)) 141+/-12fmol/mg protein. Inhibition of [(3)H]-NMHA binding by histamine and the H(3)R agonist immepip fit better to a two-site model, whereas for the H(3)R antagonist clobenpropit the best fit was to the one-site model. GTPgammaS (30 microM) decreased [(3)H]-NMHA binding by 55+/-4% and made the histamine inhibition fit better to the one-site model. Immepip (30 nM) induced a modest, but significant increase (113+/-2% of basal) in [(35)S]-GTPgammaS binding to synaptosomal membranes, an effect prevented by clobenpropit (1 microM) and by pre-treatment with pertussis toxin. In thalamus synaptosomes depolarisation-induced, Ca(2+)-dependent glutamate release was inhibited by histamine (1 microM, 25+/-4% inhibition) and immepip (30 nM, 38+/-5% reduction). These effects were reversed by clobenpropit (1microM). Conversely, immepip (up to 1 microM) had no effect on depolarisation-evoked [(3)H]-GABA release. Extracellular synaptic responses were recorded in the thalamus ventrobasal complex by stimulating corticothalamic afferents. H(3)R activation reduced by 38+/-7% the glutamate receptor-mediated field potentials (FPs), but increased the FP2/FP1 ratio (from 0.86+/-0.03 to 1.38+/-0.05) in a paired-pulse paradigm. Taken together, our results confirm the presence of H(3)Rs on thalamic nerve terminals and show that their activation modulates pre-synaptically glutamatergic, but not GABAergic neurotransmission.  相似文献   

14.

BACKGROUND AND PURPOSE

Histamine and its receptors in the CNS play important roles in energy homeostasis. Here, we have investigated the expression and role of histamine receptors in pancreatic beta cells, which secrete insulin.

EXPERIMENTAL APPROACH

The expression of histamine receptors in pancreatic beta cells was examined by RT-PCR, Western blotting and immunostaining. Insulin secretion assay, ATP measurement and calcium imaging studies were performed to determine the function and signalling pathway of histamine H3 receptors in glucose-induced insulin secretion (GIIS) from MIN6 cells, a mouse pancreatic beta cell line. The function and signalling pathway of H3 receptors in MIN6 cell proliferation were examined using pharmacological assay and Western blotting.

KEY RESULTS

Histamine H3 receptors were expressed in pancreatic beta cells. A selective H3 receptor agonist, imetit, and a selective inverse H3 receptor agonist, JNJ-5207852, had inhibitory and facilitatory effects, respectively, on GIIS in MIN6 cells. Neither imetit nor JNJ-5207852 altered intracellular ATP concentration, or intracellular calcium concentration stimulated by glucose and KCl, indicating that GIIS signalling was affected by H3 receptor signalling downstream of the increase in intracellular calcium concentration. Moreover, imetit attenuated bromodeoxyuridine incorporation in MIN6 cells. The phosphorylation of cAMP response element-binding protein (CREB), which facilitated beta cell proliferation, was inhibited, though not significantly, by imetit, indicating that activated H3 receptors inhibited MIN6 cell proliferation, possibly by decreasing CREB phosphorylation.

CONCLUSIONS AND IMPLICATIONS

Histamine H3 receptors were expressed in mouse beta cells and could play a role in insulin secretion and, possibly, beta cell proliferation.  相似文献   

15.

Background and Purpose

Schizophrenia is a highly debilitating disorder characterized by hallucinations and delusions, but also impaired cognition such as memory. While hallucinations and delusions are the main target for pharmacological treatment, cognitive impairments are rarely treated. Evidence exists that histamine has a role in the cognitive deficits in schizophrenia, which could be the basis of the development of a histamine-type treatment. Histamine H3 antagonists have been shown to improve memory performance in experimental animals, but these effects have been little investigated in humans within the context of impaired cognition in schizophrenia and using sensitive measures of brain activity. In the present study, the effects of betahistine (H3 antagonist/H1 agonist) on learning and memory, and associated brain activity were assessed.

Experimental Approach

Sixteen healthy volunteers (eight female) aged between 18 and 50 years received two p.o. doses of betahistine (48 mg) or placebo separated by 30 min, on separate days according to a two-way, double-blind, crossover design. Volunteers performed an N-back working memory task and a spatial paired associates learning task while being scanned using a MRI scanner.

