首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro–IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.Inflammasomes are cytosolic multimeric protein complexes formed in the host cell in response to the detection of pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Formation of the inflammasome in response to PAMPs is critical for host defense because it facilitates processing of the proinflammatory cytokines pro–IL-1β and pro–IL-18 into their mature forms (1). The inflammasome also initiates host cell death in the form of pyroptosis, releasing macrophage-resident microbes to be killed by other immune mechanisms (2). The current paradigm is that there are individual, receptor-specific inflammasomes consisting of one nucleotide-binding oligomerization domain-like receptor (NLR; leucine-rich repeat–containing) or PYHIN [pyrin domain and hematopoietic expression, interferon-inducible nature, and nuclear localization (HIN) domain-containing] receptor, the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD; ASC), and caspase-1 (3). How the protein constituents of the inflammasome are spatially orientated is unclear.Nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 (NLRC4) and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 (NLRP3) are the best-characterized inflammasomes, especially with respect to their responses to pathogenic bacteria. The NLRC4 inflammasome is activated primarily by bacteria, including Aeromonas veronii (4), Escherichia coli (5), Listeria monocytogenes (6, 7), Pseudomonas aeruginosa (5), Salmonella enterica serovar Typhimurium (S. Typhimurium) (5, 810), and Yersinia species (11). In mouse macrophages, the NLRC4 inflammasome responds to flagellin and type III secretion system-associated needle or rod proteins (5, 8, 9) after their detection by NLR family, apoptosis inhibitory protein (NAIP) 5 or NAIP6 and NAIP1 or NAIP2, respectively (1215). Phosphorylation of NLRC4 at a single, evolutionarily conserved residue, Ser 533, by PKCδ kinase is required for NLRC4 inflammasome assembly (16). The NLRP3 inflammasome is activated by a large repertoire of DAMPs, including ATP, nigericin, maitotoxin, uric acid crystals, silica, aluminum hydroxide, and muramyl dipeptide (1720). NLRP3 is also activated by bacterial PAMPs from many species, including Aeromonas species (4, 21), L. monocytogenes (6, 7, 22), Neisseria gonorrhoeae (23), S. Typhimurium (10), Streptococcus pneumoniae (24), and Yersinia species (11). The mechanisms by which NLRC4 and NLRP3 inflammasomes contribute to host defense against bacterial pathogens are emerging; however, little is known about the dynamics governing inflammasome assembly in infections caused by bacteria that activate multiple NLRs, such as S. Typhimurium (10), A. veronii (4), and Yersinia (11).NLRP3 does not have a CARD and requires ASC to interact with the CARD of procaspase-1. This interaction requires a charged interface around Asp27 of the procaspase-1 CARD (25). Whether ASC is also required for the assembly of the NLRC4 inflammasome is less clear. NLRC4 contains a CARD that can interact directly with the CARD of procaspase-1 (26); however, ASC is required for some of the responses driven by NLRC4 (27). Macrophages infected with S. Typhimurium or other pathogens exhibit formation of a distinct cytoplasmic ASC focus or speck, which can be visualized under the microscope and is indicative of inflammasome activation (10, 28, 29). Our laboratory and others have shown that only one ASC speck is formed per cell irrespective of the stimulus used (2932). However, many bacteria activate two or more NLRs, and it is unclear whether a singular inflammasome is formed at a time or if multiple inflammasomes are formed independent of each other, with each inflammasome containing one member of the NLR family.In this study, we describe the endogenous molecular constituents of the Salmonella-induced inflammasome and their spatial orientation. In cross-section, ASC forms a large external ring with the NLRs and caspases located internally. Critically, NLRC4, NLRP3, caspase-1, and caspase-8 coexist in the same ASC speck to coordinate pro–IL-1β processing. All ASC specks observed contained both NLRC4 and NLRP3. These results suggest that Salmonella infection induces a single inflammasome protein complex containing different NLRs and recruiting multiple caspases to coordinate a multifaceted inflammatory response to infection.  相似文献   

2.
NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1–mediated processing and secretion of IL-1β/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1β secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1β production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages.Flagellin, the monomeric subunit of flagella present in Gram-negative and Gram-positive bacteria, is one of the few protein structures that can activate both transmembrane and cytosolic pattern recognition receptors of the innate immune system. Extracellular flagellin is recognized by the transmembrane Toll-like receptor (TLR)5 (1). On the other hand, flagellin can be directly delivered into the cytosol by transport systems, such as the type III secretion system (T3SS) of Salmonella (2) and the type IV secretion system (T4SS) of Legionella (3). Once in the cytosol, flagellin is sensed by the inflammasome complex comprised of the NOD-like receptor (NLR) proteins neuronal apoptosis inhibitory protein (NAIP)5 and NLRC4 [NLR family, caspase activation recruitment domain (CARD) domain-containing 4] (25).Both TLR5 and NAIP5/NLRC4 receptors recognize conserved regions of flagellin. TLR5 is thought to detect a region of flagellin located in the D1 domain (6), whereas a sequence of three leucine residues that is present in the C-terminal D0 domain of flagellin is required to activate the NAIP5/NLRC4 inflammasome (7). Despite some redundant roles that are attributed to NLRC4 and NAIP5 in flagellin-mediated macrophage activation (7), a new model for NAIP5/NLRC4 inflammasome activation in response to flagellin was recently proposed (8, 9). In this model, NAIP5 acts as an immune sensor protein that specifically binds to flagellin (9). The interaction between NAIP5 and flagellin promotes the recruitment of NLRC4 through the NOD domain. The formation of this protein complex leads to the association of NLRC4 with procaspase-1 via CARD-CARD interactions. Additionally, NLRC4 can recruit the adaptor protein ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which also contains a CARD domain and is able to recruit and process procaspase-1.Caspase-1 activation results in the cleavage and secretion of biologically active forms of the inflammatory cytokines interleukin (IL)-1β and IL-18 (10) and the induction of a form of cell death named pyroptosis (11). The activation of caspase-1 in response to cytosolic flagellin by the NAIP5/NLRC4 inflammasome complex can also induce other effector mechanisms to restrict infections, such as caspase-7–dependent phagosome maturation (4, 12) and the activation of inducible nitric oxide synthase (iNOS) by macrophages (13). Both of these effector mechanisms lead to the inhibition of Legionella pneumophila replication. Importantly, caspase-1–induced IL-1β and IL-18 are not involved in phagosome maturation (4, 12), induction of pyroptosis (14), or iNOS activation (13), suggesting that caspase-1 mediates independent effects that cooperate to clear infections.Although the NAIP5/NLRC4 inflammasome complex is involved in the control of many bacterial infections, such as infection with Salmonella Typhimurium (2, 5), Shigella flexneri (15), Pseudomonas aeruginosa (16, 17), L. pneumophila (3, 4), and Listeria monocytogenes (18), the precise effector mechanism mediated by these receptors is not completely understood. Among the NAIP5/NLRC4 inflammasome-mediated effector mechanisms that have been implicated with intracellular bacterial replication control, pyroptosis has received great attention.Pyroptosis has been described as a programmed cell death pathway that uniquely depends on caspase-1 (19). Recently, it was demonstrated that the enteric pathogenic bacteria Escherichia coli, Citrobacter rodentium, and Vibrio cholerae and the cholera toxin B subunit can trigger the activation of a noncanonical inflammasome that targets caspase-11 (also known as caspase-4 in humans and related to caspase-1) (20). These stimuli induce cell death in a caspase-11–dependent fashion, but the process is not dependent on ASC, NLRC4, or caspase-1. Interestingly, this process of cell death (also named pyroptosis) is accompanied by the secretion of IL-1α but