首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.  相似文献   

4.
Myocarditis represents the entity of an inflamed myocardium and is a diagnostic challenge caused by its heterogeneous presentation. Contemporary noninvasive evaluation of patients with clinically suspected myocarditis using cardiac magnetic resonance (CMR) includes dimensions and function of the heart chambers, conventional T2-weighted imaging, late gadolinium enhancement, novel T1 and T2 mapping, and extracellular volume fraction calculation. CMR feature-tracking, texture analysis, and artificial intelligence emerge as potential modern techniques to further improve diagnosis and prognostication in this clinical setting. This review describes the evidence surrounding different CMR methods and image postprocessing methods and highlights their values for clinical decision making, monitoring, and risk stratification across stages of this condition.  相似文献   

5.
6.
7.
8.
9.
Imaging has a central role in the evaluation of patients with heart failure (HF). Cardiovascular magnetic resonance (CMR) is rapidly evolving as a versatile imaging modality that often provides additional information to echocardiography in patients with suspected or known HF. CMR is the only imaging modality that has the ability to assess, without exposure to ionizing radiation, cardiac function, structure (tissue characterization), perfusion, and viability. Moreover, magnetic resonance spectroscopy techniques can assess the pathophysiologic role of deranged cardiac energetics in HF. In this review we discuss the role of CMR in the evaluation of patients with HF giving particular emphasis to recent developments and the additional information that can be obtained with this imaging modality, over and above standard echocardiography.  相似文献   

10.
11.
12.
Cardiovascular Magnetic Resonance: Myocardial Perfusion   总被引:6,自引:0,他引:6  
Nagel E  al-Saadi N  Fleck E 《Herz》2000,25(4):409-416
There is growing evidence that the noninvasive assessment of myocardial perfusion with cardiovascular magnetic resonance is a valid and accurate tool for the assessment of ischemic heart disease and its introduction into routine clinical evaluation of patients is rapidly expected. Magnetic resonance measurements allow the evaluation of reversible and irreversible myocardial ischemia, the assessment of acute myocardial infarction, as well as the recognition and detection of viable myocardium. Magnetic resonance perfusion measurements are mainly performed with T1-shortening contrast agents such as gadolinium-DTPA either by visual analysis or based on the analyses of signal intensity time curves. For the detection of myocardial ischemia the first pass kinetics of a gadolinium-DTPA bolus and for the detection of myocardial necrosis and the definition of viable myocardium steady state distribution kinetics are assessed. Quantitative analysis of myocardial perfusion can be performed but requires complex modeling due to the characteristics of gadolinium-DTPA. Thus, semi-quantitative parameters are preferred. There is accumulating evidence in the literature that magnetic resonance imaging can be used for the detection of coronary artery stenosis with high diagnostic accuracy both with semi-quantitative or visual analysis. Myocardial infarction can be reliably detected and the infarcted area determined. Non-reperfused infarcted myocardium can be differentiated from reperfused myocardium by different enhancement patterns that correlates with viability. Cardiac magnetic resonance is a promising technique that can combine different functional studies during one examination, such as the assessment of wall motion and perfusion at rest and stress. With further improvements in analysis software magnetic resonance perfusion measurement may rapidly become a routine tool for the assessment of patients with coronary artery disease.  相似文献   

13.
14.
Cardiovascular magnetic resonance (CMR) imaging is a rapidly developing technology that is becoming increasingly important in the diagnostic assessment of heart disease. Recognizing the need for recommendations to optimize the use of this technique, the Canadian Society for Cardiovascular Magnetic Resonance developed a task force to generate recommendations on the clinical use of parameters acquired by CMR imaging and how they should be reported. This article is the consensus report generated by the task force. The online material of this report provides such parameters for all relevant clinical settings, including pediatric and congenital applications. It considers the current clinical role of CMR, general requirements for CMR imaging, components of CMR studies, quantitative CMR image analysis, and appropriate contents of CMR reports. The recommendations are based on previously published recommendations on analysis and reporting and are the first of their kind. It is hoped that the use of these recommendations to guide daily clinical routine will help institutions offering CMR to adhere to high standards of quality according to the present state of the art.  相似文献   

15.
Patients with or receiving potentially cardiotoxic treatment for cancer are susceptible to developing decrements in left ventricular mass, diastolic function, or systolic function. They may also experience valvular heart disease, pericardial disease, or intracardiac masses. Cardiovascular magnetic resonance may be used to assess cardiac anatomy, structure, and function and to characterize myocardial tissue. This combination of features facilitates the diagnosis and management of disease processes in patients with or those who have survived cancer. This report outlines and describes prior research involving cardiovascular magnetic resonance for assessing cardiovascular disease in patients with or previously having received treatment for cancer.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号