Key Results

Task-related activity changes in well-defined networks and performance were observed. No betahistine-induced changes in brain activity were found in these networks. Alternatively, liberal whole-brain analyses showed activity changes in areas outside task networks, like the lateral geniculate nucleus.

Conclusions and Implications

Clear effects of betahistine on working memory could not be established. Future studies should use higher doses and explore the role of histamine in visual information processing.

Linked Articles

This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1  相似文献   

16.
The interactions in the rat striatum between H(3) receptors (H(3)Rs) and D(2) receptors (D(2)Rs) were investigated with the [(35)S]GTPgamma[S] binding assay. The H(3)R agonist (R)alpha-methylhistamine increased [(35)S]GTPgamma[S] binding to striatal membranes with an EC(50)=14+/-5 nM and a maximal effect of +19+/-1%. This effect was inhibited by the H(3)R antagonist ciproxifan with a K(i)=1.0+/-0.3 nM. The D(2)R agonist quinpirole increased [(35)S]GTPgamma[S] binding to the same membranes with an EC(50)=1.5+/-0.5 microM and a maximal effect of +28+/-2%. Its effect was blocked by haloperidol with a K(i)=0.3+/-0.1 nM. The maximal effects of the H(3)R and D(2)R agonists were additive (+46+/-3%). However, D(2)R ligands did not modify the effects of H(3)R ligands and vice versa. Ciproxifan behaved as an H(3)R inverse agonist and decreased [(35)S]GTPgamma[S] binding. Haloperidol had no effect and did not change the inverse agonist effect of ciproxifan. Administrations for 10 days of ciproxifan (1.5mg/kg/day) or haloperidol (0.5mg/kg/day) did not change the effects of quinpirole and (R)alpha-methylhistamine, respectively. These data suggest that striatal H(3)Rs and D(2)Rs do not interact through their coupling to G-proteins. However, a hyperactivity of histaminergic and dopaminergic neurons being observed in schizophrenia, the additive activations of H(3)Rs and D(2)Rs suggest that they cooperate to generate some schizophrenic symptoms. Such a postsynaptic mechanism may underlie the antipsychotic-like effects of H(3)R inverse agonists and supports their therapeutic interest, alone or as adjunctive treatment with neuroleptics.  相似文献   

17.

BACKGROUND AND PURPOSE

Histamine H1 receptors are highly expressed in hypothalamic neurons and mediate histaminergic modulation of several brain-controlled physiological functions, such as sleep, feeding and thermoregulation. In spite of the fact that the mouse is used as an experimental model for studying histaminergic signalling, the pharmacological characteristics of mouse H1 receptors have not been studied. In particular, selective and potent H1 receptor agonists have not been identified.

EXPERIMENTAL APPROACH

Ca2+ imaging using fura-2 fluorescence signals and whole-cell patch-clamp recordings were carried out in mouse preoptic/anterior hypothalamic neurons in culture.

KEY RESULTS

The H1 receptor antagonists mepyramine and trans-triprolidine potently antagonized the activation by histamine of these receptors with IC50 values of 0.02 and 0.2 μM respectively. All H1 receptor agonists studied had relatively low potency at the H1 receptors expressed by these neurons. Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine had full-agonist activity with potencies similar to that of histamine. In contrast, 2-pyridylethylamine and betahistine showed only partial agonist activity and lower potency than histamine. The histamine receptor agonist, 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT) had no agonist activity at the H1 receptors H1 receptors expressed by mouse preoptic/anterior hypothalamic neurons but displayed antagonist activity.

CONCLUSIONS AND IMPLICATIONS

Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine were identified as full agonists of mouse H1 receptors. These results also indicated that histamine H1 receptors in mice exhibited a pharmacological profile in terms of agonism, significantly different from those of H1 receptors expressed in other species.  相似文献   

18.

Background and purpose:

Functional interactions between the G protein-coupled dopamine D1 and histamine H3 receptors have been described in the brain. In the present study we investigated the existence of D1–H3 receptor heteromers and their biochemical characteristics.

Experimental approach:

D1–H3 receptor heteromerization was studied in mammalian transfected cells with Bioluminescence Resonance Energy Transfer and binding assays. Furthermore, signalling through mitogen-activated protein kinase (MAPK) and adenylyl cyclase pathways was studied in co-transfected cells and compared with cells transfected with either D1 or H3 receptors.

