首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of roasting on the allergenic properties of peanut proteins   总被引:9,自引:0,他引:9  
BACKGROUND: Because of the widespread use of peanut products, peanut allergenicity is a major health concern in the United States. The effect or effects of thermal processing (roasting) on the allergenic properties of peanut proteins have rarely been addressed. OBJECTIVE: We sought to assess the biochemical effects of roasting on the allergenic properties of peanut proteins. METHODS: Competitive inhibition ELISA was used to compare the IgE-binding properties of roasted and raw peanut extracts. A well-characterized in vitro model was used to test whether the Maillard reaction contributes to the allergenic properties of peanut proteins. The allergic properties were measured by using ELISA, digestion by gastric secretions, and stability of the proteins to heat and degradation. RESULTS: Here we report that roasted peanuts from two different sources bound IgE from patients with peanut allergy at approximately 90-fold higher levels than the raw peanuts from the same peanut cultivars. The purified major allergens Ara h 1 and Ara h 2 were subjected to the Maillard reaction in vitro and compared with corresponding unreacted samples for allergenic properties. Ara h 1 and Ara h 2 bound higher levels of IgE and were more resistant to heat and digestion by gastrointestinal enzymes once they had undergone the Maillard reaction. CONCLUSIONS: The data presented here indicate that thermal processing may play an important role in enhancing the allergenic properties of peanuts and that the protein modifications made by the Maillard reaction contribute to this effect.  相似文献   

2.
BACKGROUND: Increased allergenicity of roasted vs. raw peanut has been reported by showing higher IgE binding to roasted peanut extracts. OBJECTIVE: To study the effect of roasting on Ara h 1 quantification in peanut using a specific monoclonal antibody-based ELISA, and to compare the Ara h 1 content from different kernel size peanuts from four runner cultivars. METHODS: Raw or oven-roasted (177 degrees C for 5-30 min) runner peanuts were crushed and extracted at 60 degrees C. Inhibition ELISA was used to study binding of Ara h 1 purified from raw or roasted peanut. Runner peanuts of four different cultivars were collected, shelled, sized and roasted for 15 min at 177 degrees C. Ara h 1 in the extracts was compared by ELISA. RESULTS: Ara h 1 levels were up to 22-fold higher in roasted than in raw peanuts (820 vs. 37 microg/mL, in a representative experiment) with an Ara h 1 peak at 10-15 min of roasting. Inhibition ELISA indicated that this increase was not due to conformational changes in the Ara h 1 monoclonal antibody epitopes. Ara h 1 was found at lower levels in number 1 than in jumbo- and medium-sized peanuts, and no differences were found among cultivars. CONCLUSION: These results suggest that roasting increases the efficiency of Ara h 1 extraction, and/or that the monoclonal antibody binding epitopes were more accessible in roasted peanut. Expression of Ara h 1 is associated with peanut maturity.  相似文献   

3.
Background Food allergies are a public health issue of growing concern, with peanuts in particular being associated with severe reactions. The peanut allergen, Ara h 1, belongs to the cupin plant food allergen family, which, unlike other structural families, appears to be broken down rapidly following gastrointestinal digestion.
Objective Using Ara h 1 as a model allergen, the ability of digested protein to sensitize has been investigated.
Methods Ara h 1 was purified from whole roasted peanuts. Intact Ara h 1 was digested in an in vitro model, simulating the human gastrointestinal digestion process. Digestion products were analysed for peptide sizes and their ability to aggregate. Brown Norway (BN) rats, used as an animal model, were immunized with purified intact Ara h 1 or the gastrointestinal digestion products thereof. The sensitizing capacity was evaluated by analyses of specific antibody (IgG1, IgG2a and IgE) responses and ability to trigger mediator release of rat basophilic leukaemia (RBL)-2H3 cells.
Results The present study showed that Ara h 1 was broken down, resulting in peptide fragments of sizes <2.0 kDa, of which approximately 50% was in aggregated complexes of M r up to 20 kDa. Ara h 1 digesta were shown to have sensitizing capacity in BN rats, being capable of inducing specific IgG and IgE antibodies. The IgE response was functional, having the capacity to induce specific degranulation of RBL cells.
Conclusion From this study, it can be concluded that lability of a food allergen to gastrointestinal digestion does not necessarily abrogate its allergenic sensitizing potential.  相似文献   

