首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myostatin is a TGF-beta family member and a negative regulator of skeletal muscle growth. It has been proposed that reduction or elimination of myostatin could be a treatment for degenerative muscle diseases such as muscular dystrophy. Laminin-deficient congenital muscular dystrophy is one of the most severe forms of muscular dystrophy. To test the possibility of ameliorating the dystrophic phenotype in laminin deficiency by eliminating myostatin, we crossed dy(W) laminin alpha2-deficient and myostatin null mice. The resulting double-deficient dy(W)/dy(W);Mstn(-/-) mice had a severe clinical phenotype similar to that of dy(W)/dy(W) mice, even though muscle regeneration was increased. Degeneration and inflammation of muscle were not alleviated. The pre-weaning mortality of dy(W)/dy(W);Mstn(-/-) mice was increased compared to dy(W)/dy(W), most likely due to significantly less brown and white fat in the absence of myostatin, and postweaning mortality was not significantly improved. These results show that eliminating myostatin in laminin-deficiency promotes muscle formation, but at the expense of fat formation, and does not reduce muscle pathology. Any future therapy based on myostatin may have undesirable side effects.  相似文献   

2.
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a lethal muscle-wasting disease that is caused by mutations in the LAMA2 gene, resulting in the loss of laminin-α2 protein. MDC1A patients exhibit severe muscle weakness from birth, are confined to a wheelchair, require ventilator assistance, and have reduced life expectancy. There are currently no effective treatments or cures for MDC1A. Laminin-α2 is required for the formation of heterotrimeric laminin-211 (ie, α2, β1, and γ1) and laminin-221 (ie, α2, β2, and γ1), which are major constituents of skeletal muscle basal lamina. Laminin-111 (ie, α1, β1, and γ1) is the predominant laminin isoform in embryonic skeletal muscle and supports normal skeletal muscle development in laminin-α2-deficient muscle but is absent from adult skeletal muscle. In this study, we determined whether treatment with Engelbreth-Holm-Swarm-derived mouse laminin-111 protein could rescue MDC1A in the dy(W-/-) mouse model. We demonstrate that laminin-111 protein systemically delivered to the muscles of laminin-α2-deficient mice prevents muscle pathology, improves muscle strength, and dramatically increases life expectancy. Laminin-111 also prevented apoptosis in laminin-α2-deficient mouse muscle and primary human MDC1A myogenic cells, which indicates a conserved mechanism of action and cross-reactivity between species. Our results demonstrate that laminin-111 can serve as an effective protein substitution therapy for the treatment of muscular dystrophy in the dy(W-/-) mouse model and establish the potential for its use in the treatment of MDC1A.  相似文献   

3.
Recently, there have been a number of studies demonstrating that overexpression of molecules in skeletal muscle can inhibit or ameliorate aspects of muscular dystrophy in the mdx mouse, a model for Duchenne muscular dystrophy. Several such studies involve molecules that increase the expression of dystroglycan, an important component of the dystrophin-glycoprotein complex. To test whether dystroglycan itself inhibits muscular dystrophy in mdx mice, we created dystroglycan transgenic mdx mice (DG/mdx). The alpha and beta chains of dystroglycan were highly overexpressed along the sarcolemmal membrane in most DG/mdx muscles. Increased dystroglycan expression, however, did not correlate with increased expression of utrophin or sarcoglycans, but rather caused their decreased expression. In addition, the percentage of centrally located myofiber nuclei and the level of serum creatine kinase activity were not decreased in DG/mdx mice relative to mdx animals. Therefore, dystroglycan overexpression does not cause the concomitant overexpression of a utrophin-glycoprotein complex in mdx muscles and has no effect on the development of muscle pathology associated with muscular dystrophy.  相似文献   

4.
Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.  相似文献   

5.
To examine the role of apoptosis in neuromuscular disease progression, we have determined whether pathogenesis in dystrophin-deficient (mdx) and laminin alpha2-deficient (Lama2-null) mice is ameliorated by overexpression of the anti-apoptosis protein BCL2 in diseased muscles. The mdx mice are a model for the human disease, Duchenne muscular dystrophy (DMD), and the Lama2-null mice are a model for human congenital muscular dystrophy type 1A (MDC1A). For these studies, we generated transgenic mice that overexpressed human BCL2 under control of muscle-specific MyoD or MRF4 promoter fragments. We then used cross-breeding to introduce the transgenes into diseased mdx or Lama2-null mice. In mdx mice, we found that overexpression of BCL2 failed to produce any significant differences in muscle pathology. In contrast, in the Lama2-null mice, we found that muscle-specific expression of BCL2 led to a several-fold increase in lifespan and an increased growth rate. Thus, BCL2-mediated apoptosis appears to play a significant role in pathogenesis of laminin alpha2 deficiency, but not of dystrophin deficiency, suggesting that therapies designed to ameliorate disease by inhibition of apoptosis are more likely to succeed in MDC1A than in DMD.  相似文献   