Key results:

Bioluminescence Resonance Energy Transfer and binding assays confirmed that D1 and H3 receptors can heteromerize. Activation of histamine H3 receptors did not lead to signalling towards the MAPK pathway unless dopamine D1 receptors were co-expressed. Also, dopamine D1 receptors, usually coupled to Gs proteins and leading to increases in cAMP, did not couple to Gs but to Gi in co-transfected cells. Furthermore, signalling via each receptor was blocked not only by a selective antagonist but also by an antagonist of the partner receptor.

Conclusions and implications:

D1–H3 receptor heteromers constitute unique devices that can direct dopaminergic and histaminergic signalling towards the MAPK pathway in a Gs-independent and Gi-dependent manner. An antagonist of one of the receptor units in the D1–H3 receptor heteromer can induce conformational changes in the other receptor unit and block specific signals originating in the heteromer. This gives rise to unsuspected therapeutic potentials for G protein-coupled receptor antagonists.  相似文献   

19.
The cloning of the histamine H(3) receptor (H(3)R) cDNA in 1999 by Lovenberg et al. [10] allowed detailed studies of its molecular aspects and indicated that the H(3)R can activate several signal transduction pathways including G(i/o)-dependent inhibition of adenylyl cyclase, activation of phospholipase A(2), Akt and the mitogen activated kinase as well as the inhibition of the Na(+)/H(+) exchanger and inhibition of K(+)-induced Ca(2+) mobilization. Moreover, cloning of the H(3)R has led to the discovery several H(3)R isoforms generated through alternative splicing of the H(3)R mRNA. The H(3)R has gained the interest of many pharmaceutical companies as a potential drug target for the treatment of various important disorders like obesity, myocardial ischemia, migraine, inflammatory diseases and several CNS disorders like Alzheimer's disease, attention-deficit hyperactivity disorder and schizophrenia. In this paper, we review various molecular aspects of the hH(3)R including its signal transduction, dimerization and the occurrence of different H(3)R isoforms.  相似文献   

20.
Summary Discs of pig retina were preincubated with 3H-noradrenaline, 3H-dopamine or 3H-serotonin and then superfused. Electrical field stimulation increased the outflow of tritium from discs preincubated with 3H-noradrenaline or 3H-dopamine, but no from discs preincubated with 3H-serotonin. The tritium content at the end of superfusion was similar in discs preincubated with 3H-noradrenaline or 3H-dopamine but about tenfold lower in discs preincubated with 3H-serotonin. The tritium content in discs preincubated with 3H-noradrenaline was markedly reduced when desipramine was present during preincubation but was not affected by selective inhibitors of dopamine and serotonin uptake. The tritium content in discs preincubated with 3Hdopamine and 3H-serotonin, in contrast, was reduced or tended to be reduced by a selective dopamine and serotonin uptake inhibitor, respectively.The electrically evoked overflow of tritium from discs preincubated with 3H-noradrenaline was abolished by tetrodotoxin or omission of Ca2+. In discs superfused with desipramine, the electrically evoked overflow was enhanced by phentolamine but not affected by histamine. When both desipramine and phentolamine were present in the superfusion medium, histamine inhibited the evoked overflow (pIC15 6.85). This effect was mimicked by the histamine H3 receptor agonist R-(–)--methylhistamine as well as by its S-(+)-enantiomer (pIC15 7.85 and 5.30, respectively) but not by the H1 receptor agonist 2-(2-thiazolyl)ethylamine and the H2 receptor agonist dimaprit (each 10 mol/l). The inhibitory effect of histamine was abolished by the H3 receptor antagonist thioperamide 0.32 mol/l and attenuated by impromidine 3.2 mol/l but not affected by the H1 receptor antagonist dimetindene 3.2 mol/l and the H2 receptor antagonist ranitidine 10 mol/l.The results suggest that, in the pig retina, noradrenaline is taken up into, and released from, noradrenergic neurones (most likely vascular postganglionic sympathetic nerve fibres, less probably tissue-specific noradrenergic neurones of the retina) and that noradrenaline release is subject to modulation via H3 receptors and probably also a-adrenoceptors.Send offprint requests to E. Schlicker at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号