not by the secretion of IL-1β (which requires caspase-1). Importantly, the 129 mouse strain that was used to generate the first caspase-1−/− mutants (21, 22) harbors a mutation in the caspase-11 locus that impairs caspase-11 function. Because of the close proximity in the genome between the caspase-1 and caspase-11 genes, the two proteins cannot be segregated by recombination. Therefore, these caspase-1−/− mice are also defective for caspase-11 (20).Importantly, although pyroptosis is regulated by caspase activation, similarly to apoptosis, inhibition of or genetic deficiency in apoptotic caspase does not rescue cells from pyroptosis (11, 23). In addition, pyroptosis and apoptosis provide distinct outcomes for the immune response, which may be explained by the different morphological and biochemical changes that are observed in cells undergoing these forms of cell death (24, 25). Activation of caspase-1/11 results in the rapid formation of pores in the plasma membrane that dissipate cellular ionic gradients. This process allows the influx of water into the cells, resulting in cell swelling, osmotic lysis, and the release of intracellular contents (25, 26). The loss of plasma membrane integrity and the secretion of inflammatory mediators during pyroptosis, including IL-1β and IL-18, results in the induction of a strong inflammatory response (27). The inflammatory milieu produced by pyroptosis could result in the recruitment of effector cells to the site of infection as a mechanism of pathogen clearance. Recently, it was demonstrated that the ectopic expression of the Salmonella flagellin protein FliC during the intracellular phase of infection triggers pyroptosis of infected cells in vivo (14). The bacteria released by the pyroptotic macrophages were controlled by infiltrating neutrophils through a reactive oxygen species-dependent mechanism.Despite the evidence implicating pyroptosis as an important host defense mechanism to clear intracellular pathogens, the molecular regulation of pyroptosis is poorly understood. Here, we analyzed the regulation of macrophage death using purified flagellin as a single, death-inducing stimulus. Our data demonstrate that cytosolic flagellin is able to induce cell death in the absence of caspase-1/11. Although displaying some apoptotic features, such as cell shrinkage and the formation of membrane blebs, cytosolic flagellin-induced caspase-1/11–independent cell death does not require apoptotic caspases but depends on lysosomal events. Similar to pyroptosis, cytosolic flagellin-induced caspase-1/11–independent cell death results in the release of intracellular inflammatory contents. Caspase-1/11–independent cell death also contributes to the control of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) infection by macrophages, supporting the existence of an effector mechanism important to restrict bacterial infection. Finally, our data provide evidences that lysosomal cathepsins also regulate IL-1β secretion and pyroptosis in response to cytosolic flagellin. Taken together, our results suggests lysosome events as a central regulator of both inflammasome-dependent and inflammasome-independent macrophage responses induced by cytosolic flagellin.  相似文献   

3.
The Nlrc4 inflammasome contributes to immunity against intracellular pathogens that express flagellin and type III secretion systems, and activating mutations in NLRC4 cause autoinflammation in patients. Both Naip5 and phosphorylation of Nlrc4 at Ser533 are required for flagellin-induced inflammasome activation, but how these events converge upon inflammasome activation is not known. Here, we showed that Nlrc4 phosphorylation occurs independently of Naip5 detection of flagellin because Naip5 deletion in macrophages abolished caspase-1 activation, interleukin (IL)-1β secretion, and pyroptosis, but not Nlrc4 phosphorylation by cytosolic flagellin of Salmonella Typhimurium and Yersinia enterocolitica. ASC speck formation and caspase-1 expression also were dispensable for Nlrc4 phosphorylation. Interestingly, Helicobacter pylori flagellin triggered robust Nlrc4 phosphorylation, but failed to elicit caspase-1 maturation, IL-1β secretion, and pyroptosis, suggesting that it retained Nlrc4 Ser533 phosphorylating-activity despite escaping Naip5 detection. In agreement, the flagellin D0 domain was required and sufficient for Nlrc4 phosphorylation, whereas deletion of the S. Typhimurium flagellin carboxy-terminus prevented caspase-1 maturation only. Collectively, this work suggests a biphasic activation mechanism for the Nlrc4 inflammasome in which Ser533 phosphorylation prepares Nlrc4 for subsequent activation by the flagellin sensor Naip5.Inflammasomes contribute critically to immunity and antimicrobial host defense of mammalian hosts. Their activation is tightly controlled because aberrant inflammasome signaling is harmful to the host, and results in inflammatory diseases (1, 2). Inflammasomes are a set of cytosolic multiprotein complexes that recruit and activate caspase-1, a key protease that triggers secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition, caspase-1 induces pyroptosis, a proinflammatory and lytic cell death mode that contributes to pathogen clearance (3, 4). Several inflammasomes respond to a distinctive set of microbial pathogens (5). Activating mutations in the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) member Nlrc4 were recently shown to induce autoinflammation in patients (68). Moreover, the inflammasome assembled by Nlrc4 is critically important for clearing a variety of bacterial infections, including Salmonella enterica serovar Typhimurium (S. Typhimurium), Shigella flexneri, Pseudomonas aeruginosa, Burkholderia thailandensis, and Legionella pneumophila (3, 917). These intracellularly-replicating bacteria have in common that they propel themselves with flagella (18) and/or express bacterial type III secretion systems (T3SS) to translocate effector proteins into infected host cells (19). Members of the NLR apoptosis-inhibitory protein (Naip) subfamily recognize the cytosolic presence of the building blocks of these evolutionary conserved bacterial structures, and trigger Nlrc4 to assemble an inflammasome (2025). C57BL/6J mice express four Naip proteins, Naip1, -2, -5, and -6, which are expressed from a multigene cluster located on chromosome 13qD1 (26). Mouse Naip1 and human NAIP bind T3SS needle proteins, Naip2 interacts with the T3SS basal rod component PrgJ, and Naip5 and Naip6 recognize flagellin (20, 2225).In addition to these Naip sensors, recent work showed that phosphorylation of Nlrc4 at Ser533 is critical for activation of the Nlrc4 inflammasome following infection with S. Typhimurium and L. pneumophila, or transfection of purified S. Typhimurium flagellin (27). Reconstitution of immortalized Nlrc4−/− macrophages with wild-type Nlrc4 restored S. Typhimurium- and L. pneumophila-induced inflammasome activation, whereas cells reconstituted with Nlrc4 S533A mutant were specifically defective in maturation of caspase-1, secretion of IL-1β, assembly of ASC (apoptosis-associated speck-like protein containing a CARD) specks and induction of pyroptosis by these pathogens (27). However, a central outstanding question is how these upstream events (i.e., bacterial recognition by Naip members and Nlrc4 phosphorylation) relate to each other. Naip binding of bacterial components may trigger Nlrc4 phosphorylation to induce inflammasome activation. Alternatively, Nlrc4 phosphorylation and Naip sensing of flagellin and T3SS may converge independently onto Nlrc4 inflammasome activation.Here, we approached this question by breeding Nlrc4Flag/Flag mice that express Nlrc4 fused to a carboxy-terminal 3× Flag tag from both Nlrc4 alleles (27) with Naip5-deficient mice (22, 28). We found S. Typhimurium infection and cytosolic delivery of S. Typhimurium flagellin, S. Typhimurium PrgJ and Yersinia enterocolitica flagellin to induce Nlrc4 phosphorylation at Ser533 independently of Naip5. Interestingly, Helicobacter pylori (H. pylori) flagellin induced robust Nlrc4 Ser533 phosphorylation without caspase-1 activation, suggesting that Nlrc4 Ser533 phosphorylation and caspase-1 activation are molecularly decoupled. In agreement, the S. Typhimurium flagellin D0 domain was required and sufficient for Nlrc4 phosphorylation, whereas caspase-1 activation required the flagellin carboxy-terminus. Collectively, this work suggests a biphasic activation mechanism for the Nlrc4 inflammasome in which Ser533 phosphorylation primes Nlrc4 for subsequent activation by the flagellin sensor Naip5.  相似文献   

4.
Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.A critical step in disease pathogenesis for many clinically important bacteria is their ability to infect and survive within host cells such as macrophages. Salmonella enterica, a pathogen that resides and replicates within macrophages, causes a range of life-threatening diseases in humans and animals, and accounts for 28 million cases of enteric fever worldwide each year (1). S. enterica infects phagocytes by a process that requires cytoskeletal reorganization (2). This bacterium resides in a Salmonella-containing vacuole (SCV) within host macrophages, and this intracellular lifestyle enables them to avoid extracellular antimicrobial killing, evade adaptive immune responses, and potentially to spread to new sites to seed new infectious foci within host tissue, which eventually develop into granulomas (3). Survival and growth of S. enterica within phagocytes is critical for virulence (4) and host restriction of the intracellular bacterial load is, therefore, paramount in surviving salmonellosis. Salmonella delivers microbial effector proteins into the host cell via the type III secretion systems (T3SS), mediated by the Salmonella pathogenicity island-1 and -2 (SPI-1 and SPI-2), to subvert cellular functions and facilitate intracellular survival (5).Microbes are recognized by macrophages through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), which initiate innate immune responses, including cytokine production and pathogen killing (6). NLRs drive the formation of inflammasomes—macromolecular protein complexes—comprising one or more NLRs, usually an adaptor protein (ASC) and the effector protein caspase-1, which then cleaves prointerleukin-1β (IL-1β) and pro–IL-18 into biologically active cytokines, and initiates macrophage cell death by pyroptosis (7). NLRC4, in concert with NAIPs 1, 2, 5, and 6, is a key PRR that forms an inflammasome complex upon sensing flagellin and/or the inner rod or needle proteins (PrgJ and PrgI, respectively) of the SPI-1 T3SS of S. enterica serovar Typhimurium (S. Typhimurium) (811). Activation of the NLRC4 inflammasome by Salmonella infection results in IL-1β and IL-18 production driven by an ASC-dependent pathway and macrophage pyroptosis driven by an ASC-independent pathway (12, 13). A second, noncanonical, NLR signaling pathway has been described, which requires caspase-11 to initiate delayed cell death and NLRP3 inflammasome activation (1416). Effective clearance of Salmonella infection in host cells may therefore require a coordinated effort between different inflammasome signaling pathways.We, and others, have shown that NLRC4 is important in regulating bacterial burden of S. Typhimurium in vivo (1719). A recent study revealed that Salmonella-infected epithelial cells are extruded from the intestinal epithelium in a process that requires NLRC4 (20). The molecular mechanism behind how NLRC4 restricts bacterial burden in macrophages infected with Salmonella is still unknown. Here, we identify an actin-dependent mechanism that controls NLRC4-mediated regulation of bacterial replication in macrophages infected with S. Typhimurium. Activation of NLRC4 in infected macrophages mediates the production of reactive oxygen species (ROS) to inhibit bacterial replication and limits additional bacterial uptake by inducing mechanical stiffening the cell via actin polymerization. Overall, we describe a previously unidentified effector mechanism, governed by actin and the NLRC4 inflammasome, to control Salmonella infection in macrophages.  相似文献   

5.
When nucleotide-binding oligomerization domain–like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN+/− mice were more responsive to inflammasome activation than those from GLMN+/+ mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via interactions between IpaH7.8 and GLMN.Inflammasome activation is a key defense mechanism against bacterial infection that induces innate immune responses such as caspase-1 activation and inflammatory cell death (13). Although the mechanisms through which various bacterial activities promote infection remain incompletely understood, some bacterial pathogens stimulate inflammasome activity by delivering cytotoxins, type III secretion (T3SS)-mediated effectors, T3SS components, flagellin, or cytotoxins to the host cell membrane and cytoplasm. These foreign components modify the host cell-surface architecture, induce membrane damage, subvert cell signaling, reorganize the actin cytoskeleton, and alter cell physiology (4) through interactions with various cytoplasmic receptors, e.g., nucleotide-binding oligomerization domain–like receptors (NLRs)—including NLRP1, NLR family CARD domain-containing 4 (NLRC4), NLR family pyrin domain-containing 3 (NLRP3), AIM2, IFI16, and RIG-1—as pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) (2, 3, 5). Upon recognition of these PAMPs and DAMPs, NLRs induce the assembly of inflammasomes, which are composed of NLR, apoptosis-associated speck-like protein (ASC), and inflammatory caspases such as caspase-1. Inflammasome assembly ultimately results in the extracellular release of IL-1β and IL-18 and induces inflammatory cell death (called “pyroptosis”) (6). For example, NLRP3 senses membrane rupture that occurs during infection with Listeria monocytogenes, Shigella, Salmonella typhimurium, Staphylococcus aureus, Neisseria gonorrhoeae, and Chlamydia spp. and upon exposure to bacterial pore-forming toxins, leading to caspase-1 activation (710). NLRC4 detects L. monocytogenes and S. typhimurium infection and stimulates caspase-1 activation (1114). NLRC4 also senses flagellin and the T3SS rod components of Legionella pneumophila, Pseudomonas aeruginosa, Shigella, and S. typhimurium (11, 1520) and the T3SS needle components of Chromobacterium violaceum, S. typhimurium, enterohemorrhagic Escherichia coli, Burkholderia thailandensis, and Shigella (21). Therefore, NLR inflammasomes act as major cytoplasmic pattern-recognition receptors and as central platforms that transmit alarm signals to a variety of downstream innate immune systems.Some bacterial pathogens, such as S. typhimurium (22) and Yersinia pseudotuberculosis (2325), can induce macrophage death after they have fully replicated, promoting the egress of bacteria from their replicative compartments and the subsequent dissemination of bacteria into new host cells. This causal relationship suggests that these pathogens may benefit from and exert control over host cell death and the inflammatory response. In the case of Shigella, the bacteria rapidly induce macrophage cell death at early stages of infection, which is accompanied by NLR inflammasome activation and inflammatory cell death through a T3SS-dependent mechanism (19, 22). Previous studies indicated that during replication in macrophages, LPS, peptidoglycan, and T3SS rod or needle components of Shigella are recognized by the NLRC4 and NLRP3 inflammasomes (8, 1921). Interestingly, the mode through which NLRs recognize Shigella infections seems to vary across different infection conditions. At a low infectious dose [e.g., a multiplicity of infection (MOI) of 10–25], bacteria induce rapid NLRC4–caspase-1–dependent pyroptosis at 2–3 h postinfection through the recognition of the T3SS components or some uncharacterized T3SS-delivered substance(s) (19, 22). However, at a high infectious dose (e.g., an MOI over 50) and at later time points (6 h postinfection), the bacteria induce NLRP3-dependent but caspase-1–independent necrosis-like cell death with inflammation (called “pyronecrosis”) (8). Because pyroptosis results in the release of intracellular contents, including proinflammatory cytokines and chemokines, and because, in the case of Shigella, macrophage death is a prerequisite for the subsequent infection of surrounding epithelial cells (19, 26), it remains unclear whether Shigella-mediated rapid cell death is beneficial to the pathogen or to the host. Nevertheless, these studies strongly suggest that the bacteria deploy multiple mechanisms to manipulate macrophage cell-death pathways in a T3SS-dependent manner.Shigella flexneri, e.g., the YSH6000 strain, possesses three invasion plasmid antigen H (ipaH) genes, ipaH9.8, ipaH7.8, and ipaH4.5, on a large virulence plasmid (27, 28). These IpaH proteins, which originally were identified in the S. flexneri