首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Herpes simplex viruses (HSV) type 1 are the basis of a number of anticancer strategies that have proven efficacious in animal models. They are natural human pathogens and the majority of adults have anti-HSV immunity. The current study examined the effect of preexisting immunity on the response to herpes-based oncolytic viral treatment of hepatic metastatic cancer in a murine model designed to simulate a clinical approach likely to be utilized for nonneurological tumors. Specifically, the anticancer effects of NV1020 or G207, two multimutated HSV-1 oncolytic viruses, were tested in immunocompetent mice previously immunized with a wild-type herpes simplex type 1 virus. Mice were documented to have humoral as well as cell-mediated immunity to HSV-1. Tumor response to oncolytic therapy was not measurably abrogated by immunity to HSV at the doses tested. The influence of route of viral administration was also tested in models of regional hepatic arterial and intravenous therapy. Route of viral administration influenced efficacy, as virus delivered intravenously produced some detectable attenuation while hepatic arterial therapy remained unaffected. These results demonstrate that when given at appropriate doses and in reasonable proximity to tumor targets, HSV-based oncolytic therapy can still be expected to be effective treatment for patients with hepatic malignancies.  相似文献   

4.
New strategies using biological agents are being developed to treat cancer. Live viruses are among these new agents. Virotherapy uses replication-competent viral vectors with strong oncolytic properties. With the use of molecular virology techniques, viruses have been genetically engineered to replicate selectively in tumour cells and are under preclinical and clinical investigation at present. Measles virus (MV) is being used for this purpose. Replication-competent attenuated Edmonston B measles vaccine strain (MV-Edm) is non-pathogenic and has potent antitumour activity against several human tumours. The virus is selectively oncolytic in tumour cells, eliciting extensive cell-to-cell fusion and ultimately leading to cell death. Therefore, MV-Edm is a safe and efficient means to kill tumour cells. Further improvements in existing MV vectors may increase tumour selectivity and oncolytic activity. This review discusses the discovery and development of replication-competent oncolytic MV for cancer therapy.  相似文献   

5.
New strategies using biological agents are being developed to treat cancer. Live viruses are among these new agents. Virotherapy uses replication-competent viral vectors with strong oncolytic properties. With the use of molecular virology techniques, viruses have been genetically engineered to replicate selectively in tumour cells and are under preclinical and clinical investigation at present. Measles virus (MV) is being used for this purpose. Replication-competent attenuated Edmonston B measles vaccine strain (MV-Edm) is non-pathogenic and has potent antitumour activity against several human tumours. The virus is selectively oncolytic in tumour cells, eliciting extensive cell-to-cell fusion and ultimately leading to cell death. Therefore, MV-Edm is a safe and efficient means to kill tumour cells. Further improvements in existing MV vectors may increase tumour selectivity and oncolytic activity. This review discusses the discovery and development of replication-competent oncolytic MV for cancer therapy.  相似文献   

6.
A major limitation to the use of immunotherapy in the treatment of cancer has been the localized immune suppressive environment within the tumor. Although there is evidence that tumor-selective (oncolytic) viruses may help to overcome this immune suppression, a primary limitation to their use has been limited systemic delivery potential, especially in the face of antiviral immunity. We recently demonstrated that tumor-trafficking immune cells can efficiently deliver oncolytic viral therapies to their tumor targets. These cells act as both a therapeutic agent and also a carrier vehicle for the oncolytic virus. Here, we demonstrate that such delivery is also possible in the face of pre-existing antiviral immunity, so overcoming the limited systemic delivery of naked, cell-free virus. It was also found that treatment of previously immunized mice or repeat treatments leading to immunization resulted in a switch from a primarily oncolytic to an immunotherapeutic mechanism of action. Furthermore, repeat cycles of treatment with combination immune cell-viral therapy resulted in increased tumor infiltration of effector T-cells and a general reduction in the levels of known immune suppressive lymphocyte populations. This therefore represents a novel and effective means to overcome localized immune suppression within the tumor micoenvironment.  相似文献   

