首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of highly specific small molecule inhibitors of oncogenic tyrosine kinases have been developed and may potentially improve the treatment of different malignant diseases. However, it became rapidly evident that multiple resistance mechanisms compromise the successful clinical application of these inhibitors, particularly in advanced solid tumors. To develop efficient therapeutic strategies with small molecule inhibitors, one must understand the causes for treatment failure. Three different types of resistance to small molecule inhibitors of oncogenic tyrosine kinases have been observed. The malignant phenotype may be independent of the activity of the target kinase (target-independent resistance). Alternatively, overexpression or mutation of the target kinase can counteract the inhibition of oncogenic tyrosine kinases (target-dependent resistance). Finally, alterations of drug transporters or drug-metabolizing pathways may block the bioavailability of the tyrosine kinase inhibitors (drug-dependent resistance). This article reviews the current knowledge of clinical resistance to small molecule inhibitors approved for treatment of cancer patients.  相似文献   

2.
Receptor tyrosine kinases play a significant role in carcinogenesis and have been successfully targeted with monoclonal antibodies and small-molecule inhibitors. There have been recent developments in the understanding of receptor tyrosine kinase signal transduction which have enabled better drug development. The use of receptor tyrosine kinase inhibitors in clinical practice has expanded the knowledge on cancer biology, in particular the understanding of resistant mutations and strategies to overcome such resistance. This has driven drug development from single kinase inhibitors to multi-kinase inhibitors and high-affinity kinase inhibitors. Finally, as the use of receptor tyrosine kinase inhibitors grows in clinical practice, more is learned about appropriate patient selection for such therapies. This is an exciting time in cancer therapeutics, highlighted by the advent of effective targeted therapy with receptor tyrosine kinase inhibitors.  相似文献   

3.
Receptor tyrosine kinases play a significant role in carcinogenesis and have been successfully targeted with monoclonal antibodies and small-molecule inhibitors. There have been recent developments in the understanding of receptor tyrosine kinase signal transduction which have enabled better drug development. The use of receptor tyrosine kinase inhibitors in clinical practice has expanded the knowledge on cancer biology, in particular the understanding of resistant mutations and strategies to overcome such resistance. This has driven drug development from single kinase inhibitors to multi-kinase inhibitors and high-affinity kinase inhibitors. Finally, as the use of receptor tyrosine kinase inhibitors grows in clinical practice, more is learned about appropriate patient selection for such therapies. This is an exciting time in cancer therapeutics, highlighted by the advent of effective targeted therapy with receptor tyrosine kinase inhibitors.  相似文献   

4.
Over the past 5 years, small molecule tyrosine kinase inhibitors have been successfully introduced as new cancer therapeutics. The pioneering work with the ABL inhibitor imatinib (Glivec, Gleevec) was rapidly extended to other types of leukemias as well as solid tumors, which stimulated the development of a variety of new tyrosine kinase inhibitors. Unfortunately, oncogenic tyrosine kinases seem to have little problem to develop resistance to these inhibitors, and there is good evidence that this is not limited to imatinib, but also occurs with other inhibitors, such as FLT3 and EGFR inhibitors. Based on studies with imatinib, mutation and amplification of the target kinase seem to be the most important mechanisms for the development of resistance, but these mechanisms alone cannot explain all cases of resistance. A better understanding of the resistance mechanisms will be required to design improved treatment strategies in the future. In this review, we summarize the current insights in the different mechanisms of resistance to small molecule tyrosine kinase inhibitors, and discuss future improvements that might limit or even overcome resistance.  相似文献   

