首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ly49 and CD94/NKG2: developmentally regulated expression and evolution   总被引:6,自引:0,他引:6  
Summary: Murine natural killer (NK) cells express two families of MHC class I-specific receptors, namely the Ly49 family and CD94/NKG2 heterodimers. Stochastic co-expression of these receptors generates diverse receptor repertoires in adult NK-cell populations, whereas fetal NK cells have much more limited receptor diversity as they mostly express CD94/NKG2A but not Ly49. These receptors are also expressed on CD8+ T cells and NK1.1+ T cells and regulate their functions, but their expression pattern on NK cells is significantly different from those on T cells. Thus, expression of Ly49 and CD94/NKG2 is developmentally regulated. NK cells acquire the Ly49 family of receptors in an orderly manner as they differentiate from bone marrow progenitors in vitro . Similarly, acquisition of CD94 and NKG2 by NK cells as they differentiate from embryonic stem cells is also orderly. To gain insight into the mechanisms regulating Ly49 expression, potential regulatory regions of several Ly49 genes have been examined. Ly49 genes with different expression patterns have remarkably similar sequences in the putative regulatory regions. Finally, a functional Ly49 gene has been identified in baboon, and primate comparisons suggest that functional extinction of the Ly49 gene in the human lineage seems to have been a relatively recent event.
This research was supported by the National Cancer Institute of Canada and the Medical Research Council of Canada with core support from the BC Cancer Agency. KM and BW were supported by studentships from the University of British Columbia and the National Science and Engineering Research Council of Canada. RL is a recipient of a Leukemia Research Fund of Canada fellowship. SL was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

3.
NK cells developing in vitro from fetal progenitors in the presence of IL-2 are phenotypically and functionally indistinguishable from mature adult NK cells, with the exception that they generally lack surface expression of any of the Ly49 molecules that have previously been examined. Using two recently developed anti-Ly49 mAb, we show here that most of these NK cells in fact express high levels of at least one previously uncharacterized member of the Ly49 family, most likely Ly49E. Detailed kinetic and clonal analysis revealed that these Ly49 molecules were acquired in a progressive and stochastic manner independently of CD94 and NKG2. CD94 and NKG2 were both expressed early in NK cell development, sometimes in the absence of NK1.1, with CD94 invariably being expressed at two different levels. IL-4 differentially inhibited the expression of CD94 and Ly49 receptors, but had little or no effect on the expression of NKRP1 molecules.  相似文献   

4.
Recent studies on human NK cells have demonstrated that the NK cell CD94/NKG2 receptors bind to the nonclassical MHC class I molecule HLA-E. A functional CD94/NKG2 complex has not yet been identified in rodents, but cDNA encoding rat and mouse CD94 and NKG2 have recently been cloned, suggesting that CD94/NKG2 receptors may exist in species other than man. The mouse nonclassical MHC class I molecule Qa-1 shares several features with HLA-E. This suggests that Qa-1 may be similarly recognized by murine NK cells. To study the ability of Qa-1 to bind to murine NK cells, we have produced a soluble tetrameric form of Qa-1b . In the present study, we demonstrate that Qa-1b tetramers distinctly bind to a large subset of fresh or IL-2-activated NK1.1+ /CD3 splenocytes independently of the expression of Ly49 inhibitory receptors. Binding occurs whether NK cells have evolved in an MHC class I-expressing or in an MHC class I-deficient environment. Our data suggest the existence of a Qa-1-recognizing structure on a large subpopulation of murine NK cells that may be similar to the human CD94/NKG2 heterodimeric complex.  相似文献   

5.
Natural killer (NK) cells are an essential component of the innate immunity toward tumors and virally infected cells. The function of NK cells is regulated by a precise balance between inhibitory and activating signals. These signals are mediated by NK cell receptors that bind either classical MHC class I molecules or their structural relatives such as MICA, ULBP, RAE-1, and H-60. Two separate families of NK cell receptors have been identified: the immunoglobulin-like family (KIR, LIR) and C-type lectin-like family (Ly49, NKG2D, and CD94/NKG2). Here we summarize the structure of Ly49 C-type lectin-like proteins hitherto solved (Ly49A, Ly49C and Ly49I) and their interaction with MHC class I molecules as determined by the co-crystal structure of Ly49A/H-2Dd and Ly49C/H-2Kb.  相似文献   