7.
Tissue-specific promoters for cancer gene therapy   总被引:3,自引:0,他引:3  
Adenoviral cancer gene therapy approaches have resulted in promising recent results. Following only a decade of intense development, some of the crucial obstacles are now being overcome. Insufficient transduction has been the main limitation of earlier approaches. A new approach for increasing transduction of tumour cells is utilisation of replication-competent oncolytic agents, such as conditionally replicating adenoviruses (CRADs). The anti-tumour effect is caused by replication of the virus per se and, thus, replication must be restricted to tumour cells to protect normal tissues from damage. Tissue-specific promoters (TSPs) represent a powerful tool for decreasing the toxicity of cancer gene therapy to normal tissues and have previously been utilised for specific mutation compensation or delivery of prodrug-converting enzymes. However, TSPs can also be used for controlling crucial viral replication regulators and consequent restriction of replication to tumour cells. Initial clinical trials have demonstrated the safety and suggested efficacy for TSP-controlled CRADs as a novel approach for cancer gene therapy.  相似文献   

8.
Adenoviral cancer gene therapy approaches have resulted in promising recent results. Following only a decade of intense development, some of the crucial obstacles are now being overcome. Insufficient transduction has been the main limitation of earlier approaches. A new approach for increasing transduction of tumour cells is utilisation of replication-competent oncolytic agents, such as conditionally replicating adenoviruses (CRADs). The anti-tumour effect is caused by replication of the virus per se and, thus, replication must be restricted to tumour cells to protect normal tissues from damage. Tissue-specific promoters (TSPs) represent a powerful tool for decreasing the toxicity of cancer gene therapy to normal tissues and have previously been utilised for specific mutation compensation or delivery of prodrug-converting enzymes. However, TSPs can also be used for controlling crucial viral replication regulators and consequent restriction of replication to tumour cells. Initial clinical trials have demonstrated the safety and suggested efficacy for TSP-controlled CRADs as a novel approach for cancer gene therapy.  相似文献   

9.
Importance of the field: Viral oncolysis, or virotherapy, is an emerging strategy for the treatment of cancer based on tumor cell killing by virus infection and replication. Oncolytic adenoviruses have shown promise in clinical trials, which demonstrated proof-of-concept for tumor-selective virus replication and a favorable safety profile.

Areas covered in this review: We provide an overview of specifications for a novel antitumour approach by oncolytic adenoviruses expressing interleukin and discuss recent progresses in this field.

What the reader will gain: Creating an armed therapeutic viral platform, where the lytic property of viral infection coupled to virus-mediated interleukin delivery, may enhance the potential of virus-based therapeutics.

Take home message: Oncolytic adenoviruses expressing interleukin may be a novel approach for tumour treatment. Combining advances in oncolytic adenoviruses with interleukin will open new avenues for treatment of human tumour.  相似文献   

10.
Metastatic ovarian cancer is the leading cause of death among women with gynecologic malignancies in the United States. The lack of effective treatment for patients with advanced ovarian cancer warrants development of innovative therapies. Cancer therapy using oncolytic viruses represents a promising new approach for controlling tumors. Vaccinia virus has been shown to preferentially infect tumor cells but not normal tissue. However, oncolytic therapy using recombinant viruses faces the limitation of viral clearance due to generation of neutralizing antibodies. In the current study, we found that cyclooxygenase-2 (Cox-2) inhibitors circumvented this limitation, enabling repeated administration of vaccinia virus without losing infectivity. We quantified the antivaccinia antibody response using enzyme-linked immunosorbent assay (ELISA) and neutralization assays to show that treatment of Cox-2 inhibitors inhibited the generation of neutralizing antibodies. Furthermore, we showed that combination treatment of Cox-2 inhibitors with vaccinia virus was more effective that either treatment alone in treating MOSEC/luc tumor-bearing mice. Thus, the combination of Cox-2 inhibitors and vaccinia virus represents a potential innovative approach to controlling ovarian tumors.  相似文献   

11.
Gene therapy for cancer treatment: past, present and future   总被引:7,自引:0,他引:7  
The broad field of gene therapy promises a number of innovative treatments that are likely to become important in preventing deaths from cancer. In this review, we discuss the history, highlights and future of three different gene therapy treatment approaches: immunotherapy, oncolytic virotherapy and gene transfer. Immunotherapy uses genetically modified cells and viral particles to stimulate the immune system to destroy cancer cells. Recent clinical trials of second and third generation vaccines have shown encouraging results with a wide range of cancers, including lung cancer, pancreatic cancer, prostate cancer and malignant melanoma. Oncolytic virotherapy, which uses viral particles that replicate within the cancer cell to cause cell death, is an emerging treatment modality that shows great promise, particularly with metastatic cancers. Initial phase I trials for several vectors have generated excitement over the potential power of this technique. Gene transfer is a new treatment modality that introduces new genes into a cancerous cell or the surrounding tissue to cause cell death or slow the growth of the cancer. This treatment technique is very flexible, and a wide range of genes and vectors are being used in clinical trials with successful outcomes. As these therapies mature, they may be used alone or in combination with current treatments to help make cancer a manageable disease.  相似文献   