5.
Every cell in a multicellular organism receives signals from the extracellular matrix and neighboring cells. These signals are transmitted, via transmembrane receptors and cascade proteins of the intracellular message system, inside the cell and often to the nucleus, regulating almost every physiological function of the cell. Protein tyrosine kinases constitute a family of receptors that regulate major cellular events, such as cell proliferation, differentiation, cell adhesion and apoptosis. Mutant tyrosine kinases and/or their aberrant activity are associated with human cancer and other hyper-proliferative diseases. Strategies for inhibition of aberrant tyrosine kinase activity, such as antisense oligonucleotides, antigenic stimulation and small molecular inhibitors have been developed. STI571, a phenylaminopyrimidine derivative, is considered to be the pioneer of the small molecular inhibitors available to date. It is a successful tyrosine kinase inhibitor, which is currently approved and used for the treatment of chronic myelogenous leukemia and gastrointestinal tumors. In this article we review the mechanisms of cell signaling, the signal transduction pathways related to tyrosine kinases, their relationship with cancer, and the strategies developed to inhibit the aberrant tyrosine kinase receptor-based signal transduction. Drug resistance and future perspectives for combination therapies are also discussed.  相似文献   

6.
The pp60c‐Src is one of the ubiquitously expressed Src family kinases and has important functions in malignant cells, including regulation of cell division, growth factor signaling, and movement. Therefore, investigating new small molecule inhibitors of pp60c‐Src is important to discover and develop novel therapeutics for cancer and metastasis. Moreover, some of the small molecule inhibitors that do not qualify for therapeutic use may become very useful tool to explore the role of Src kinase in normal cells as well as in a variety of disease models. Our continuous efforts to find novel inhibitors of pp60c‐Src aimed for therapeutic and research use, we synthesized newly designed aminomethylindole derivatives as novel small molecule inhibitors and investigated their inhibitory effect on pp60c‐Src tyrosine kinase. Here, we report one potential inhibitor of the pp60c‐Src from five active molecules of all nine compounds, which were synthesized and screened for the biological activity of the molecules against pp60c‐Src target.  相似文献   

7.
Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer   总被引:1,自引:0,他引:1  
INTRODUCTION: The IGF-1 receptor (IGF-1R) is a receptor tyrosine kinase and is well established as a key regulator of tumor cell growth and survival. There is also a growing body of data to support a role for the structurally and functionally related insulin receptor (IR) in human cancer. Bidirectional crosstalk between IGF-1R and IR is observed, where specific inhibition of either receptor confers a compensatory increase in the activity for the reciprocal receptor, therefore dual inhibition of both IGF-1R and IR may be important for optimal efficacy. The importance of IGF-1R and IR as targets in cancer is further underscored by their contribution to resistance against both cytotoxic and molecularly targeted anti-cancer therapeutics. Currently, both IGF-1R-neutralizing antibodies and small-molecule tyrosine kinase inhibitors of IGF-1R/IR are in clinical development. AREAS COVERED: The importance of IGF-1R and IR as cancer targets and how IGF-1R/IR inhibitors may sensitize tumor cells to the anti-proliferative and pro-apoptotic effects of other anti-tumor agents. The potential advantages of small molecule IGF-1R/IR inhibitors compared with IGF-1R-specific neutralizing antibodies, and the characteristics of small-molecule IGF-1R inhibitors that have entered clinical development. EXPERT OPINION: Because of compensatory crosstalk between IGF-1R and IR, dual IGF-1R and IR tyrosine kinase inhibitors may have superior anti-tumor activity compared to anti-IGF-1R specific antibodies. The clinical success for IGF-1R/IR inhibitors may ultimately be dependent upon our ability to correctly administer these agents to the right niche patient subpopulation using single agent therapy, when appropriate, or using the right combination therapy.  相似文献   