6.
Two families of major histocompatibility complex (MHC) class I-specific receptors are found on natural killer (NK) cells: immunoglobulin-like receptors and C-type lectin receptors. In mice, the latter category is represented by the Ly49 family of receptors, whereas in humans, NK cells express the distantly related CD94, which forms MHC class I-specific heterodimers with NKG2 family members. Humans also express the MHC class I-specific p50/p58/p70 family of immunoglobulin-like receptors, but these have not been identified in mice. Hence, there is no known instance of an MHC class I-specific receptor that is expressed by both human and murine NK cells. Here we report the cloning of CD94 from the CB.17 and C57BL/6 strains of mice. Mouse CD94 is 54 % identical and 66 % similar to human CD94, and is also a member of the C-type lectin superfamily. Mouse CD94 is expressed efficiently on the cell surface of cells transiently transfected with the corresponding cDNA, but surface CD94 was unable to mediate detectable binding to MHC class I-expressing ConA blasts. Notably, mouse CD94, like human CD94, has a very short cytoplasmic tail, suggesting the existence of partner chains that may play a role in ligand binding and signaling. Like many other C-type lectins expressed by NK cells, mouse CD94 maps to the NK complex on distal chromosome 6, synteneic to human CD94. We also demonstrate that mouse CD94 is highly expressed specifically by mouse NK cells, raising the possibility that mice, like humans, express multiple families of MHC class I-specific receptors on their NK cells. Murine homologs of human NKG2 family members have not yet been identified, but we report here the existence of a murine NKG2D-like sequence that also maps to the murine NK complex near CD94 and Ly49 family members.  相似文献   

7.
The pan-NK cell marker NK1.1, present in some mouse strains, is also found on a subset of TCRalphabeta+ lymphocytes termed NKT cells. These cells are primarily CD4+ or CD4-CD8- (double negative, DN), and both NKT subpopulations contain cells reactive with the MHC class I-like molecule CD1d. Murine NK cells express clonally distributed inhibitory receptors of the Ly49 family that bind to different alleles of MHC class I molecules and transmit negative signals regulating NK cell function. Ly49 receptors are also found on TCRalphabeta+ NK1.1+ T cells. To investigate the potential role of inhibitory Ly49 markers in the regulation of NKT cells, we have done a thorough analysis of their expression on different NKT populations. The CD4+ and DN NK1.1+ T cell subsets have traditionally been dealt with as one NK1.1+ T cell population, but we found dramatic differences between these two NKT cell subsets. We demonstrate here expression of Ly49 receptors on DN, but not on CD4+, NK1.1+ T cells in spleen and liver. Absence of the specific MHC class I ligand in the host was associated with elevated levels of expression and, to a greater extent than has been found for NK cells, increased the frequencies of Ly49-positive cells within the DN subset, while CD4+ NK1.1+ cells remained negative. In the thymus and bone marrow both NK1.1+ T cell subsets contained high frequencies of Ly49-positive cells. Results from in vitro stimulation of DN NKT cells further suggest that activation and expansion of NKT cell subsets are regulated by the Ly49 receptors.  相似文献   

8.
Roth C  Carlyle JR  Takizawa H  Raulet DH 《Immunity》2000,13(1):143-153
We report an in vitro stroma-dependent system for the clonal growth and differentiation of natural killer (NK) cells from lymphoid-restricted bone marrow progenitors or bone marrow NK1.1+ cells. Strikingly, the potential to initiate expression of specific Ly49 receptors becomes increasingly restricted as NK cells develop. Moreover, when NK cells express a Ly49 receptor specific for stromal cell class I MHC, they are less likely to initiate expression of another Ly49 receptor in the clonal culture system. The results indicate multiple roles for stromal cells in NK cell development, in supporting clonal growth, in initiation of Ly49 receptor expression, and in formation of the NK cell receptor repertoire.  相似文献   

9.
Natural killer cells fail to lyse target cells expressing sufficient levels of self MHC class I molecules, providing one mechanism to secure self tolerance. Inhibition of lysis is mediated by inhibitory receptors expressed by NK cells, such as the murine Ly49 receptors, human KIR receptors and CD94/NKG2A, expressed by both species. To ensure that most, if not all, NK cells express at least one inhibitory receptor for self MHC class I, selection processes have been postulated for murine NK cells regulating the number and identity of inhibitory receptors expressed by each cell. The presence of similar selection processes in human NK cells has not been demonstrated. In previous studies using mathematical modeling we have shown that, in the Ly49 system, the sequential model (in which gene expression and selection operate simultaneously) is most likely to explain the observed expression frequencies. We also predicted the parameters (such as receptor-ligand binding affinity levels) under which the models fit with the observed frequencies. This study aims to evaluate whether these models may be valid in the human system. Our data suggest that if selection operates during human NK cell development, it affects the co-expression of CD94/NKG2A and KIR rather than KIR expression alone, and is more likely to be governed by the two-step selection model.  相似文献   