4.
It has been rarely studied why the prevalence of peanut allergy is relative low in China. The aim of this study was to investigate: (i) the major peanut allergens in China, (ii) the effect of buffer composition on peanut allergens extraction efficiency, and (iii) the effect of cooking methods on peanut allergenicity. The allergenic property of peanut protein extracts was assessed by immunoblotting. The relative contents of the major peanut allergens were quantified by densitometry. The ability of IgE to bind to the different peanut preparations (fried, boiled and roasted) was detected with ELISA. In conclusion, Ara h 1 and several proteins belonging to the Ara h 3 were major peanut allergens. Different buffers lead to different extraction efficiency for allergen fragments. The IgE binding property of peanuts processed by cooking, frying and roasting did not differ significantly. Therefore, cooking methods may not explain the reason for the lower prevalence of peanut allergy in China.  相似文献   

5.
Effects of cooking methods on peanut allergenicity   总被引:13,自引:0,他引:13  
BACKGROUND: Allergy to peanut is a significant health problem. Interestingly, the prevalence of peanut allergy in China is much lower than that in the United States, despite a high rate of peanut consumption in China. In China, peanuts are commonly fried or boiled, whereas in the United States peanuts are typically dry roasted. OBJECTIVE: The aim of this study was to examine whether the method of preparing peanuts could be a factor in the disparity of allergy prevalence between the 2 countries. METHODS: Two varieties of peanuts grown in the United States were roasted, boiled, or fried. Proteins were analyzed by using SDS-PAGE and immunoblotting. Allergenicity was compared by using immunolabeling with sera from 8 patients with peanut allergy. RESULTS: The protein fractions of both varieties of peanuts were altered to a similar degree by frying or boiling. Compared with roasted peanuts, the relative amount of Ara h 1 was reduced in the fried and boiled preparations, resulting in a significant reduction of IgE-binding intensity. In addition, there was significantly less IgE binding to Ara h 2 and Ara h 3 in fried and boiled peanuts compared with that in roasted peanuts, even though the protein amounts were similar in all 3 preparations. CONCLUSION: The methods of frying or boiling peanuts, as practiced in China, appear to reduce the allergenicity of peanuts compared with the method of dry roasting practiced widely in the United States. Roasting uses higher temperatures that apparently increase the allergenic property of peanut proteins and may help explain the difference in prevalence of peanut allergy observed in the 2 countries.  相似文献   

6.
BACKGROUND: The serology of peanut allergy seems to be different in various parts of the world. We analyzed the composition of 13 samples of three varieties of peanut in order to compare their allergenic nature. METHODS: Peanut cultivars that are commonly processed in the West were analyzed for protein content, protein composition, and Ara h 1 and Ara h 2 content by biochemical methods. IgE-binding properties were analyzed by ELISA using serum from patients with documented peanut allergy. RESULTS: Total protein contents were comparable for all tested samples (24-29%), and proteins were extractable to the same extent. SDS-PAGE patterns differed slightly, but all major bands were visible in all samples (molecular masses of approximately 14100 kDa under reducing conditions). Ara h 1 and Ara h 2 were quantified by SDS PAGE densitometry and were expressed as percentage of the total protein content. Ara h 1 was in the range 12-16%, whereas Ara h 2 was 5.9-9.3%. In view of the analytic uncertainty of this determination, the content of both Ara h 1 and Ara h 2 was not significantly different between the tested samples. In an IgE-binding inhibition ELISA, the affinities of the peanut proteins for peanut-specific IgE were measured. Minor differences were observed between the tested samples, with the most potent IgE-binding sample having a two times higher ability to bind IgE than the weakest IgE-binding sample. CONCLUSIONS: The results suggest that peanuts of different varieties and from different parts of the world contain similar proteins, including Ara h I and Ara h 2. Consequently, the IgE-binding properties are similar to a great extent. This indicates that differences in the serology of peanut allergy may not originate from differences in the allergen composition of the peanut.  相似文献   