6.
Myoferlin, a candidate gene and potential modifier of muscular dystrophy   总被引:7,自引:0,他引:7  
Dysferlin, the gene product of the limb girdle muscular dystrophy (LGMD) 2B locus, encodes a membrane-associated protein with homology to Caenorhabditis elegans fer-1. Humans with mutations in dysferlin ( DYSF ) develop muscle weakness that affects both proximal and distal muscles. Strikingly, the phenotype in LGMD 2B patients is highly variable, but the type of mutation in DYSF cannot explain this phenotypic variability. Through electronic database searching, we identified a protein highly homologous to dysferlin that we have named myoferlin. Myoferlin mRNA was highly expressed in cardiac muscle and to a lesser degree in skeletal muscle. However, antibodies raised to myoferlin showed abundant expression of myoferlin in both cardiac and skeletal muscle. Within the cell, myoferlin was associated with the plasma membrane but, unlike dysferlin, myoferlin was also associated with the nuclear membrane. Ferlin family members contain C2 domains, and these domains play a role in calcium-mediated membrane fusion events. To investigate this, we studied the expression of myoferlin in the mdx mouse, which lacks dystrophin and whose muscles undergo repeated rounds of degeneration and regeneration. We found upregulation of myoferlin at the membrane in mdx skeletal muscle. Thus, myoferlin ( MYOF ) is a candidate gene for muscular dystrophy and cardiomyopathy, or possibly a modifier of the muscular dystrophy phenotype.  相似文献   

7.
M1 macrophages play a major role in worsening muscle injury in the mdx mouse model of Duchenne muscular dystrophy. However, mdx muscle also contains M2c macrophages that can promote tissue repair, indicating that factors regulating the balance between M1 and M2c phenotypes could influence the severity of the disease. Because interleukin-10 (IL-10) modulates macrophage activation in vitro and its expression is elevated in mdx muscles, we tested whether IL-10 influenced the macrophage phenotype in mdx muscle and whether changes in IL-10 expression affected the pathology of muscular dystrophy. Ablation of IL-10 expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treating mdx muscle macrophages with IL-10 reduced activation of the M1 phenotype, assessed by iNOS expression, and macrophages from IL-10 null mutant mice were more cytolytic than macrophages isolated from wild-type mice. Our data also showed that muscle cells in mdx muscle expressed the IL-10 receptor, suggesting that IL-10 could have direct effects on muscle cells. We assayed whether ablation of IL-10 in mdx mice affected satellite cell numbers, using Pax7 expression as an index, but found no effect. However, IL-10 mutation significantly increased myogenin expression in vivo during the acute and the regenerative phase of mdx pathology. Together, the results show that IL-10 plays a significant regulatory role in muscular dystrophy that may be caused by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation and modulating muscle differentiation.  相似文献   

8.
Sensorineural hearing loss is found in many inherited forms of muscular dystrophy. We investigated the dy mouse model, which has congenital muscular dystrophy due to a defect in laminin alpha 2, for evidence of cochlear dysfunction. Auditory brainstem response (ABR) audiometry to pure tones was used to evaluate 3-month-old homozygous dy/dy and age-matched C57 control mice. The average ABR thresholds to tone-burst stimuli for four frequencies (4, 8, 16, and 32 kHz) were determined and statistically compared by ANOVA. The dy/dy mice demonstrated elevated auditory thresholds ranging from 25 to 27 dB at each frequency tested (p<0.0001). Anatomic evaluations of the ears revealed pathology ranging from extensive connective tissue infiltration within the inner ear to possible minor defects in the cells of the organ of Corti. These anatomic and physiologic observations suggest that the extracellular matrix protein laminin plays a crucial role in normal cochlear function. Furthermore, the dy congenital muscular dystrophy mouse offers a novel model for evaluation of sensorineural hearing loss associated with muscular dystrophy.  相似文献   

