首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MICs, time-kills, and postantibiotic effects (PAEs) of ABT-773 (a new ketolide) and 10 other agents were determined against 226 pneumococci. Against 78 ermB- and 44 mefE-containing strains, ABT-773 MICs at which 50% of the isolates tested were inhibited (MIC(50)s) and MIC(90)s were 0.016 to 0.03 and 0.125 microgram/ml, respectively. Clindamycin was active only against macrolide-resistant strains containing mefE (MIC(50), 0.06 microgram/ml; MIC(90), 0.125 microgram/ml). Activities of pristinamycin (MIC(90), 0.5 microgram/ml) and vancomycin (MIC(90), 0.25 microgram/ml) were unaffected by macrolide or penicillin resistance, while beta-lactam MICs rose with those of penicillin G. Against 19 strains with L4 ribosomal protein mutations and two strains with mutations in domain V of 23S rRNA, ABT-773 MICs were 0.03 to 0.25 microgram/ml, while macrolide and azalide MICs were all >/=16.0 microgram/ml. ABT-773 was bactericidal at twice the MIC after 24 h for 8 of 12 strains (including three strains with erythromycin MICs greater than or equal to 64.0 microgram/ml). Kill kinetics of erythromycin, azithromycin, clarithromycin, and roxithromycin against macrolide-susceptible strains were slower than those of ABT-773. ABT-773 had longer PAEs than macrolides, azithromycin, clindamycin, or beta-lactams, including against ermB-containing strains. ABT-773, therefore, shows promising in vitro activity against macrolide-susceptible as well as -resistant pneumococci.  相似文献   

2.
The in vitro susceptibilities of 103 Mycoplasma pneumoniae isolates, 14 Mycoplasma hominis isolates, 12 Mycoplasma fermentans isolates, and 24 Ureaplasma species to ABT-773, an investigational ketolide, and seven other agents were determined. For M. pneumoniae, the ABT-773 MIC at which 90% of isolates are inhibited (MIC(90); or=16-fold lower than those of all three fluoroquinolones. Minimal bactericidal concentrations determined for a subgroup of organisms were 相似文献   

3.
The activity of the ketolide ABT-773 against Haemophilus and Moraxella was compared to those of 11 other agents. Against 210 Haemophilus influenzae strains (39.0% beta-lactamase positive), microbroth dilution tests showed that azithromycin and ABT-773 had the lowest MICs (0.5 to 4.0 and 1.0 to 8.0 microg/ml, respectively), followed by clarithromycin and roxithromycin (4.0 to >32.0 microg/ml). Of the beta-lactams, ceftriaxone had the lowest MICs (32.0 microg/ml). Against 50 Moraxella catarrhalis strains, all of the compounds except amoxicillin and cefprozil were active. Time-kill studies against 10 H. influenzae strains showed that ABT-773, at two times the MIC, was bactericidal against 9 of 10 strains, with 99% killing of all strains at the MIC after 24 h; at 12 h, ABT-773 gave 90% killing of all strains at two times the MIC. At 3 and 6 h, killing by ABT-773 was slower, with 99.9% killing of four strains at two times the MIC after 6 h. Similar results were found for azithromycin, with slightly slower killing by erythromycin, clarithromycin, and roxithromycin, especially at earlier times. beta-Lactams were bactericidal against 8 to 10 strains at two times the MIC after 24 h, with slower killing at earlier time periods. Most compounds gave good killing of five M. catarrhalis strains, with beta-lactams killing more rapidly than other drugs. ABT-773 and azithromycin gave the longest postantibiotic effects (PAEs) of the ketolide-macrolide-azalide group tested (4.4 to >8.0 h), followed by clarithromycin, erythromycin, and roxithromycin. beta-Lactam PAEs were similar and shorter than those of the ketolide-macrolide-azalide group for all strains tested.  相似文献   

4.
The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 microg/ml for ABT-773 and 0.008 to 0.06 microg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 microg/ml; Mef MIC90, 0.12 microg/ml) compared to those of telithromycin (Erm MIC90, 0.12 microg/ml; Mef MIC90, 1 microg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 microg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 microg/ml; ABT-773 Mef MIC90, 0.12 microg/ml; telithromycin Erm MIC90, >8 microg/ml; telithromycin Mef MIC90, 1.0 microg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 microg/ml; telithromycin MIC90, 0.5 microg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.  相似文献   

5.
The activity of ABT-773, a novel ketolide antibiotic, against clinical isolates of anaerobic bacteria was determined and compared to the activities of other antimicrobial agents. MICs at which 90% of isolates were inhibited (MIC(90)s) were 32 microg/ml, respectively, for Eubacterium spp., Lactobacillus spp., Clostridium difficile, and Clostridium ramosum. The MIC(90) for Bilophila wadsworthia, Bacteroides ureolyticus, and Campylobacter gracilis was 1 microg/ml, and that for Prevotella bivia and other Prevotella spp. was 0.5 microg/ml. The MIC(90) for Fusobacterium nucleatum was 8 microg/ml, and that for Fusobacterium mortiferum and Fusobacterium varium was >32 microg/ml. The MIC(90)s for the Bacteroides fragilis group were as follows: for B. fragilis, 8 microg/ml; for Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides distasonis, and Bacteroides uniformis, >32 microg/ml; and for Bacteroides vulgatus, 4 microg/ml. Telithromycin MICs for the B. fragilis group were usually 1 to 2 dilutions higher than ABT-773 MICs. For all strains, ABT-773 was more active than erythromycin by 4 or more dilutions, and for some strains this drug was more active than clindamycin.  相似文献   