7.
BACKGROUND: Peanut allergen Ara h 3 has been the subject of investigation for the last few years. The reported data strongly depend on recombinant Ara h 3, since a purification protocol for Ara h 3 from peanuts was not available. METHODS: Peanut allergen Ara h 3 (glycinin), was purified and its posttranslational processing was investigated. Its allergenic properties were determined by studying IgE binding characteristics of the purified protein. RESULTS: Ara h 3 consists of a series of polypeptides ranging from approximately 14 to 45 kDa that can be classified as acidic and basic subunits, similar to the subunit organization of soy glycinin. N-terminal sequences of the individual polypeptides were determined, and using the cDNA deduced amino-acid sequence, the organization into subunits was explained by revealing posttranslational processing of the different polypeptides. IgE-binding properties of Ara h 3 were investigated using direct elisa and Western blotting with sera from peanut-allergic individuals. The basic subunits, and to a lesser extent the acidic subunits, bind IgE and may act as allergenic peptides. CONCLUSIONS: We conclude that peanut-derived Ara h 3, in contrast to earlier reported recombinant Ara h 3, resembles, to a large extent, the molecular organization typical for proteins from the glycinin family. Furthermore, posttranslational processing of Ara h 3 affects the IgE-binding properties and is therefore an essential subject of study for research on the allergenicity of Ara h 3.  相似文献   

8.
BackgroundThe prevalence and clinical severity of peanut allergy vary between Western countries and Asia. It has been suggested that cooking methods are responsible for this discrepancy.ObjectivesTo evaluate the specific IgE responses to major peanut allergens in peanut allergic Korean children and to examine the influence of different cooking methods on peanut proteins.MethodsRaw peanut protein extracts were immunolabeled with serum samples from 42 children with a level of peanut specific IgE of 15 kUA/L or higher to detect specific binding to Ara h 1, Ara h 2, and Ara h 3. Clinical severity scores were assessed on a scale of 0 to 5. Protein extracts from boiled, roasted, fried, and pickled peanuts were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and immunoblotting with pooled serum samples from 7 patients.ResultsMost patients' serum samples reacted with Ara h 1 (76.2%) and Ara h 3 (78.6%) from raw peanuts, whereas only 53.0% of patients had specific IgE against Ara h 2. IgE binding to Ara h 2 was more prevalent in patients with more severe reaction than in those with mild reactions. IgE binding to Ara h 2 was increased by roasting, but there was significantly less IgE binding after vinegar treatment.ConclusionOur results suggest that Ara h 2 is an important allergen to predict clinical symptoms but less prevalent in Korean children than in Western children. This finding may be attributed in part to different cooking methods and dietary habits among regions.  相似文献   

9.
Food allergy has become a major public health concern in westernized countries, and allergic reactions to peanuts are particularly common and severe. Allergens are defined as antigens that elicit an IgE response, and most allergenic materials (e.g., pollens, danders, and foods) contain multiple allergenic proteins. This has led to the concept that there are “major” allergens and allergens of less importance. “Major allergens” have been defined as allergens that bind a large amount of IgE from the majority of patients and have biologic activity. However, the ability of an allergen to cross-link complexes of IgE and its high-affinity receptor FcεRI (IgE/FcεRI), which we have termed its allergic effector activity, does not correlate well with assays of IgE binding. To identify the proteins that are the most active allergens in peanuts, we and others have employed in vitro model assays of allergen-mediated cross-linking of IgE/FcεRI complexes and have demonstrated that the most potent allergens are not necessarily those that bind the most IgE. The importance of a specific allergen can be determined by measuring the allergic effector activity of that allergen following purification under non-denaturing conditions and by specifically removing the allergen from a complex allergenic extract either by chromatography or by specific immunodepletion. In our studies of peanut allergens, our laboratory has found that two related allergens, Ara h 2 and Ara h 6, together account for the majority of the effector activity in a crude peanut extract. Furthermore, murine studies demonstrated that Ara h 2 and Ara h 6 are not only the major elicitors of anaphylaxis in this system, but also can effectively desensitize peanut-allergic mice. As a result of these observations, we propose that the definition of a major allergen should be based on the potency of that allergen in assays of allergic effector activity and demonstration that removal of that allergen from an extract results in loss of potency. Using these criteria, Ara h 2 and Ara h 6 are the major peanut allergens.  相似文献   