M90T strain (29, 30), recently were found to act as enzyme 3 (E3) ubiquitin ligases (31) and were thus named “novel E3 ligases” (32). The ipaH cognate genes are distributed among various Gram-negative bacterial pathogens, including Shigella, Salmonella, Yersinia, Edwardsiella ictaluri, Bradyrhizobium japonica, Rhizobium sp. strain NGR234, Pseudomonas putida, Pseudomonas entomophila, Pseudomonas fluorescens, and Pseudomonas syringae (31). IpaH protein family members share structural and functional similarity; they are composed of an N-terminal leucine-rich repeat (LRR) and a highly conserved C-terminal region (CTR) (33, 34). The conserved CTR contains a Cys residue, which is critical for E3 ubiquitin ligase activity (31, 35, 36). Each of the IpaH family effectors characterized to date (e.g., Shigella IpaH9.8 and IpaH2077, Salmonella SlrP, SspH1, and SspH2, Yersinia YopM, and Rhizobium Y4fR and BIpM) has distinct host protein targets in different host cell types. Some act as effectors to attenuate host inflammatory responses, whereas others modulate host defense responses in plants (37, 38). The existence of multiple effectors with E3 ligase activity suggests that an array of E3 ligases is required to promote bacterial infection and antagonize host innate defense responses.Fernandez-Prada et al. (39) previously reported that Shigella lacking the ipaH7.8 gene are less capable than the WT strain of escaping the phagocytic vacuole of macrophages and that Shigella infection of macrophages induces apoptotic-like cell death. Paetzold et al. (40) subsequently showed that Shigella lacking the ipaH7.8 gene had no effect on phagosome escape compared with the WT strain, but bacterial-induced cytotoxicity was low compared with that of the WT strain. Although the biological significance of IpaH7.8 as an E3 ubiquitin ligase during Shigella infection remains to be elucidated, these studies suggested that IpaH7.8 is involved in inducing macrophage cell death.In this context we wished to clarify the pathological role of IpaH7.8 as an E3 ubiquitin ligase in Shigella infection of macrophages and the modality of cell death. Here we provide evidence that IpaH7.8 potentiates macrophage killing in an IpaH7.8 E3 ligase-dependent manner, in which E3 ligase activity triggers NLR inflammasome-mediated macrophage cell death by targeting glomulin/FAP68 (GLMN); this activity ultimately appears to benefit the pathogen.  相似文献   

6.
The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 12 (NLRP12) plays a protective role in intestinal inflammation and carcinogenesis, but the physiological function of this NLR during microbial infection is largely unexplored. Salmonella enterica serovar Typhimurium (S. typhimurium) is a leading cause of food poisoning worldwide. Here, we show that NLRP12-deficient mice were highly resistant to S. typhimurium infection. Salmonella-infected macrophages induced NLRP12-dependent inhibition of NF-κB and ERK activation by suppressing phosphorylation of IκBα and ERK. NLRP12-mediated down-regulation of proinflammatory and antimicrobial molecules prevented efficient clearance of bacterial burden, highlighting a role for NLRP12 as a negative regulator of innate immune signaling during salmonellosis. These results underscore a signaling pathway defined by NLRP12-mediated dampening of host immune defenses that could be exploited by S. typhimurium to persist and survive in the host.The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family consists of a large number of intracellular pathogen recognition receptors that function as sensors of microbial-derived and danger-associated molecules in the cytoplasm of host cells. A subset of NLR proteins, including NLRP1, NLRP3, and NLRC4, activate caspase-1 via the formation of a cytosolic multiprotein complex termed the inflammasome (1). These inflammasome-forming NLRs mediate processing of the proinflammatory cytokines pro–IL-1β and pro–IL-18, which are then secreted by the cell. The non–inflammasome-forming members of the NLR family contribute to regulation of other key inflammatory pathways. For example, NOD1 and NOD2 activate NF-κB and MAPK pathways (25), whereas NLRP6, NLRC3, NLRC5, and NLRX1 have been demonstrated to regulate inflammation negatively (69).NLRP12 (NALP12, MONARCH-1, or PYPAF7) is a poorly characterized member of the NLR family. It has a tripartite domain structure, which consists of an N-terminal PYRIN domain, a central nucleotide binding site domain, and a C-terminal domain composed of at least 12 leucine-rich repeat motifs (10). In humans, NLRP12 is expressed in peripheral blood leukocytes, including granulocytes, eosinophils, monocytes, and dendritic cells (DCs) (10, 11). Similarly, mouse NLRP12 is highly expressed in bone marrow neutrophils and granulocytes, macrophages, and DCs (12, 13). Genetic studies in humans have shown that mutations in the NLRP12 gene are associated with periodic fever syndromes and atopic dermatitis (1416). More recent studies have demonstrated that NLRP12 has both inflammasome-dependent and inflammasome-independent roles in health and disease. Our laboratory and others have previously reported that NLRP12 mediates protection against colon inflammation and tumorigenesis in vivo by negatively regulating inflammatory responses (12, 17).Recent studies have revealed a potential role for NLRP12 during infectious diseases. Vladimer et al. (18) reported that Nlrp12−/− mice are hypersusceptible to Yersinia pestis infection, whereby NLRP12 is required to drive caspase-1 activation and IL-1β and IL-18 release. Another study found that WT and Nlrp12−/− mice exhibit similar host innate responses in lung infections induced by Mycobacterium tuberculosis or Klebsiella pneumoniae (13). However, in vitro studies reported that a synthetic analog cord factor, trehalose-6,6-dimycolate (TDP), from M. tuberculosis and LPS from K. pneumoniae induced substantially elevated levels of TNF-α and IL-6 in Nlrp12−/− bone marrow-derived DCs compared with their WT counterpart, although levels of secreted IL-1β were not changed (13). These results suggest that unlike the case in Yersinia infection, NLRP12 does not contribute to inflammasome-mediated protection against M. tuberculosis and K. pneumoniae infections. Overall, the physiological and functional relevance of NLRP12 in the host defense against infectious diseases is not fully understood.Salmonella enterica serovar Typhimurium (S. typhimurium) is a Gram-negative intracellular pathogen, and one of the most prevalent etiological agents of gastroenteritis worldwide. Salmonella infection accounts for 93.8 million cases of gastroenteritis annually in the world and is a leading cause of death among bacterial foodborne pathogens in the United States (19, 20). Previous studies have found that members of the Toll-like receptor (TLR) family, especially TLR4, are critical for the recognition and clearance of S. typhimurium (21, 22). One consequence of Salmonella-induced TLR activation is the production of inflammatory cytokines and antimicrobial compounds, including pro–IL-1β, pro–IL-18, IFN-γ, TNF-α, and reactive oxygen species, which are critical mediators for the control of bacterial growth in host tissues (23). In addition to TLR-mediated host responses, certain members of the NLR family, including NLRC4 and NLRP3, initiate inflammasome formation to drive processing and release of IL-1β and IL-18 following Salmonella infection (24, 25). Although the precise signals that trigger NLRP3 activation during Salmonella infection are unknown, NLRC4 is activated by NAIPs, a subset of receptors within the NLR family that detect Salmonella flagellin (mouse NAIP5 and NAIP6) or certain rod (mouse NAIP2) or needle (human NAIP and mouse NAIP1) proteins associated with the Salmonella type III secretion system (2630). Nevertheless, the functional relevance of NLRP12 in response to Salmonella infection is unknown.Here, we show that NLRP12 negatively regulates antibacterial host defense during Salmonella infection independent of inflammasomes. NLRP12 inhibited TLR-induced NF-κB activation by dampening phosphorylation of IκBα and ERK, consequently enhancing intracellular bacterial survival. Together, our work unveiled an NLRP12-dependent innate immune pathway that may be strategically exploited by S. typhimurium to persist and survive in the host.  相似文献   

7.