8.
INTRODUCTION: Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism, excretion, toxicity) properties of small molecule TKIs, as well as key factors of resistance against targeted anticancer therapeutics. AREAS COVERED: The article summarizes MDR-related ABC transporter interactions with imatinib, nilotinib, dasatinib, gefitinib, erlotinib, lapatinib, sunitinib and sorafenib, including in vitro and in vivo observations. An array of methods developed to study such interactions is presented. Transporter-TKI interactions relevant to the ADME-Tox properties of TKI drugs, primary or acquired cancer TKI resistance, and drug-drug interactions are also reviewed. EXPERT OPINION: Based on the concept presented in this review, TKI anticancer drugs are considered as compounds recognized by the cellular mechanisms handling xenobiotics. Accordingly, novel anticancer therapies should equally focus on the effectiveness of target inhibition and exploration of potential interactions of the designed molecules by membrane transporters. Thus, targeted hydrophobic small molecule compounds should also be screened to evade xenobiotic-sensing cellular mechanisms.  相似文献   

9.
One promising therapeutic strategy for treating cancer is to specifically target signal transduction pathways that have a key role in oncogenic transformation and malignant progression. Hsp90 is an emerging therapeutic target of interest for the treatment of cancer. It is responsible for modulating cellular response to stress by maintaining the function of numerous signalling proteins - known as 'client proteins' - that are associated with cancer cell survival and proliferation. Many cancers result from specific mutations in, or aberrant expression of, these client proteins. Small molecule Hsp90 inhibitors bind to the ATP binding pocket, inhibit chaperone function and could potentially result in cytostasis or cell death. Consequently, many client proteins are targeted for degradation via the ubiquitin-proteasome pathway including receptor and non receptor kinases (Erb-B2, epidermal growth factor receptor, and Src family kinases), serine/threonine kinases (c-Raf-1 and Cdk4), steroid hormone receptors (androgen and estrogen), and apoptosis regulators such as mutant p53. Inhibition of Hsp90 function has also proven effective in killing cancer cells that have developed resistance to targeted therapies such as kinase inhibitors. This review is intended to update recent developments in new Hsp90 inhibitors as antitumors agents, the design, biological evaluation and their clinical trials studies.  相似文献   

10.
The phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B, PKB) signaling pathway plays a critical role in cell growth and survival. Dysregulation of this pathway has been found in a variety of cancer cells. Recently, constitutively active PI3K/Akt signaling has been firmly established as a major determinant for cell growth and survival in an array of cancers. Blocking the constitutively active PI3K/AKT signaling pathway provides a new strategy for targeted cancer therapy. Thus, inhibitors of this signaling pathway would be potential anticancer agents, particularly for cancer cells whose survival and growth are dominated by constitutively active PI3K/Akt signaling. This review describes the current understanding of small molecule drugs targeting this pathway both in vitro and in vivo. Inhibitors and functions of the upstream and downstream molecular targets of the PI3K/Akt pathway are discussed in the context of using the inhibitors to block this pathway for targeted cancer therapy. Special emphasis is placed on the following targets: receptor tyrosine kinases, PI3K, Akt, and the mammalian target of rapamycin. While the molecular therapeutic strategy holds great promise for the treatment of a variety of cancers, few small molecule inhibitors with potential high therapeutic indexes are available. Thus, new inhibitors with high selectivity, bioavailability, and potency are greatly needed. Novel approaches toward the development of PI3K/Akt pathway inhibitors as anticancer therapeutics are discussed in detail, with emphasis on chemical genetics-based and structure-based drug design.  相似文献   

11.
The serine/threonine kinase Akt is a component of the phosphatidylinositol 3'-kinase/Akt signal transduction pathway that is activated by receptor tyrosine kinases, activated Ras and integrins. As Akt regulates many processes crucial to carcinogenesis, and Akt activation has been observed in human cancers, intense efforts are underway to develop Akt inhibitors as cancer therapeutics. Towards this aim, phosphatidylinositol ether lipid analogues (PIAs), which are structurally similar to the products of phosphatidylinositol 3'-kinase, have been synthesised. PIAs inhibit Akt translocation, phosphorylation and kinase activity. Furthermore, they selectively induce apoptosis in cancer cell lines that depend on Akt for survival. This review will trace the development of PIAs, cover the biological activities of PIAs and discuss future steps and challenges in their development.  相似文献   