12.
Thorne SH  Contag CH 《Gene therapy》2008,15(10):753-758
Despite significant advances in the development of tumor-selective agents, strategies for effective delivery of these agents across biological barriers to cells within the tumor microenvironment has been limiting. One tactical approach to overcoming biological barriers is to use cells as delivery vehicles, and a variety of different cell types have been investigated with a range of agents. In addition to transporting agents with targeted delivery, cells can also produce their own tumoricidal effect, conceal a payload from an immune response, amplify a selective agent at the target site and facilitate an antitumor immune response. We have reported a therapeutic combination consisting of cytokine induced killer cells and an oncolytic vaccinia virus with many of these features that led to therapeutic synergy in animal models of human cancer. The synergy was due to the interaction of the two agents to enhance the antitumor benefits of each individual component. As both of these agents display broad tumor-targeting potential and possess unique tumor killing mechanisms, together they were able to recognize and destroy a far greater number of malignant cells within the heterogeneous tumor than either agent alone. Effective cancer therapy will require recognition and elimination of the root of the disease, the cancer stem cell, and the combination of CIK cells and oncolytic vaccinia viruses has this potential. To create effective tumor-selective agents the viruses are modified to take advantage of the unique biology of the cancer cell. Similarly, if we are to develop targeted therapies that are sufficiently multifaceted to eliminate cancer cells at all stages of disease, we should integrate the virus into the unique biology of the cell delivery vehicle.  相似文献   

13.
Souvignet C  Zarski JP 《Thérapie》2000,55(3):333-341
The clinical and socioeconomic background of chronic viral hepatitis is favourable to new therapeutic approaches based on gene biochemistry. As with all gene therapy, the treatment of chronic viral hepatitis using this approach would make use of a therapeutic gene and a delivery system adapted to the pharmaceutical objectives of targeting, gene expression and kinetics. The various vectors under review are not yet sufficiently optimized for selective targeting of infected hepatocytes. Moreover, four therapeutic gene processes are currently under development: antisense oligonucleotides, ribozymes, dominant negative mutants and DNA vaccines. These developments are obviously limited by the lack of experimental or animal models representative of the pathophysiology of chronic viral hepatitis. The gene therapy for chronic viral hepatitis is nearly ready for clinical evaluation but must be weighed against the continuous progress of pharmaceutical treatments.  相似文献   

14.
Herpes simplex virus (HSV) oncolytic gene therapy is a promising treatment modality against cancer. We have demonstrated that androgen-induced cellular changes enhance oncolytic viral replication and improve efficacy in the treatment of androgen-dependent prostate cancer cell line. Imaging of changes in 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) uptake by positron emission tomography (PET) is a sensitive method of detecting altered cellular metabolism involved in cancer therapy. We therefore hypothesized that FDG-PET can predict tumor response to oncolytic HSV therapy. In this study, androgen increased cell kill (74%) in vitro and enhanced viral yield (2.4-fold) in vivo following HSV therapy. This enhanced efficacy was predicted by high FDG accumulation in intact animals compared to low FDG uptake following orchiectomy (p = 0.002). This proof-of-concept study provides the mechanistic basis for selecting patients for targeted oncolytic viral therapy by means of a noninvasive molecular imaging method in the treatment of prostate cancer. Second author with equal contribution.  相似文献   

15.
16.
Oncolytic vaccinia virus: from bedside to benchtop and back   总被引:10,自引:0,他引:10  
The field of oncolytic viral therapy has undergone a major shift in focus in the last few years. Less research has been directed at making incremental improvements in original vectors based mainly on strains of adenovirus and HSV; instead a variety of different viral strains have been suggested as potential backbones for future oncolytic viruses (including Newcastle disease virus, reovirus, vesicular stomatitis virus, polio virus, retrovirus, Sindbis virus, picornavirus, mumps and measles virus), with many of these progressing to clinical trials. Of these, vaccinia virus represents a particularly promising candidate. It possesses a variety of intrinsic molecular properties suitable for an oncolytic virus (such as rapid life cycle and lysis of infected cells, and an ability to infect various cell types), in addition to undergoing extensive study both in the laboratory and in the clinic. Although not a natural human pathogen, there are extensive data on the effects of vaccinia infection in humans. Preclinical models incorporating new oncolytic vaccinia strains, as well as data from the first clinical trials that have utilized the next-generation oncolytic vaccinia strains for the potential treatment of cancer have been described.  相似文献   