Pathogenic Gram-negative bacteria use syringe-like type III secretion systems (T3SS) to inject effector proteins directly into targeted host cells. Effector secretion is triggered by host cell contact, and before contact is prevented by a set of conserved regulators. How these regulators interface with the T3SS apparatus to control secretion is unclear. We present evidence that the proton motive force (pmf) drives T3SS secretion in Pseudomonas aeruginosa, and that the cytoplasmic regulator PcrG interacts with distinct components of the T3SS apparatus to control two important aspects of effector secretion: (i) It coassembles with a second regulator (Pcr1) on the inner membrane T3SS component PcrD to prevent effectors from accessing the T3SS, and (ii) In conjunction with PscO, it controls protein secretion activity by modulating the ability of T3SS to convert pmf.Many Gram-negative bacterial pathogens rely on a type III secretion system (T3SS) to promote disease by directly injecting effector proteins into the cytoplasm of host cells. This apparatus consists of a base that spans the bacterial envelope and a needle that projects from the base and ends in a specialized tip structure. The bacterium secretes two translocator proteins via the T3SS, which insert into the host cell membrane to form a pore, through which effector proteins are then transferred (1, 2).One of the hallmarks of type III secretion is that export of effector proteins is triggered by host cell contact (35). The secretion apparatus is fully assembled before cell contact, but effector secretion is prevented through the concerted action of needle tip-associated proteins and regulators that control secretion from the bacterial cytoplasm.In most systems, the needle tip protein prevents premature effector secretion, most likely by allosterically constraining the T3SS in an effector secretion “off” conformation (610). PcrG, the needle tip protein chaperone, as well as PopN, a member of the YopN/MxiC family of proteins, control effector secretion from the bacterial cytoplasm in Pseudomonas aeruginosa. PcrG’s regulatory function is independent of its function in promoting the export of needle tip protein PcrV. Deletion of pcrG or pcrV results in partial deregulation of effector secretion, whereas removal of both genes results in high-level secretion of effectors (8). In some bacteria, the needle tip protein promotes its own export with the aid of a self-chaperoning domain, rather than with a separate export chaperone (11). Recent evidence suggests that in these systems, the needle tip protein itself also regulates effector secretion from the cytoplasm, in addition to its regulatory role at the T3SS needle tip (12). The mechanism of this regulation is unclear.YopN/MxiC family proteins, PopN in P. aeruginosa, are T3SS regulators that are exported once effector secretion is triggered (1317). These proteins control effector secretion from the bacterial cytoplasm (1820). P. aeruginosa PopN and the closely related YopN associate with three other proteins that are required to prevent premature effector secretion (2123). For PopN, these three proteins are Pcr1, Pcr2, and PscB. Pcr2 and PscB form a heterodimeric export chaperone, and Pcr1 is thought to tether the PopN complex to the apparatus (23). The prevailing model for explaining how PopN and related regulators control effector secretion is that they partially insert and plug the secretion channel while being tethered to the T3SS, either directly via a C-terminal interaction or indirectly via a C-terminal–associated protein, i.e., Pcr1 in P. aeruginosa (19, 20). The apparatus component with which these regulators interact is unknown, however.Triggering of effector secretion results in the rapid injection of effector proteins into the host cell (4, 5). How this rapid burst of secretion is energized is a matter of some controversy. The flagellum, which also uses a type III secretion mechanism, uses the proton motive force (pmf) to catalyze the rapid export of flagellar subunits. In fact, secretion is possible in mutants lacking the flagellum-associated ATPase, FliI, if the associated regulatory protein, FliH, is eliminated as well (2426). The pmf’s contribution to the rate of secretion relative to the ATPase has been questioned in the case of virulence-associated T3SS (27), where removal of the ATPase results in a complete block of secretion (28, 29) that is not alleviated by deletion of the associated FliH homolog (30).Here we present evidence that export via the P. aeruginosa T3SS is energized primarily by the pmf, thereby offering a unified model for how protein secretion is energized in all T3SSs. The cytoplasmic T3SS regulator PcrG controls both the access of effectors to the T3SS and, surprisingly, the secretion activity of the apparatus. These two functions are controlled by separate regions of PcrG. Control of secretion activity involves the central portion of PcrG as well as PscO, which regulate the pmf-dependent export of secretion substrates. Mutants that up-regulate translocator secretion without turning on effector export confirm that effector secretion is not blocked by physical obstruction of the secretion channel. Instead, access of effectors to the T3SS is controlled by the C terminus of PcrG in conjunction with the PopN complex through an interaction with the inner membrane T3SS component PcrD. This protein complex likely blocks an acceptor site for effectors. Thus, PcrG is a multifaceted protein that, along with its export chaperone function, serves as a brake and a switch to control effector secretion.  相似文献   

8.
Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1–independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages.Pattern recognition receptors (PRRs) of the innate immune system are critical for promoting defense against bacterial pathogens (1). Cytosolic PRRs are key for discriminating between pathogenic and nonpathogenic bacteria, because many pathogens access the host cytosol, a compartment where microbial products are typically not found (2). Cytosolic PRRs respond to patterns of pathogenesis that are often associated with virulent bacteria, such as the use of pore-forming toxins or injection of effector molecules through specialized secretion systems (3). A subset of cytosolic PRRs induces the formation of multiprotein complexes known as inflammasomes (4). In mice, the canonical inflammasome activates caspase-1, an inflammatory caspase that mediates cell death and IL-1 family cytokine secretion (5, 6). Additionally, the noncanonical inflammasome activates caspase-11 in response to many gram-negative bacteria (714). The canonical and noncanonical inflammasomes differentially regulate release of IL-1α and IL-1β (7). Caspase-11 mediates LPS-induced septic shock in mice (7, 15), and caspase-11 responds to cytoplasmic LPS independent of Toll-like receptor 4 (16, 17).In addition to its pathologic role in septic shock, the noncanonical inflammasome is critical for host defense in mice (11, 18). However, in humans, it is unclear whether an analogous noncanonical inflammasome exists. Whereas mice encode caspase-11, humans encode two putative functional orthologs: caspase-4 and caspase-5 (1921). All three inflammatory caspases bind directly to LPS in vitro (22). In murine macrophages, caspase-1 and caspase-11 have both distinct and overlapping roles in the release of IL-1α and IL-1β and the induction of cell death (7). However, the precise role of the human inflammatory caspases in the context of infection by bacterial pathogens remains unclear.To elucidate how human inflammasome activation is regulated, we investigated the contribution of inflammatory caspases to the response against gram-negative bacterial pathogens in human macrophages. Here, we show that both canonical caspase-1–dependent and noncanonical caspase-1–independent inflammasomes are activated in primary human macrophages and that caspase-4 mediates caspase-1–independent inflammasome responses against several bacterial pathogens, including Legionella pneumophila, Yersinia pseudotuberculosis, and Salmonella enterica serovar Typhimurium (S. Typhimurium). Importantly, noncanonical inflammasome activation in human macrophages is specific for virulent strains of these bacteria that translocate bacterial products into the host cytosol via the virulence-associated type III secretion system (T3SS) or type IV secretion system (T4SS). Thus, caspase-4 is critical for noncanonical inflammasome responses against virulent gram-negative bacteria in human macrophages.  相似文献   

9.