10.
BACKGROUND: The process of gastro-duodenal digestion may play a role in determining the allergenic properties of food proteins. The sensitizing and allergenic potential of digestion products of highly degraded allergens, such as the major peanut allergen Ara h 1, is currently under debate. We evaluated the effect of in vitro gastro-duodenal digestion of Ara h 1 on T cell reactivity and basophil histamine release. METHODS: An in vitro model of gastro-duodenal digestion was used to investigate changes in the allergenic properties of Ara h 1 using in vitro assays monitoring T cell reactivity (proliferation, cytokine production) and histamine release of basophils from peanut allergic individuals. The digestion process was monitored using an SDS-PAGE gel. RESULTS: In vitro gastric digestion led to rapid degradation of Ara h 1 into small fragments M(r) L5600. Gastric digestion did not affect the ability of Ara h 1 to stimulate cellular proliferation. Gastro-duodenal digestion significantly reduced its ability to stimulate clonal expansion (P<0,05; Wilxocon's signed rank test). The Th-2 type cytokine polarization of T cells from peanut allergic donors (IFN-gamma/IL-13 ratio and IFN-gamma/IL-4 ratio of CFSE(low) CD4(+) T cells) remained unchanged regardless of the level of digestion. Histamine release of basophils from peanut allergic individuals was induced to the same extent by native Ara h 1 and its digestion products. CONCLUSION: Gastro-duodenal digestion fragments of Ara h 1 retain T cell stimulatory and IgE-binding and cross-linking properties of the intact protein.  相似文献   

11.
BACKGROUND: Patients with peanut allergy can have serious reactions to very small quantities of peanut allergen and often go to extreme measures to avoid potential contact with this allergen. OBJECTIVE: The purpose of this study was to detect peanut allergen under various environmental conditions and examine the effectiveness of cleaning agents for allergen removal. METHODS: A monoclonal-based ELISA for Arachis hypogaea allergen 1 (Ara h 1; range of detection, 30-2000 ng/mL) was used to assess peanut contamination on cafeteria tables and other surfaces in schools, the presence of residual peanut protein after using various cleaning products on hands and tabletops, and airborne peanut allergen during the consumption of several forms of peanut. RESULTS: After hand washing with liquid soap, bar soap, or commercial wipes, Ara h 1 was undetectable. Plain water and antibacterial hand sanitizer left detectable Ara h 1 on 3 of 12 and 6 of 12 hands, respectively. Common household cleaning agents removed peanut allergen from tabletops, except dishwashing liquid, which left Ara h 1 on 4 of 12 tables. Of the 6 area preschools and schools evaluated, Ara h 1 was found on 1 of 13 water fountains, 0 of 22 desks, and 0 of 36 cafeteria tables. Airborne Ara h 1 was undetectable in simulated real-life situations when participants consumed peanut butter, shelled peanuts, and unshelled peanuts. CONCLUSION: The major peanut allergen, Ara h 1, is relatively easily cleaned from hands and tabletops with common cleaning agents and does not appear to be widely distributed in preschools and schools. We were not able to detect airborne allergen in many simulated environments.  相似文献   

12.
BACKGROUND: A number of allergenic proteins in peanut has been described and the relative importance of these allergens is yet to be determined. OBJECTIVES: We have investigated the relevance of previously identified peanut allergens in well-characterized peanut-allergic patients by in vitro, ex vivo and in vivo assays. METHODS: Thirty-two adult peanut-allergic patients were included based on careful and standardized patient history and the presence of peanut-specific IgE. The diagnosis peanut allergy was confirmed using double-blind placebo-controlled food challenges in 23 patients. Major peanut allergens Ara h1, Ara h2 and Ara h3 were purified from peanuts using ion-exchange chromatography. IgE immunoblotting was performed and IgE-cross-linking capacity was examined by measuring histamine release (HR) after incubating patient basophils as well as passively sensitized basophils with several dilutions of the allergens. Intracutaneous tests (ICTs) using 10-fold dilution steps of the purified allergens and crude peanut extract were performed. RESULTS: Ara h2 was recognized most frequently (26 out of 32) in all tests and induced both positive skin tests and basophil degranulation at low concentrations, whereas Ara h1 and Ara h3 were recognized less frequently and reacted only at 100-fold higher concentrations as analysed with HR and intracutaneous testing (ICT). Next to the three tested allergens, proteins with molecular weights of somewhat smaller than 15 kDa were identified as a IgE-binding proteins on immunoblot in the majority of the patients (20 out of 32). CONCLUSION: We conclude that Ara h2 is, for our patient group, the most important peanut allergen, and that previously unidentified peanut proteins with molecular weights of somewhat smaller than 15 kDa may be important allergens as well. ICT in combination with basophil-HR and IgE immunoblotting provides insight in the patient specificity towards the individual peanut allergens.  相似文献   