12.
Glioblastoma (GBM), the most common primary brain tumor in adults, is one of the most aggressive human cancers associated with high mortality. Standard treatments following diagnosis include surgical resection, radiotherapy and adjunctive chemotherapy. However, almost all patients develop disease progression following this multimodal therapy. Recent understanding in genomic and molecular abnormalities in GBM has shifted the treatment paradigm towards using molecularly targeted agents. One of the most prominent targets in cancer treatment is kinases, which can be commonly targeted by small molecule inhibitors or monoclonal antibodies. Despite the initial enthusiasm in exploring kinase inhibitors for GBM, first-generation kinase inhibitors that selectively disrupt single kinases have failed to demonstrate clinical benefit in most patients with GBM. Mechanisms of resistance may include genetic heterogeneity with cross-talk and coactivation of multiple signaling pathways, upregulation of alternative signaling cascades, limited drug delivery and existence of highly-resistant cellular subpopulations such as cancer stem cells. One strategy to circumvent this challenge is to target multiple kinases by multitargeted kinase inhibitors or combinations of single targeted kinase inhibitors, both of which have been evaluated in clinical trials for GBM.  相似文献   

13.
Noonberg SB  Benz CC 《Drugs》2000,59(4):753-767
Abnormal cell signal transduction arising from protein tyrosine kinases has been implicated in the initiation and progression of a variety of human cancers. Over the past 2 decades pharmaceutical and university laboratories have been involved in a tremendous effort to develop compounds that can selectively modulate these abnormal signalling pathways. Targeting receptor tyrosine kinases, especially the epidermal growth factor receptor subfamily, has been at the forefront of this effort as a result of strong clinical data correlating over-expression of these receptors with more aggressive cancers. There are a variety of strategies under development for inhibiting the kinase activity of these receptors, targeting both the extracellular and intracellular domains. Antibody-based approaches, immunotoxins and ligand-binding cytotoxic agents use the extracellular domain for targeted tumour therapy. Small molecule inhibitors target the intracellular catalytic region by interfering with ATP binding, while nonphosphorylatable peptides are aimed at the intracellular substrate binding region. Compounds that inhibit subsequent downstream signals from the receptor by interrupting intracellular protein recognition sequences are also being investigated. In the past 5 years enormous progress has been made in developing tyrosine kinase inhibitor compounds with sufficient potency, bioavailability and selectivity against this subfamily of receptor tyrosine kinases. The anti-HER2 monoclonal antibody, trastuzumab, for patients with metastatic breast cancer is the first of these inhibitor compounds to gain FDA approval. However, preclinical and clinical trials are ongoing with a variety of other monoclonal antibodies, immunotoxins, and small molecule quinazoline and pyrimidine-based inhibitors. Although their cytotoxic and cytostatic potential has been proven, they are not likely to replace standard chemotherapy regimens as single-agent, first-line therapeutics. Instead, their promising additive and synergistic antitumour effects in combination with standard chemotherapeutics suggest that these novel agents will find their greatest utility and efficacy in conjunction with existing anticancer agents.  相似文献   

14.
Protein kinases play a crucial role in signal transduction and also in cellular proliferation, differentiation and various regulatory mechanisms. The inhibition of growth-related kinases, especially tyrosine kinases, might therefore provide new therapies for diseases such as cancer. Due to the enormous progress that has been made in the past few years in the identification of the human genome, in molecular and cell biology technologies, in structural biology and in bioinformatics, the number of receptor and non-receptor tyrosine kinases that have been identified as valuable molecular targets has greatly increased. Currently, more than 20 different tyrosine kinase targets are under evaluation in drug discovery projects in oncology. The progress made in the crystallisation of protein kinases, in most cases complexed with ATP-site-directed inhibitors, has confirmed that the ATPbinding domain of tyrosine kinases is an attractive target for rational drug design; more than 20 ATP-competitive, low molecular weight inhibitors are in various phases of clinical evaluation. Meanwhile, clinical proof-of-concept (POC) has been achieved with several antibodies and small molecules targeted against tyrosine kinases. With Herceptin, Glivec and Iressa (registered in Japan), the first kinase drugs have entered the market. This review describes the preclinical and clinical status of low molecular weight drugs targeted against different tyrosine kinases (e.g., epidermal growth factor receptor [EGFR], vascular endothelial growth factor receptor [VEGFR], platelet-derived growth factor receptor [PDGFR], Kit, Fms-like tyrosine kinase [Flt]-3), briefly describes new targets, and provides a critical analysis of the current situation in the area of tyrosine kinase inhibitors.  相似文献   