The type VI secretion system (T6SS) is a lethal weapon used by many bacteria to kill eukaryotic predators or prokaryotic competitors. Killing by the T6SS results from repetitive delivery of toxic effectors. Despite their importance in dictating bacterial fitness, systematic prediction of T6SS effectors remains challenging due to high effector diversity and the absence of a conserved signature sequence. Here, we report a class of T6SS effector chaperone (TEC) proteins that are required for effector delivery through binding to VgrG and effector proteins. The TEC proteins share a highly conserved domain (DUF4123) and are genetically encoded upstream of their cognate effector genes. Using the conserved TEC domain sequence, we identified a large family of TEC genes coupled to putative T6SS effectors in Gram-negative bacteria. We validated this approach by verifying a predicted effector TseC in Aeromonas hydrophila. We show that TseC is a T6SS-secreted antibacterial effector and that the downstream gene tsiC encodes the cognate immunity protein. Further, we demonstrate that TseC secretion requires its cognate TEC protein and an associated VgrG protein. Distinct from previous effector-dependent bioinformatic analyses, our approach using the conserved TEC domain will facilitate the discovery and functional characterization of new T6SS effectors in Gram-negative bacteria.Protein secretion systems play a pivotal role in bacterial interspecies interaction and virulence (1, 2). Of the known secretion systems in Gram-negative bacteria, the type VI secretion system (T6SS) enables bacteria to compete with both eukaryotic and prokaryotic species through delivery of toxic effectors (24). The T6SS is a multicomponent nanomachine analogous to the contractile bacteriophage tail (5). First characterized in Vibrio cholerae (6) and Pseudomonas aeruginosa (7), the T6SS has now been identified in ∼25% of Gram-negative bacteria, including many important pathogens (2, 8), and has been implicated as a critical factor in niche competition (911).The T6SS structure is composed of an Hcp inner tube, a VipAB outer sheath that wraps around the Hcp tube, a tip complex consisting of VgrG and PAAR proteins, and a membrane-bound baseplate (2, 4, 12). Sheath contraction drives the inner Hcp tube and the tip proteins, VgrG and PAAR, outward into the environment and neighboring cells (13, 14). The contracted sheath is then dissembled by an ATPase ClpV and recycled for another T6SS assembly and contraction event (12, 15, 16). Two essential T6SS baseplate components, VasF and VasK, are homologous to the DotU and IcmF proteins of the type IV secretion system (T4SS) in Legionella pneumophila (17).Bacteria often possess multiple copies of VgrG and PAAR genes that form the tip of T6SS, and deletion of VgrG and PAAR genes abolishes T6SS secretion (14). Some VgrG and PAAR proteins carry functional extension domains and thus act as secreted T6SS effectors, as exemplified by the VgrG1 actin cross-linking domain (6), VgrG3 lysozyme domain in V. cholerae (18, 19), and the nuclease domain of the PAAR protein RhsA in Dickeya dadantii (20). Known T6SS effectors can target a number of essential cellular components, including the actin and membrane of eukaryotic cells (18, 21, 22) and the cell wall, membrane, and DNA of bacterial cells (3, 1820, 23, 24). Each antibacterial effector coexists with an antagonistic immunity protein that confers protection during T6SS-mediated attacks between sister cells (3, 18, 24). Interestingly, T6SS-mediated lethal attacks induce the generation of reactive oxygen species in the prey cells (25), similar to cells treated with antibiotics (26, 27).For non-VgrG/PAAR–related effectors, their translocation requires either binding to the inner tube Hcp proteins as chaperones or binding to the tip VgrG proteins (2, 14, 28). T6SS-dependent effectors can be experimentally identified by comparing the secretomes of WT and T6SS mutants (3, 2931) and by screening for T6SS-encoded immunity proteins (18). Because known effectors lack a common secretion signal, bioinformatic identification of T6SS effectors is challenging. A heuristic approach based on the physical properties of effectors has been used to identify a superfamily of peptidoglycan-degrading effectors in bacteria (32). A recent study identified a common N-terminal motif in a number of T6SS effectors (31). However, this motif does not exist in the T6SS effector TseL in V. cholerae (18).In this study, we report that VC1417, the gene upstream of tseL, encodes a protein with a highly conserved domain, DUF4123. We show that VC1417 is required for TseL delivery and interacts with VgrG1 (VC1416) and TseL. Because of the genetic linkage of VC1417 and TseL and its importance for TseL secretion, we postulated that genes encoding the conserved DUF4123 domain proteins are generally located upstream of genes encoding putative T6SS effectors. Using the conserved domain sequence, we bioinformatically predicted a large family of effector proteins with diverse functions in Gram-negative bacteria. We validated our prediction by the identification and characterization of a new secreted effector TseC and its antagonistic immunity protein TsiC in Aeromonas hydrophila SSU. Our results demonstrate a new effective approach to identify T6SS effectors with highly divergent sequences.  相似文献   

10.
11.
12.
Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.Antibiotic-resistant bacteria that cause hospital-acquired infections are a mounting concern for health care systems globally (1). Multidrug-resistant (MDR) Acinetobacter baumannii is emerging as a frequent cause of difficult-to-treat nosocomial infections, and some isolates are resistant to all clinically relevant antibiotics (2, 3). A. baumannii is often isolated from polymicrobial infections and therefore spends at least a part of its time competing with other bacteria (4). Antagonistic interactions between bacteria manifest in a variety of different ways (5), and the type VI secretion system (T6SS) is a potent weapon used by many Gram-negative bacteria to kill competitors (68). The multicomponent T6SS apparatus facilitates a dynamic contact-dependent injection of toxic effector proteins into prey cells (9, 10), and expression of cognate immunity proteins prevents self-inflicted intoxication (9, 11). The T6SS is composed of several conserved proteins involved in the formation of the secretory apparatus (12, 13). One of these components, hemolysin-coregulated protein (Hcp), forms hexameric tubule structures that are robustly secreted to the culture supernatants in bacteria with an active T6SS, allowing it to be used as a molecular marker for T6SS activity (6, 14).T6SS is a dynamic apparatus (15). Its biogenesis follows energetically costly cycles of assembly/disassembly, and therefore, in most bacteria, T6SS appears to be exquisitely regulated. T6SS is silenced in most strains and only activated under specific conditions, such as an attack from another bacterium or in environments leading to membrane perturbations (1619). Many Acinetobacter spp. encode the genes for a T6SS, including Acinetobacter noscomialis and Acinetobacter baylyi, which possess a constitutively active antibacterial T6SS (2024). A. baumannii strains have been shown by us and others to secrete Hcp (21, 25), but to our knowledge a T6SS-dependent phenotype has not been ascribed to this species. Furthermore, our previous results showed that Hcp secretion is highly variable between A. baumannii strains, with some isolates carrying an inactive system (21). The precise regulatory mechanism(s) underlying T6SS suppression in some A. baumannii is unknown.Here, we show that a large resistance plasmid of A. baumannii functions to repress the T6SS by encoding negative regulators of its activity. Analysis of colonies from a clinical isolate showed that the plasmid is readily lost in a subset of the population. This leads to the activation of the T6SS, which imparts the ability to kill other bacteria, with the simultaneous loss of antibiotic resistance. We propose that the differentiation into T6SS+ MDR– and T6SS– MDR+ phenotypes may constitute a novel survival strategy of this organism.  相似文献   

13.