9.
This study has examined the immunological localization of platelet-derived growth factor (PDGF)-A, PDGF-B, and PDGF receptor (PDGFR) alpha and beta to clarify their role in the progression of muscular dystrophy. Biopsied frozen muscles from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD) were analysed immunohistochemically using antibodies raised against PDGF-A, PDGF-B, and PDGFR alpha and beta. Muscles from two dystrophic mouse models (dy and mdx mice) were also immunostained with antibodies raised against PDGFR alpha and beta. In normal human control muscle, neuromuscular junctions and vessels were positively stained with antibodies against PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta. In human dystrophic muscles, PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta were strongly immunolocalized in regenerating muscle fibres and infiltrating macrophages. PDGFR alpha was also immunolocalized to the muscle fibre sarcolemma and necrotic fibres. The most significant finding in this study was a remarkable overexpression of PDGFR beta and, to a lesser extent, PDGFR alpha in the endomysium of DMD and CMD muscles. PDGFR was also overexpressed in the interstitium of muscles from dystrophic mice, particularly dy mice. Double immunolabelling revealed that activated interstitial fibroblasts were clearly positive for PDGFR alpha and beta. However, DMD and CMD muscles with advanced fibrosis showed very poor reactivity against PDGF and PDGFR. Those findings were confirmed by immunoblotting with PDGFR beta. These findings indicate that PDGF and its receptors are significantly involved in the active stage of tissue destruction and are associated with the initiation or promotion of muscle fibrosis. They also have roles in muscle fibre regeneration and signalling at neuromuscular junctions in both normal and diseased muscle.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is the most common, lethal, muscle-wasting disease of childhood. Previous investigations have shown that muscle macrophages may play an important role in promoting the pathology in the mdx mouse model of DMD. In the present study, we investigate the mechanism through which macrophages promote mdx dystrophy and assess whether the phenotype of the macrophages changes between the stage of peak muscle necrosis (4 weeks of age) and muscle regeneration (12 weeks). We find that 4-week-old mdx muscles contain a population of pro-inflammatory, classically activated M1 macrophages that lyse muscle in vitro by NO-mediated mechanisms. Genetic ablation of the iNOS gene in mdx mice also significantly reduces muscle membrane lysis in 4-week-old mdx mice in vivo. However, 4-week mdx muscles also contain a population of alternatively activated, M2a macrophages that express arginase. In vitro assays show that M2a macrophages reduce lysis of muscle cells by M1 macrophages through the competition of arginase in M2a cells with iNOS in M1 cells for their common, enzymatic substrate, arginine. During the transition from the acute peak of mdx pathology to the regenerative stage, expression of IL-4 and IL-10 increases, either of which can deactivate the M1 phenotype and promote activation of a CD163+, M2c phenotype that can increase tissue repair. Our findings further show that IL-10 stimulation of macrophages activates their ability to promote satellite cell proliferation. Deactivation of the M1 phenotype is also associated with a reduced expression of iNOS, IL-6, MCP-1 and IP-10. Thus, these results show that distinct subpopulations of macrophages can promote muscle injury or repair in muscular dystrophy, and that therapeutic interventions that affect the balance between M1 and M2 macrophage populations may influence the course of muscular dystrophy.  相似文献   

11.
Skeletal muscle myofibers constantly undergo degeneration and regeneration. Histopathological features of 6 skeletal muscles (cranial tibial [CT], gastrocnemius, quadriceps femoris, triceps brachii [TB], lumbar longissimus muscles, and costal part of the diaphragm [CPD]) were compared using C57BL/10ScSn-Dmd mdx (mdx) mice, a model for muscular dystrophy versus control, C57BL/10 mice. Body weight and skeletal muscle mass were lower in mdx mice than the control at 4 weeks of age; these results were similar at 6–30 weeks. Additionally, muscular lesions were observed in all examined skeletal muscles in mdx mice after 4 weeks, but none were noted in the controls. Immunohistochemical staining revealed numerous paired box 7-positive satellite cells surrounding the embryonic myosin heavy chain-positive regenerating myofibers, while the number of the former and staining intensity of the latter decreased as myofiber regeneration progressed. Persistent muscular lesions were observed in skeletal muscles of mdx mice between 4 and 14 weeks of age, and normal myofibers decreased with age. Number of muscular lesions was lowest in CPD at all ages examined, while the ratio of normal myofibers was lowest in TB at 6 weeks. In CT, TB, and CPD, Iba1-positive macrophages, the main inflammatory cells in skeletal muscle lesions, showed a significant positive correlation with the appearance of regenerating myofibers. Additionally, B220-positive B-cells showed positive and negative correlation with regenerating and regenerated myofibers, respectively. Our data suggest that degenerative and regenerative features of myofibers differ among skeletal muscles and that inflammatory cells are strongly associated with regenerative features of myofibers in mdx mice.  相似文献   