10.
Three classes of major histocompatibility (MHC) class I binding receptors on natural killer (NK) cells have so far been described: CD94/NKG2 heterodimeric receptors and killer cell inhibitory receptors in the human, and Ly-49 homodimers in rodents. CD94, NKG2 and Ly-49 belong to the C-type lectin super-family. As yet, CD94 and NKG2 molecules have not been detected in rodents or Ly-49 in humans. It has therefore been proposed that the two receptors represent functional equivalents in these species. The present study describes the cDNA cloning of a novel rat gene encoding a protein of 179 amino acids, 54.2 % identical to human CD94. The single-copy Cd94 gene is localized to the rat NK gene complex (NKC), within 50 kb from Nkrp2, between the Nkrp1 and Ly49 gene clusters. By Northern blot analysis, we showed that rat CD94 is selectively expressed by NK cells and a small subset of T cells, similar to the human ortho-logue. This expression is strain dependent, with high expression in DA NK cells and low in PVG NK cells. Evidence is presented that this difference is not due to receptor repertoire shaping by MHC-encoded ligands, but is controlled by genetic elements residing within the NKC. The identification of a rat CD94 orthologue suggests that NK cell populations utilize two different C-type lectin receptors for MHC class I molecules in parallel.  相似文献   

11.
Two different lectin-like receptors for MHC class I molecules have so far been identified on natural killer (NK) cells, the Ly-49 homodimeric receptors in mice and the NKG2/CD94 heterodimeric receptors in humans. The recent identification of a rat CD94 orthologue implied that NK cell receptors equivalent to NKG2/CD94 also exist in rodents. Here we describe the cDNA cloning of two rat genes homologous to members of the human NKG2 multigene family. The deduced rat NKG2A protein contains a cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM), whereas the cytoplasmic tail of rat NKG2C lacks ITIM. The genes map to the rat NK gene complex and are selectively expressed by NK cells. The expression is strain dependent, with high expression in DA and low in PVG NK cells, correlating with the expression of rat CD94. Ly-49 genes have previously been identified in the rat, and the existence of rat NKG2 genes in addition to a CD94 orthologue suggests that NK cell populations utilize different C-type lectin receptors for MHC class I molecules in parallel.  相似文献   

12.
13.
NK cells use NKG2D receptor to recognize 'induced-self'. In apparent violation of the 'missing-self' hypothesis, NK cells stimulated through NKG2D can lyse target cells despite normal expression levels of MHC class I molecules. Although, 'overriding' of the inhibitory by the activating signals had been postulated the precise role of inhibitory Ly49 receptors on NKG2D-mediated activation has only started emerging. We propose that NKG2D-mediated activation is a function of 'altering the balance' in the signaling strength between the activating NKG2D and inhibiting Ly49 receptors. Balance in the signaling strength depends on the expression levels of activating ligands on the target cells. Qualitative and quantitative variations of MHC class I molecules expressed on the target cells also plays a major role in determining this 'altered-balance'. Consequently, the nature of Ly49 receptors expressed on specific NK subsets determines the level of NKG2D-mediated NK cell activation. These observations provide a firm basis of 'altered-balance' in NK signaling and describe an active interplay between inhibitory Ly49 and activating NKG2D receptors.  相似文献   

14.
The KIR and CD94/NKG2 families of molecules in the rhesus monkey   总被引:1,自引:0,他引:1  
Summary: Natural killer (NK) cells and a subset of T cells express families of receptors that are capable of detecting major histocompatibility complex (MHC) class I expression on the surface of cells. Molecules of the killer cell immunoglobulin-like receptor (KIR) family bind directly to MHC class I, while those of the CD94/NKG2 family recognize MHC class I signal sequences bound to HLA-E. Both the KIR and CD94/NKG2 families are composed of activating and inhibitory molecules that serve to regulate the function of NK cells as a result of their MHC class I recognition. Here we review the recently described KIR and CD94/NKG2 family members in the rhesus monkey.  相似文献   

15.
Downmodulation of major histocompatibility complex (MHC) class I molecules by cytomegalovirus (CMV) impairs the engagement of specific leucocyte-inhibitory receptors, rendering infected cells vulnerable to natural killer (NK) cells. Members of the murine Ly49 and human KIR families, CD85j (ILT2 or leucocyte Ig-like receptor-1), as well as the CD94/NKG2A-inhibitory killer lectin-like receptor (KLR) fulfil this surveillance role. On the other hand, NK-activating receptors specific to ligands expressed on virus-infected cells may overcome the control by inhibitory receptors. In this regard, NKG2D and Ly49H lectin-like molecules trigger NK-cell functions recognizing, respectively class I-related stress-inducible molecules and the m157 murine CMV glycoprotein. Among a variety of immune evasion strategies, CMV promotes the synthesis of class I surrogates and selectively preserves the expression of some class I molecules in infected cells; moreover, CMV interferes with the expression of ligands for NKG2D. We herein review these aspects of the host-pathogen interaction, discussing a number of open issues.  相似文献   