The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release.Hemolysis, hemorrhage, and rhabdomyolysis cause the release of large amounts of hemoproteins to the extracellular space, which, once oxidized, release the heme moiety, a potentially harmful molecule due to its prooxidant, cytotoxic, and inflammatory effects (1, 2). Scavenging proteins such as haptoglobin and hemopexin bind hemoglobin and heme, respectively, promoting their clearance from the circulation and delivery to cells involved with heme catabolism. Heme oxygenase cleaves heme and generates equimolar amounts of biliverdin, carbon monoxide (CO) and iron (2). Studies using mice deficient for haptoglobin (Hp), hemopexin (Hx), and heme oxygenase 1 (HO-1) demonstrate the importance of these proteins in controlling the deleterious effects of heme. Both Hp−/− and Hx−/− mice have increased renal damage after acute hemolysis induced by phenyhydrazine (Phz) compared with wild-type mice (3, 4). Mice lacking both proteins present splenomegaly and liver inflammation composed of several foci with leukocyte infiltration after intravascular hemolysis (5). Hx protect mice against heme-induced endothelial damage improving liver and cardiovascular function (68). Lack of heme oxygenase 1 (Hmox1−/−) causes iron overload, increased cell death, and tissue inflammation under basal conditions and upon inflammatory stimuli (915). This salutary effect of HO-1 has been attributed to its effect of reducing heme amounts as well as generating the cytoprotective molecules, biliverdin and CO.Heme induces neutrophil migration in vivo and in vitro (16, 17), inhibits neutrophil apoptosis (18), triggers cytokine and lipid mediator production by macrophages (19, 20), and increases the expression of adhesion molecules and tissue factor on endothelial cells (2123). Heme cooperates with TNF, causing hepatocyte apoptosis in a mechanism dependent on reactive oxygen species (ROS) generation (12). Whereas heme-induced TNF production depends on functional toll-like receptor 4 (TLR4), ROS generation in response to heme is TLR4 independent (19). We recently observed that heme triggers receptor-interacting protein (RIP)1/3-dependent macrophage-programmed necrosis through the induction of TNF and ROS (15). The highly unstable nature of iron is considered critical for the ability of heme to generate ROS and to cause inflammation. ROS generated by heme has been mainly attributed to the Fenton reaction. However, recent studies suggest that heme can generate ROS through multiple sources, including NADPH oxidase and mitochondria (22, 2427).Heme causes inflammation in sterile and infectious conditions, contributing to the pathogenesis of hemolytic diseases, subarachnoid hemorrhage, malaria, and sepsis (11, 13, 24, 28), but the mechanisms by which heme operates in different conditions are not completely understood. Blocking the prooxidant effects of heme protects cells from death and prevents tissue damage and lethality in models of malaria and sepsis (12, 13, 15). Importantly, two recent studies demonstrated the pathogenic role of heme-induced TLR4 activation in a mouse model of sickle cell disease (29, 30). These results highlight the great potential of understanding the molecular mechanisms of heme-induced inflammation and cell death as a way to identify new therapeutic targets.Hemolysis and heme synergize with microbial molecules for the induction of inflammatory cytokine production and inflammation in a mechanism dependent on ROS and Syk (24). Processing of pro–IL-1β is dependent on caspase-1 activity, requiring assembly of the inflammasome, a cytosolic multiprotein complex composed of a NOD-like receptor, the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 (3133). The most extensively studied inflammasome is the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). NLRP3 and pro–IL-1β expression are increased in innate immune cells primed with NF-κB inducers such as TLR agonists and TNF (34, 35). NLRP3 inflammasome is activated by several structurally nonrelated stimuli, such as endogenous and microbial molecules, pore-forming toxins, and particulate matter (34, 35). The activation of NLRP3 involves K+ efflux, increase of ROS and Syk phosphorylation. Importantly, critical roles of NLRP3 have been demonstrated in a vast number of diseases (34, 36). We hypothesize that heme causes the activation of the inflammasome and secretion of IL-1β. Here we found that heme triggered the processing and secretion of IL-1β dependently on NLRP3 inflammasome in vitro and in vivo. The activation of NLRP3 by heme was dependent on Syk, ROS, and K+ efflux, but independent of lysosomal leakage, ATP release, or cell death. Finally, our results indicated the critical role of macrophages, the NLRP3 inflammasome, and IL-1R to the lethality caused by sterile hemolysis.  相似文献   

14.
Bacterial type III secretion machines are widely used to inject virulence proteins into eukaryotic host cells. These secretion machines are evolutionarily related to bacterial flagella and consist of a large cytoplasmic complex, a transmembrane basal body, and an extracellular needle. The cytoplasmic complex forms a sorting platform essential for effector selection and needle assembly, but it remains largely uncharacterized. Here we use high-throughput cryoelectron tomography (cryo-ET) to visualize intact machines in a virulent Shigella flexneri strain genetically modified to produce minicells capable of interaction with host cells. A high-resolution in situ structure of the intact machine determined by subtomogram averaging reveals the cytoplasmic sorting platform, which consists of a central hub and six spokes, with a pod-like structure at the terminus of each spoke. Molecular modeling of wild-type and mutant machines allowed us to propose a model of the sorting platform in which the hub consists mainly of a hexamer of the Spa47 ATPase, whereas the MxiN protein comprises the spokes and the Spa33 protein forms the pods. Multiple contacts among those components are essential to align the Spa47 ATPase with the central channel of the MxiA protein export gate to form a unique nanomachine. The molecular architecture of the Shigella type III secretion machine and its sorting platform provide the structural foundation for further dissecting the mechanisms underlying type III secretion and pathogenesis and also highlight the major structural distinctions from bacterial flagella.Type III secretion systems (T3SSs) are essential virulence determinants for many Gram-negative pathogens. The injectisome, also known as the needle complex, is the central T3SS machine required to inject effector proteins from the bacterium into eukaryotic host cells (1, 2). The injectisome has three major components: an extracellular needle, a basal body, and a cytoplasmic complex (3). Contact with a host cell membrane triggers activation of the injectisome and the insertion of a translocon pore into the target cell membrane. The entire complex then serves as a conduit for direct translocation of effectors (1, 2). Assembly of a functional T3SS requires recognition and sorting of specific secretion substrates in a well-defined order by the cytoplasmic complex (4, 5). Furthermore, genes encoding the cytoplasmic complex are regulated by physical and environmental signals (6), providing temporal control of the injection of effector proteins and thereby optimizing invasion and virulence.Significant progress has been made in elucidating T3SS structures from many different bacteria (7, 8). 3D reconstructions of purified injectisomes from Salmonella and Shigella, together with the atomic structures of major basal body proteins, have provided a detailed view of basal body architecture (9, 10). Recent in situ structures of injectisomes from Shigella flexneri, Salmonella enterica, and Yersinia enterocolitica revealed an export gate and the structural flexibility of the basal body (11, 12). Unfortunately, these in situ structures from intact bacteria (11, 12) did not reveal any evident densities related to the proposed model of the cytoplasmic complex (8, 13).The flagellar C ring is the cytoplasmic complex in evolutionarily related flagellar systems. It is composed of flagellar proteins FliG, FliM, and FliN and plays an essential role in flagellar assembly, rotation, and switching (14). Large drum-shaped structures of the flagellar C ring have been determined in both purified basal bodies (15, 16) and in situ motors (1719). Similarly, electron microscopy analysis in Shigella indicated that the Spa33 protein (a homolog of the flagellar proteins FliN and FliM) is localized beneath the basal body via interactions with MxiG and MxiJ and is an essential component of the putative C ring (20). Recent experimental evidence suggests that the putative C ring provides a sorting platform for the recognition and secretion of the substrates in S. enterica (5). This sorting platform consists of three proteins, SpaO, OrgA, and OrgB, which are highly conserved among other T3SSs (21) (SI Appendix, Table S1). Despite its critical roles, little is still known about the structure and assembly of the cytoplasmic sorting platform in T3SS. In this study, we choose S. flexneri as a model system to study the intact T3SS machine and its cytoplasmic complex, mainly because a wealth of structural, biochemical, and functional information is available for the S. flexneri T3SS (22).  相似文献   

15.