13.
BACKGROUND: IgE-binding peanut proteins smaller than 15 kDa were previously identified as potential allergens in the majority of our peanut allergic population. OBJECTIVE: To characterize the novel allergen in order to determine whether it was similar to one of the thus far identified recombinant peanut allergens (Ara h 1-7). METHODS: An IgE-binding protein of <15 kDa was purified and identified via N-terminal sequencing. Its IgE-binding properties were investigated using immunoblotting, basophil degranulation, and skin prick testing. Possible cross-reacting epitopes with other peanut allergens were studied using IgE-immunoblotting inhibition. RESULTS: The purified protein is a monomeric protein with a molecular weight of 14,981 Da as determined using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. The amino acid sequence of the first 39 N-terminal residues is identical to that of Ara h 6, indicating that the allergen is Ara h 6. It is recognized by 20 out of 29 peanut-allergic patients on IgE-immunoblot, and its potent biological functionality is demonstrated by the degranulation of basophils, even at concentrations below 10 pg/mL, and by positive skin prick reactions. Ara h 6 has homology to Ara h 2, especially in the middle part and at the C-terminal part of the protein. Almost complete inhibition of IgE-Ara h 6 interaction with Ara h 2 demonstrates that at least part of the epitopes of Ara h 6 are cross-reactive with epitopes on Ara h 2. CONCLUSIONS: Peanut-derived Ara h 6 is a biologically active allergen recognized by the majority of our peanut-allergic patient population and can be considered a clinically relevant peanut allergen.  相似文献   

14.
Isolation and characterization of two complete Ara h 2 isoforms cDNA   总被引:6,自引:0,他引:6  
BACKGROUND: Ara h 2 is a major peanut allergen recognized by IgE in more than 90% of patients. After electrophoretic separation the purified protein exists as a doublet, and sequences of one incomplete cDNA and one genomic clone for this allergen have been reported. METHODS: Ara h 2 isoforms were purified and analyzed by mass spectroscopy, and PCR amplification products of Ara h 2 were cloned and sequenced. RESULTS: Mass spectroscopy of purified Ara h 2 clearly identified a molecular doublet of 16,670 and 18,050 Daltons. Amplification of a peanut cDNA library using PCR primer pairs located at the amino- and carboxy-terminus revealed 2 bands separated by 50 base pairs, which we cloned and sequenced. Two types of complete cDNA clones were obtained, Ara h 2.01 and Ara h 2.02. Compared to Ara h 2.01 and the previously reported cDNA sequences, Ara h 2.02 is characterized by a 12 amino acid insertion starting at position 75 that contains a third repeat of the major IgE binding epitope DPYSPS. CONCLUSION: We demonstrated the molecular and genetic characteristics of two Ara h 2 isoforms, revealing that one, Ara h 2.02, might be the more potent allergen.  相似文献   

15.
目的:克隆花生主要过敏原Ara h 8基因,表达并纯化该蛋白,检测其免疫活性。方法:提取花生总RNA,设计特异性引物,RT-PCR克隆花生Ara h 8基因;将反转录的基因连入pMD19-T Simple Vector,提质粒酶切鉴定并测序。将测序正确的片段连入原核表达载体pET-32a(+)上,并转入BL21(DE3)宿主表达菌中;IPTG诱导表达;通过Ni2+亲和层析(FPLC)纯化目的蛋白Ara h 8;Western blot检测该重组蛋白的免疫原性。结果:测序结果表明克隆的花生Ara h 8基因片段全长为474 bp,编码157个氨基酸,与GenBank中蛋白序列100%相同。重组蛋白纯化后经SDS-PAGE鉴定,目的蛋白大小与理论值相符。Western blot结果表明该蛋白与花生过敏病人混合血清中IgE结合,具有免疫原性。结论:成功克隆并表达纯化了花生过敏原Ara h 8,该基因表达的重组蛋白具有良好的免疫原性。  相似文献   

16.
Three-dimensional models built for the peanut Ara h 2 allergen and other structurally-related 2S albumin allergens of dietary nuts exhibited an overall three-dimensional fold stabilized by disulphide bridges well conserved among all the members of the 2S albumin superfamily. Conformational analysis of the linear IgE-binding epitopes mapped on the molecular surface of Ara h 2 showed no structural homology with the corresponding regions of the walnut Jug r 1, the pecan nut Car i 1 or the Brazil nut Ber e 1 allergens. The absence of epitopic community does not support the allergenic cross-reactivity observed between peanut and walnut or Brazil nut, which presumably depends on other ubiquitous seed storage protein allergens, namely the vicilins. However, the major IgE-binding epitope identified on the molecular surface of the walnut Jug r 1 allergen shared a pronounced structural homology with the corresponding region of the pecan nut Car i 1 allergen. With the exception of peanut, 2S albumins could thus account for the IgE-binding cross-reactivity observed between some other dietary nuts, e.g. walnut and pecan nut.  相似文献   