12.
The immune response to dystrophin-deficient muscle promotes the pathology of Duchenne muscular dystrophy (DMD) and the mdx mouse model of DMD. In this investigation, we find that the release of major basic protein (MBP) by eosinophils is a prominent feature of DMD and mdx dystrophy and that eosinophils lyse muscle cells in vitro by the release of MBP-1. We also show that eosinophil depletions of mdx mice by injections of anti-chemokine receptor-3 reduce muscle cell lysis, although lysis of mdx muscle membranes is not reduced by null mutation of MBP-1 in vivo. However, ablation of MBP-1 expression in mdx mice produces other effects on muscular dystrophy. First, fibrosis of muscle and hearts, a major cause of mortality in DMD, is greatly reduced by null mutation of MBP-1 in mdx mice. Furthermore, either ablation of MBP-1 or eosinophil depletion causes large increases in cytotoxic T-lymphocytes (CTLs) in mdx muscles. The increase in CTLs in MBP-1-null mice does not reflect a general shift toward a Th1 inflammatory response, because the mutation had no significant effect on the expression of interferon-gamma, inducible nitric oxide synthase or tumor necrosis factor. Rather, MBP-1 reduces the activation and proliferation of splenocytes in vitro, indicating that MBP-1 acts in a more specific immunomodulatory role to affect the inflammatory response in muscular dystrophy. Together, these findings show that eosinophil-derived MBP-1 plays a significant role in regulating muscular dystrophy by attenuating the cellular immune response and promoting tissue fibrosis that can eventually contribute to increased mortality.  相似文献   

13.
MDC1A, the second most prevalent form of congenital muscular dystrophy, results from laminin-α2 chain deficiency. This disease is characterized by extensive muscle wasting that results in extremely weak skeletal muscles. A large percentage of children with MDC1A are faced with respiratory as well as ambulatory difficulties. We investigated the effects of overexpressing insulin-like growth factor-1 (IGF-1) as a potential therapeutic target for the disease in the Lama2(Dy-w) mouse, a model that closely resembles human MDC1A. IGF-1 transgenic Lama2(Dy-w) mice showed increased survivability, body weight and muscle weight. In addition, these mice showed better ability to stand up on their hind limbs: a typical exploratory behavior seen in healthy mice. Histology and immunohistochemistry analyses revealed increased regenerative capacity and proliferation in IGF-1 transgenic Lama2(Dy-w) muscles. Western blot analysis showed increased phosphorylation of Akt and ERK1/2, both known to enhance myogenesis. Additionally, we saw increases in the expression of the regeneration markers MyoD, myogenin and embryonic myosin (myosin heavy chain 3, MYH3). We conclude that overexpression of IGF-1 in Lama2(Dy-w) mice increases lifespan and improves their overall wellbeing mainly through the restoration of impaired muscle regeneration, as fibrosis or inflammation was not impacted by IGF-1 in this disease model. Our results demonstrate that IGF-1 has a promising therapeutic potential in the treatment of MDC1A.  相似文献   

14.
Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.  相似文献   

15.
Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.  相似文献   

16.
Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested that ADAM12 could be a candidate for nonreplacement gene therapy of Duchenne muscular dystrophy. We therefore evaluated the long-term effect of ADAM12 overexpression in muscle. Surprisingly, we observed loss of skeletal muscle and accelerated fibrosis and adipogenesis in 1-year-old mdx mice transgenically overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired regeneration as a possible factor in development of muscular dystrophy.  相似文献   