15.
Protein kinases play a crucial role in signal transduction and also in cellular proliferation, differentiation and various regulatory mechanisms. The inhibition of growth-related kinases, especially tyrosine kinases, might therefore provide new therapies for diseases such as cancer. Due to the enormous progress that has been made in the past few years in the identification of the human genome, in molecular and cell biology technologies, in structural biology and in bioinformatics, the number of receptor and non-receptor tyrosine kinases that have been identified as valuable molecular targets has greatly increased. Currently, more than 20 different tyrosine kinase targets are under evaluation in drug discovery projects in oncology. The progress made in the crystallisation of protein kinases, in most cases complexed with ATP-site-directed inhibitors, has confirmed that the ATPbinding domain of tyrosine kinases is an attractive target for rational drug design; more than 20 ATP-competitive, low molecular weight inhibitors are in various phases of clinical evaluation. Meanwhile, clinical proof-of-concept (POC) has been achieved with several antibodies and small molecules targeted against tyrosine kinases. With Herceptin, Glivec and Iressa (registered in Japan), the first kinase drugs have entered the market. This review describes the preclinical and clinical status of low molecular weight drugs targeted against different tyrosine kinases (e.g., epidermal growth factor receptor [EGFR], vascular endothelial growth factor receptor [VEGFR], platelet-derived growth factor receptor [PDGFR], Kit, Fms-like tyrosine kinase [Flt]-3), briefly describes new targets, and provides a critical analysis of the current situation in the area of tyrosine kinase inhibitors.  相似文献   

16.
The serine/threonine kinase Akt is a component of the phosphatidylinositol 3′-kinase/Akt signal transduction pathway that is activated by receptor tyrosine kinases, activated Ras and integrins. As Akt regulates many processes crucial to carcinogenesis, and Akt activation has been observed in human cancers, intense efforts are underway to develop Akt inhibitors as cancer therapeutics. Towards this aim, phosphatidylinositol ether lipid analogues (PIAs), which are structurally similar to the products of phosphatidylinositol 3′-kinase, have been synthesised. PIAs inhibit Akt translocation, phosphorylation and kinase activity. Furthermore, they selectively induce apoptosis in cancer cell lines that depend on Akt for survival. This review will trace the development of PIAs, cover the biological activities of PIAs and discuss future steps and challenges in their development.  相似文献   

17.
Numerous small molecule synthetic tyrosine kinase inhibitors are in clinical development for the treatment of human cancers. These fall into three broad categories: inhibitors of the epidermal growth factor receptor tyrosine kinase family (e.g., Iressa? and Tarceva?), inhibitors of the split kinase domain receptor tyrosine kinase subgroup (e.g., PTK787/ZK 222584 and SU11248) and inhibitors of tyrosine kinases from multiple subgroups (e.g., Gleevec?). In addition, agents targeting other tyrosine kinases implicated in cancer, such as Met, Tie-2 and Src, are in preclinical development. As experience is gained in the clinic, it has become clear that unleashing the full therapeutic potential of tyrosine kinase inhibitors will require patient preselection, better assays to guide dose selection, knowledge of mechanism-based side effects and ways to predict and overcome drug resistance.  相似文献   