17.
BACKGROUND: Several proteins have been identified as peanut allergens; among them, Ara h 1 (7S globulin) and Ara h 2 (2S globulin) are usually considered the major allergens. OBJECTIVE: To identify the major allergens in a group of children selected for their specific pattern of immunoreactivity. METHODS: We identified the dominant allergen by using (1) amino acid sequencing of the bands that show the strongest IgE immunoreactivity in 1-dimensional electrophoresis and immunoblotting and (2) specific animal IgGs raised against the dominant immunoreactive band to pinpoint the allergen(s) in peanut proteins separated by 2-dimensional electrophoresis and immunoblotting. To confirm these data, we further examined the peanut proteome using serum samples from the children with the unusual immunoreactivity. RESULTS: We found a group of children with marked peanut allergy who are specifically sensitized to the basic subunit of Ara h 3 (11S globulin family). CONCLUSION: That the dominant immunoreactivity in these patients is in a basic subunit of Ara h 3 was unexpected, because previous studies had indicated that Ara h 3 was only a minor peanut allergen and that the identified allergenic epitopes occurred mainly in the acidic Ara h 3 subunit.  相似文献   

18.
BACKGROUND: A major characteristic of many food allergens, including Ara h 1, a major peanut allergen, is their resistance to gastric digestion. One estimate of the allergenic potential of a possible protein allergen is its stability under simulated gastric conditions. OBJECTIVE: Because the rate and extent of digestion of allergenic proteins will affect the severity of any subsequent allergic response, it is important to correlate protein allergen digestion in simulated gastric fluid with that in actual gastric fluid. METHODS: A major peanut allergen, Ara h 1, was digested in vitro by using both pepsin and porcine gastric fluid. Several comparisons between the 2 sets of proteolytic conditions were assessed including pH optima and the effect of temperature, denaturants, and specific enzyme inhibitors. RESULTS: In vitro digestion of Ara h 1 with pepsin and porcine gastric fluid resulted in virtually identical hydrolysis patterns as observed on SDS-PAGE. The protease activity of both pepsin and gastric fluid were inhibited at high pH and in the presence of pepstatin. However, both remained active in 4 mol/L urea and at 60 degrees C. CONCLUSIONS: Protein digestion in the porcine stomach is carried out by pepsin. In vivo gastric digestion is modeled accurately by peptic hydrolysis. Digestion conditions in vivo are comparable to experimental conditions in vitro provided that the acidic nature of the stomach contents is optimal for characterization of the allergen under standard pepsin digestion conditions. Additional experimentation using crude food extracts, both in the presence and absence of a complete meal, is needed to elucidate the complete physiologic nature of food allergen digestion.  相似文献   

19.
目的制备花生主要过敏原Ara h 2三聚体重组蛋白并检测其过敏原性。方法利用分子生物学的方法将3分子的Ara h 2依次串联起来,并将其整合到原核表达载体pET-32a(+),再转化到感受态Origami中;然后利用IPTG诱导其表达;通过Ni2+亲和层析纯化三聚体重组蛋白;Western-blotting和ELISA检测目的蛋白的过敏原性。结果测序结果表明Trimer成功整合到pET-32a(+)上。三聚体重组蛋白纯化后经SDS-PAGE鉴定,蛋白大小与理论值相符。Western-blotting和ELISA结果表明Trimer与重组的Ara h 2(r-Ara h 2)蛋白相比,结合花生过敏病人混合血清中IgE的能力有所降低。结论成功制备花生主要过敏原Ara h 2三聚体重组蛋白,初步的体外实验表明该重组蛋白具有低致敏原的潜能。  相似文献   

20.
It is important to know the contribution of specific allergens to a complex allergenic extract and to have a dependable method to assess the effector activity of an extract specifically depleted of that allergen. We have previously shown that removal of the major peanut allergen, Ara h 2, from a crude peanut extract (CPE) minimally altered the effector activity of the extract. Here we describe in detail the methodology used to generate specific rabbit anti-peptide antibodies to remove a related peanut allergen, Ara h 6, from CPE and describe an improvement in the RBL SX-38 cell assay used to assess the effector activity of treated extracts. Our results show that although Ara h 2 and Ara h 6 can be selectively removed from a CPE, removal of each alone from a CPE had no significant effect on the effector activity. However, removal of Ara h 2 and Ara h 6 together significantly reduced the effector activity of CPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号