17.
Congenital muscular dystrophy caused by laminin α2 chain deficiency (also known as MDC1A) is a severe and incapacitating disease, characterized by massive muscle wasting. The ubiquitin-proteasome system plays a major role in muscle wasting and we recently demonstrated that increased proteasomal activity is a feature of MDC1A. The autophagy-lysosome pathway is the other major system involved in degradation of proteins and organelles within the muscle cell. However, it remains to be determined if the autophagy-lysosome pathway is dysregulated in muscular dystrophies, including MDC1A. Using the dy(3K)/dy(3K) mouse model of laminin α2 chain deficiency and MDC1A patient muscle, we show here that expression of autophagy-related genes is upregulated in laminin α2 chain-deficient muscle. Moreover, we found that autophagy inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. In particular, we show that systemic injection of 3-methyladenine (3-MA) reduces muscle fibrosis, atrophy, apoptosis and increases muscle regeneration and muscle mass. Importantly, lifespan and locomotive behavior were also greatly improved. These findings indicate that enhanced autophagic activity is pathogenic and that autophagy inhibition holds a promising therapeutic potential in the treatment of MDC1A.  相似文献   

18.
In the dystrophin-mutant mdx mouse, an animal model for Duchenne muscular dystrophy (DMD), damaged skeletal muscles are efficiently regenerated and thus the animals thrive. The phenotypic differences between DMD patients and the mdx mice suggest the existence of factors that modulate the muscle wasting in the mdx mice. To identify these factors, we searched for mRNAs affected by the mdx mutation by using cDNA microarrays with newly established skeletal muscle cell lines from mdx and normal mice. We found that in the mdx muscle cell line, 12 genes, including L-arginine:glycine amidinotransferase and thymosin beta4, are up-regulated, whereas 7 genes, including selenoprotein P and a novel regeneration-associated muscle protease (RAMP), are down-regulated. Northern blot analysis and in situ hybridization revealed that RAMP mRNA is predominantly expressed in normal skeletal muscle and brain, and its production is enhanced in the regenerating area of injured skeletal muscle in mice. RAMP expression was much lower in individual muscle cell lines derived from biopsies of six DMD patients compared to a normal muscle cell line. These results suggest that RAMP may play a role in the regeneration of skeletal muscle and that its down-regulation could be involved in the progression of DMD in humans.  相似文献   

19.
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscular dystrophy caused by a polyalanine expansion mutation in the coding region of the poly-(A) binding protein nuclear 1 (PABPN1) gene. In unaffected individuals, (GCG)(6) encodes the first 6 alanines in a homopolymeric stretch of 10 alanines. In most patients, this (GCG)(6) repeat is expanded to (GCG)(8-13), leading to a stretch of 12-17 alanines in mutant PABPN1, which is thought to confer a toxic gain of function. Thus, OPMD has been modelled by expressing mutant PABPN1 transgenes in the presence of endogenous copies of the gene in cells and mice. In these models, increased apoptosis is seen, but it is unclear whether this process mediates OPMD. The role of apoptosis in the pathogenesis of different muscular dystrophies is unclear. Blocking apoptosis ameliorates muscle disease in some mouse models of muscular dystrophy such as laminin α-2-deficient mice, but not in others such as dystrophin-deficient (mdx) mice. Here we demonstrate that apoptosis is not only involved in the pathology of OPMD but also is a major contributor to the muscle weakness and dysfunction in this disease. Genetically blocking apoptosis by over-expressing BCL2 ameliorates muscle weakness in our mouse model of OPMD (A17 mice). The effect of BCL2 co-expression on muscle weakness is transient, since muscle weakness is apparent in mice expressing both A17 and BCL2 transgenes at late time points. Thus, while apoptosis is a major pathway that causes muscle weakness in OPMD, other cell death pathways may also contribute to the disease when apoptosis is inhibited.  相似文献   

20.
The mdx mouse, an animal model of Duchenne muscular dystrophy, develops an X-linked recessive inflammatory myopathy. During onset of disease and height of myonecrosis, mdx mice also display important changes in the microenvironment of lymphoid tissues. Draining lymph nodes showed reduced cellularity and atrophy accompanied by intense immunolabeling for fibronectin, laminin, and type-IV collagen. Following clinical amelioration of dystrophy, mdx mice showed enhanced cellularity and a consistent increase in the absolute numbers of CD4(+) and CD8(+) cells expressing alpha4(high) and alpha5(high) extracellular matrix receptors. Furthermore, infiltrating cells in the proximity of myonecrosis expressed alpha4, alpha5, and alpha6 integrin chains during both height of myonecrosis and muscular tissue regeneration. Such results indicate that during distinct phases of muscular dystrophy, altered expression of extracellular matrix ligands and receptors may be influencing myonecrosis by promoting adhesion and migration of mononuclear cells into the altered skeletal muscle and toward local draining lymphoid tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号