18.
Numerous small molecule synthetic tyrosine kinase inhibitors are in clinical development for the treatment of human cancers. These fall into three broad categories: inhibitors of the epidermal growth factor receptor tyrosine kinase family (e.g., Iressa trade mark and Tarceva trade mark ), inhibitors of the split kinase domain receptor tyrosine kinase subgroup (e.g., PTK787/ZK 222584 and SU11248) and inhibitors of tyrosine kinases from multiple subgroups (e.g., Gleevec trade mark ). In addition, agents targeting other tyrosine kinases implicated in cancer, such as Met, Tie-2 and Src, are in preclinical development. As experience is gained in the clinic, it has become clear that unleashing the full therapeutic potential of tyrosine kinase inhibitors will require patient preselection, better assays to guide dose selection, knowledge of mechanism-based side effects and ways to predict and overcome drug resistance.  相似文献   

19.
Peritoneal dissemination is a highly frequent complication of poorly differentiated gastric cancers for which no effective therapies are available. Constitutive activation of mitogen-activated protein kinases (MAPKs) signaling cascades is recognized as a causative factor in the malignant transformation of several carcinoma cell types. In the present study we provide evidence that p38 MAPK inhibition protects against gastric cancer cells dissemination in a mouse model of peritoneal carcinomatosis. Administering mice with ML3403 and SB203580, potent and selective p38 MAPK inhibitors, attenuate the formation of neoplastic foci induced by intraperitoneal inoculation of gastric cancer cells. By gene array analysis we found that such a protective effect correlates with a robust downregulation in the expression of CXC chemokine receptor-4, Fms-related tyrosine kinase 4 (FLT4), the non-receptor spleen tyrosine kinase (SYK) and the collagen α2(IV) (COL4A2) in neoplasic foci. Inhibition of p38 MAPK in vivo increased the sensitivity of tumor cells to cisplatin and associated with a robust downregulation in the expression of the multidrug resistance (MDR)-1, a well defined marker of resistance to chemotherapy. In summary, p38 MAPK inhibition by a small molecule is beneficial in preventing the peritoneal dissemination of poorly differentiated gastric cancer cells by acting at multiple check-points in the process of attachment and diffusion of tumor cells in the peritoneum.  相似文献   

20.
Hsp90: an emerging target for breast cancer therapy   总被引:11,自引:0,他引:11  
Rapidly evolving insights into the specific molecular genetic abnormalities that drive the growth and metastasis of breast cancer have led to the development of targeted therapeutics that do not rely on the generalized disruption of DNA metabolism and cell division for activity. Of particular interest are inhibitors of cellular signal transduction pathways involving tyrosine kinases as well as selective modulators of steroid hormone signaling, histone acetylation, angiogenesis and tumor cell apoptosis. Unique within this array of promising new agents, however, are compounds that target heat shock protein 90 (Hsp90). This molecular chaperone associates with a distinct, but surprisingly diverse, set of proteins that are referred to as Hsp90 client proteins. Hsp90 binds to these clients, and plays a key role in regulating their stability and function. Many of the proteins chaperoned by Hsp90 are involved in breast cancer progression and resistance to therapy, including the estrogen receptor, receptor tyrosine kinases of the erbB family, Akt, and mutant p53. Several small molecule inhibitors of Hsp90 have been identified that can deplete cellular levels of multiple oncogenic client proteins simultaneously by enhancing their ubiquitination and proteasome-mediated degradation. The activity of Hsp90 inhibitors has been well validated in preclinical breast cancer models, both in single-agent studies and in combination with conventional chemotherapy. One of these inhibitors, 17-allylamino, 17-demethoxygeldanamycin (17-AAG, NSC 330507) has recently completed phase I testing. The agent was well tolerated at drug exposures that were shown to cause modulation of Hsp90 client protein levels. Given the redundancy and complexity of the molecular abnormalities present in most breast cancers, the ability of Hsp90 inhibitors to alter the activity of multiple oncogenic targets may prove of unique therapeutic benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号