17.
To enhance further the safety and efficacy of oncolytic vaccinia virus, we have developed a new virus with targeted deletions of three viral genes encoding thymidine kinase and antiapoptotic/host range proteins SPI-1 and SPI-2 (vSPT). Infection of human and murine tumor cell lines yielded nearly equivalent or a log lower virus recovery in comparison to parental viruses. Viral infection activated multiple caspases in cancer cells but not in normal cells, suggesting infected cells may die via different pathways. In tumor-bearing mice, vSPT recovery from MC38 tumor was slightly reduced in comparison to two parental viruses. However, no virus was recovered from the brains and livers of mice injected with vSPT in contrast to control viruses. vSPT demonstrated significantly lower pathogenicity in nude mice. Systemic delivery of vSPT showed significant tumor inhibition in subcutaneous MC38 tumor, human ovarian A2780 and murine ovarian MOSEC carcinomatosis models; however, the tumor inhibition by vSPT was reduced compared with parental viruses. These results demonstrated that although deletion of these three viral genes further enhanced tumor selectivity, it also weakened the oncolytic potency. This study illustrates the complexity of creating a tumor-selective oncolytic virus by deleting multiple viral genes involved in multiple cellular pathways.  相似文献   

18.
It has been demonstrated that interleukin 24 (IL-24, also called melanoma differentiation associated gene 7) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-24 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-24 (ZD55-IL-24) was constructed by insertion of an IL-24 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. ZD55-IL-24 could express substantially more IL-24 than Ad-IL-24 because of replication of the vector. It has been shown that ZD55-IL-24 exerted a strong cytopathic effect and significant apoptosis in tumor cells with p53 dysfunction. Moreover, no cytotoxic and apoptotic effects could be seen in normal cells infected with ZD55-IL-24. Expression of IL-24 did not interfere with viral replication induced by oncolytic adenovirus. Activation of caspase 3 and caspase 9, and induction of bax gene expression, were involved in tumor cell apoptosis induced by ZD55-IL-24. Treatment of established tumors with ZD55-IL-24 showed much stronger antitumor activity than that induced by ONYX-015 or Ad-IL- 24. These data indicated that oncolytic adenovirus expressing IL-24 could exert potential antitumor activity and offer a novel approach to cancer therapy.  相似文献   

19.
In contrast to the large quantity of preclinical evidence for efficacy, few gene therapy agents have reached clinical development for the treatment of primary and secondary liver cancer. This review discusses the published clinical trials that have explored the feasibility, safety and efficacy of gene therapy strategies for the treatment of liver cancer. Strategies include restoration of tumor suppressor genes, genetic prodrug-activating therapy, genetic immunotherapy and oncolytic virotherapy. In these trials, transgene expression of varying degrees has been detected. Globally, gene therapy has proven to be safe, with none of the agents tested reaching the MTD. Although none of the phase II trials provided significant response rates, objective remissions have occasionally been observed and proof-of-concept for the ability of gene therapy to produce significant tumor cell killing has been determined. Insufficient delivery following intravascular administration and short-lived transgene expression are likely to be the cause of this limited antitumor efficacy. The development of new gene therapy vectors with improved characteristics will increase the probability of success of gene therapy for the treatment of liver cancer.  相似文献   

20.
In recent years, oncolytic viruses have been genetically engineered to target cancer cells selectively. Adenovirus is one such oncolytic virus that is being tested in clinical trials for the treatment of cancer. The observation that cells infected with replication-competent adenoviruses undergo autophagy has provided new options for investigating the mechanism of adenovirus-induced cell death. It has been suggested that the use of autophagy inducers, such as rapamycin, can enhance the oncolytic potency of recombinant adenoviruses. Additionally, several research groups have established that inserting microRNA (miRNA)-targeted sequences into the adenoviral genome can modulate adenoviral protein expression to confer tissue and tumor selectivity. Furthermore, the capability of adenoviruses to inhibit the expression of the DNA repair enzyme MGMT and to chemosensitize glioma cells to temozolomide has been demonstrated. This review discusses three aspects of the use of oncolytic adenoviruses to treat cancer: (i) the induction of autophagy and autophagic cell death during adenoviral replication; (ii) the opportunities and strategies involved in the exploitation of miRNA specificity to generate tissue- and tumor-selective oncolytic viruses; and (iii) the rationale for combining oncolytic adenoviruses with chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号