16.
Natural killer (NK) cell function is regulated by NK cell receptors that bind classical MHC class I molecules or their structural relatives. The latter group includes self-ligands (MICA, RAE-I, H-60), as well as ligands encoded by viruses (UL18, m155, m157). Two distinct families of NK receptors have been identified: the immunoglobulin-like family (KIRs, LIRs) and the C-type lectin-like family (Ly49s, NKG2D, CD94/NKG2). Here we describe the crystal structures of NK receptors that have been determined to date, both in free form and bound to MHC class I or MHC class I-like molecules.  相似文献   

17.
Natural killer (NK) cells are essential for healthy aging. NK cell activation is controlled by MHC class I-specific CD94/NKG2 receptors and killer immunoglobulin-like receptors (KIR). To assess NK cytotoxic function in isolation from MHC receptor engagement, we measured the ability of purified NK cells to kill mouse P815 target cells in the presence of anti-CD16 mAb. CD16-mediated cytotoxicity did not change with age, indicating that NK activation and cytotoxic granule release remained functional. We then investigated MHC class I receptor expression on NK cells. There was an age related decrease in CD94 and NKG2A expression and a reciprocal age related increase in KIR expression. NKG2A expression also declined with age on CD56(+) T cells. CD94/NKG2A receptor function was proportional to expression, indicating that NK cell inhibitory signaling pathways were intact. NKG2A and KIR expression were complementary, suggesting that CD94/NKG2A function could substitute for inhibitory KIR function during polyclonal NK cell development in both young and elderly adults. The distinct roles of CD94/NKG2A and KIR receptors suggest that shifting MHC class I receptor expression patterns reflect age related changes in NK cell and CD56(+) T cell turnover and function in vivo.  相似文献   

18.
A multigene family of human Ig-SF receptors and members of the murine Ly49 C-type lectin family are involved in natural killer (NK) cell-mediated recognition of MHC class I molecules. The human CD94 glycoprotein covalently assembles with different C-type lectins of the NKG2 family. By functional criteria, the CD94/ NKG2-A (kp43) receptor complex appears also involved in NK cell-mediated recognition of different HLA class I allotypes. Similarly to the other NK inhibitory receptors, NKG2-A contains cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). By contrast, NK clones bearing a different receptor complex (CD94/ p39) are triggered upon ligation by CD94-specific monoclonal antibodies (MAbs); the p39 subunit is likely encoded by other member(s) of the NKG2 family. Expression of the different CD94/ NKG2 complexes is warranted to precisely assess their specific interaction with HLA class I molecules, and the molecular basis for their divergent functional properties.  相似文献   

19.
Natural killer (NK) cell function is regulated by NK receptors that bind either classical MHC class I (MHC-I) molecules or their structural relatives (MICA, RAE-1 and H-60). Two distinct families of NK receptors have been identified: the C-type lectin-like family (Ly49, NKG2D and CD94/NKG2) and the immunoglobulin-like family (KIRs and LIRs). Here, we describe the crystal structure of the C-type lectin-like NK receptor (Ly49A), bound to its MHC-I ligand (H-2D(d)). We also discuss results from recent mutagenesis studies of the Ly49A/H-2D(d) interaction in the context of the complex structure.  相似文献   

20.
NK cells from long-term bone marrow culture (LTBMC) were compared with IL-2-activated splenic NK cells [short-term spleen cell culture (STSC)] with regard to expression of inhibitory Ly49 receptors and cytotoxic function. In the LTBMC, the total number of NK cells expressing either one of the Ly49 molecules A, C/I and G2 was strongly reduced (10-15% of NK1.1(+) cells) compared to the STSC (80-90% of NK1.1(+) cells). With regard to cytotoxic function, we confirmed that LTBMC-derived NK cells efficiently killed the prototype NK target YAC-1. However, against other targets, killing was more variable. First, while STSC-derived NK cells clearly distinguished MHC class I(-) from MHC class I(+) tumor cell targets, LTBMC-derived NK cells did not; they either killed both targets equally well or not at all. Secondly, LTBMC-derived NK cells were largely incapable of killing lymphoblast targets deficient in MHC class I expression. To test whether this cytotoxic defect was due to the low number of Ly49(+) NK cells in the LTBMC, we separated Ly49(+) and Ly49(-) NK cells by cell sorting and tested them individually. This experiment showed that only Ly49(+) NK cells in the LTBMC were able to kill MHC class I(-) lymphoblasts (and to distinguish them from MHC class I(+)), despite good cytotoxicity against YAC-1 cells in both populations. These data suggest that certain modes of NK cell triggering are dependent on Ly49 receptor expression. From our results, we speculate that inhibitory receptors are expressed before triggering receptors for normal self cells during NK cell development, which may be an important mechanism to preserve self tolerance during the early stages of NK cell maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号