Inflammasomes are caspase-1–activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11−/− cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.Anthrax is a zoonotic disease caused by the Gram-positive bacterium Bacillus anthracis. B. anthracis provokes a shock-like syndrome that can prove fatal to the host (1) and has recently gained notoriety as a potential bioterrorism agent. Anthrax pathogenicity relies on its ability to secrete three virulence proteins, which combine with each other to form two toxins. The protective antigen (PA) combines with the edema factor (EF) to form the edema toxin (2, 3). EF is an adenylate cyclase that causes edema of the infected tissue. The binary combination of PA with lethal factor (LF) gives rise to the most virulent factor, called lethal toxin (LT), responsible for the systemic symptoms and death of the infected animal. To escape the host immune response, LT impairs the host innate immunity by killing macrophages (46). The PA protein interacts with LF and binds to cell surface receptors, enabling endocytosis of the LT complex. In the acidic compartment, PA forms pores allowing the delivery of LF to the cytosol. LF is a zinc metalloprotease that was shown to cleave the N-terminal region of many MAP kinase kinases and to induce apoptosis of macrophages. LT also triggers pyroptosis through the formation of a caspase-1–activating platform, named “inflammasome” (68).Inflammasomes are multiprotein complexes of the innate immune response that control caspase-1 activity and pro–IL-1β and pro–IL-18 maturation. Most inflammasomes are composed of specific cytosolic pathogen recognition receptors (PRRs), as well as the apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD) (ASC) adaptor protein that enables the recruitment and activation of the caspase-1 protease. Once caspase-1 is oligomerized within an inflammasome platform, the enzyme undergoes autoproteolysis to form heterodimers of active caspase-1 (912). In the mouse, at least five distinct inflammasomes have been described, distinguished by the PRR that induces the complex formation. The PRRs capable of participating in inflammasome platform formation are either members of the nod-like receptor (NLR) family (e.g., NLRP1, NLRP3, or NLRC4) or of the PYrin and HIN (PYHIN) family (e.g., AIM2) (13, 14). ASC is composed of a pyrin domain (PYD) and a caspase activation and recruitment domain (CARD). ASC interacts with a PYD-containing PRR via its PYD domain and recruits the CARD domain of caspase-1 via its CARD domain. Thus, ASC is essential to the formation of the inflammasome by receptors such as NLRP3 or AIM2 (1518). However, its presence is dispensable for NLRC4, which contains a CARD in place of a PYD, allowing direct interaction with the CARD domain of caspase-1 (19, 20).Past studies have determined that certain mouse strains are more sensitive than others to LT cytotoxicity, and genetic studies identified NLRP1b as the factor conferring mouse strain susceptibility to anthrax LT (21). The mouse genome contains three different NLRP1 isoforms (a, b, and c) and a functional NLRP1b was found to be expressed by the mouse strains sensitive to LT (e.g., BALB/c or 129 background). Expression of NLRP1b was shown to mediate IL-1β release and caspase-1–mediated cell death in response to LT (7, 21, 22). Mouse NLRP1b differs structurally from human NLRP1 in that it lacks the N-terminal PYD (23). The absence of the PYD suggests that NLRP1b can directly engage caspase-1 without a requirement for ASC. However, studies dissecting the mechanism of NLRC4 inflammasome activation demonstrated that ASC is required for the amplification of caspase-1 autoprocessing and IL-1β secretion but not for pyroptosis (19, 20). Cell lysis mediated by LT was shown to be dependent on sodium and potassium fluxes (24), and high extracellular potassium inhibited IL-1β secretion upon LT treatment, suggesting a role for the NLRP3 inflammasome in LT sensing (22, 25). Therefore, we investigated whether NLRP3 and/or ASC were required for caspase-1 activation in response to LT. The NLRP3, ASC, and caspase-1 mouse knockout strains were backcrossed into the BALB/c background and the response of macrophages and dendritic cells (DCs) to LT intoxication was studied. Our data reveal that (i) in response to LT, ASC is dispensable for caspase-1 activation, but uncleavable caspase-1 is fully active; and (ii) upon activation of the NLRP3 inflammasome, uncleavable caspase-1 is inactive.  相似文献   

16.
17.
18.
19.
Inflammasomes are multiprotein platforms that activate caspase-1, which leads to the processing and secretion of the proinflammatory cytokines IL-1β and IL-18. Previous studies demonstrated that bacterial RNAs activate the nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome in both human and murine macrophages. Interestingly, only mRNA, but neither tRNA nor rRNAs, derived from bacteria could activate the murine Nlrp3 inflammasome. Here, we report that all three types of bacterially derived RNA (mRNA, tRNA, and rRNAs) were capable of activating the NLRP3 inflammasome in human macrophages. Bacterial RNA’s 5′-end triphosphate moieties, secondary structure, and double-stranded structure were dispensable; small fragments of bacterial RNA were sufficient to activate the inflammasome. In addition, we also found that 20-guanosine ssRNA can activate the NLRP3 inflammasome in human macrophages but not in murine macrophages. Therefore, human and murine macrophages may have evolved to recognize bacterial cytosolic RNA differently during bacterial infections.The innate immune system is the first line of defense against microbial infections. Germ-line–encoded pattern-recognition receptors (PRRs) of the innate immune system recognize the presence of invariant evolutionarily conserved microbial components called “pathogen-associated molecular patterns” (13). In response to microbial infections, PRRs rapidly initiate signal-transduction pathways to induce type 1 IFN production, proinflammatory cytokine production, and inflammasome activation. The inflammasome is a cytosolic large caspase-1–containing multiprotein complex that enables autocatalytic activation of caspase-1. Once caspase-1 is activated, it starts to cleave prointerleukin-1β (pro–IL-1β) and prointerleukin-18 (pro–IL-18) proteolytically into bioactive IL-1β and IL-18 (47). The mature forms of IL-1β and IL-18 play roles in a variety of infectious and inflammatory processes.Cytosolic microbial nucleic acids are important activators of the innate immune system against both bacterial and viral infections, which induce type 1-IFN and proinflammatory cytokine responses as well as inflammasome activation. The role of microbial nucleic acids in inflammasome activation has been studied mostly in murine bone marrow-derived dendritic cells (BMDCs) or bone marrow-derived macrophages (BMDMs). AIM2 has been identified as a specific cytosolic dsDNA sensor that directly binds ASC (apoptosis-associated speck-like protein containing a carboxyl-terminal CARD-like domain) and forms inflammasome complexes in human and murine cells (811).Viral dsRNA was found to activate the nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome in human and murine cells (1215). Several groups have reported that cytosolic bacterial RNA activate the Nlrp3 inflammasome in murine macrophages (13, 16, 17). Our group also has reported that human THP-1–derived macrophages recognize cytosolic bacterial RNA and induce NLRP3 inflammasome activation (12). Bacterial RNA is composed of mRNA, tRNA, and three different sizes of rRNA (23s, 16s, and 5s). Sander et al. (18) reported that, of the different types of Escherichia coli RNA, only E. coli mRNA induced the secretion of IL-1β by murine BMDMs, but E. coli tRNA and E. coli rRNAs did not.We aimed to study (i) whether a variety of cytosolic bacterial RNAs could activate the inflammasome in human myeloid cells and (ii) what types of bacterial RNA activate the inflammasome in human and murine myeloid cells. Here, we demonstrate that a broad spectrum of cytosolic bacterial RNAs strongly induce the cleavage of caspase-1 and the secretion of IL-1β and IL-18 in human macrophages. Human macrophages can sense mRNA, tRNA, rRNAs, and small synthetic ssRNA through NLRP3, but murine macrophages can sense only the mRNA component. Bacterial RNA’s 5′-end triphosphate moieties, secondary structure, and double-stranded structure were dispensable, but small fragments of bacterial RNA were sufficient to activate the inflammasome. These findings suggest that upon bacterial infections the human and murine NLRP3 inflammasomes sense cytosolic bacterial RNAs differently.  相似文献   

20.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号