6.
The comparative in vitro activities of ABT-773 against 207 aerobic and 162 anaerobic antral sinus puncture isolates showed that erythromycin-resistant pneumococcal strains were susceptible to ABT-773 (< or =0.125 microg/ml); the MIC at which 90% of the isolates tested were inhibited for Haemophilus influenzae and other Haemophilus spp. was 4 microg/ml; and all Moraxella spp. and beta-lactamase-producing Prevotella species strains were inhibited by < or =0.125 microg/ml. Among the anaerobes tested, only fusobacteria (45%) required > or =4 microg of ABT-773/ml for inhibition. ABT-773 may offer a therapeutic alternative for sinus infections.  相似文献   

7.
We studied the comparative in vitro activities of ABT-773, a new ketolide, against 268 aerobic and 148 anaerobic recent isolates from clinical bites using an agar dilution method and inocula of 10(4) CFU/spot for aerobes and 10(5) CFU for anaerobes. The following are the MIC ranges and MICs at which 90% of isolates are inhibited (MIC(90)s) of ABT-773 for various isolates, respectively: Pasteurella multocida and Pasteurella septica, 0.125 to 2 and 1 microg/ml; other Pasteurella species, 0.125 to 1 and 0.5 microg/ml; Corynebacterium spp., 0.015 to 0.06 and 0.015 microg/ml; Staphylococcus aureus, 0.03 to 0.06 and 0.06 microg/ml; coagulase-negative staphylococci, 0.015 to >32 and 32 microg/ml; streptococci, 0.015 to 0.03 and 0.03 microg/ml; Eikenella corrodens, 0.25 to 1 and 1 microg/ml; and Bergeyella zoohelcum, 0.03 to 0.25 and 0.06 microg/ml. For anaerobes the MIC ranges and MIC(90)s of ABT-773 were as follows, respectively: Prevotella heparinolytica, 0. 06 to 0.125 and 0.125 microg/ml; Prevotella spp., 0.015 to 0.125 and 0.06 microg/ml; Porphyromonas spp., 0.015 to 0.03 and 0.015 microg/ml; Fusobacterium nucleatum, 0.5 to 8 and 8 microg/ml; other Fusobacterium spp., 0.015 to 8 and 0.5 microg/ml; Bacteroides tectum, 0.015 to 0.5 and 0.06 microg/ml; and Peptostreptococcus spp., 0.015 to 0.25 and 0.03 microg/ml. ABT-773 was more active than all macrolides tested against S. aureus, E. corrodens, and anaerobes, but all compounds were poorly active against F. nucleatum. The activity of ABT-773 was within 1 dilution of that of azithromycin against Pasteurella spp., and ABT-773 was four- to eightfold more active than clarithromycin against Pasteurella spp. ABT-773 may offer a therapeutic alternative for bite wound infections.  相似文献   

8.
The in vitro activities of ABT 773, telithromycin (HMR 3647), azithromycin, clarithromycin, erythromycin, and levofloxacin were tested against 20 strains of Chlamydia pneumoniae. The MIC at which 90% of the isolates were inhibited and the minimal bactericidal concentration at which 90% of the isolates were killed by ABT 773 were 0.015 microg/ml (range, 0.008 to 0.015 microg/ml). ABT 773 was the most active antibiotic tested in this study.  相似文献   

9.
A total of 6,991 unique patient isolates of Streptococcus pneumoniae were collected from October 1997 to June 2002 from 25 medical centers in 9 of the 10 Canadian provinces. Among these isolates, 20.2% were penicillin nonsusceptible, with 14.6% being penicillin intermediate (MIC, 0.12 to 1 microg/ml) and 5.6% being penicillin resistant (MIC, > or =2 microg/ml). The proportion of high-level penicillin-resistant S. pneumoniae isolates increased from 2.4 to 13.8% over the last 3 years of the study, and the proportion of multidrug-resistant S. pneumoniae isolates increased from 2.7 to 8.8% over the 5-year period. Resistant rates (intermediate and resistant) among non-beta-lactam agents were as follows: macrolides, 9.6 to 9.9%; clindamycin, 3.8%; doxycycline, 5.5%; chloramphenicol, 3.9%; and trimethoprim-sulfamethoxazole, 19.0%. Rates of resistance to non-beta-lactam agents were higher among penicillin-resistant strains than among penicillin-susceptible strains. No resistance to vancomycin or linezolid was observed; however, 0.1% intermediate resistance to quinupristin-dalfopristin was observed. The rate of macrolide resistance (intermediate and resistant) increased from 7.9 to 11.1% over the 5 years. For the fluoroquinolones, the order of activity based on the MICs at which 50% of isolates are inhibited (MIC(50)s) and the MIC(90)s was gemifloxacin > clinafloxacin > trovafloxacin > moxifloxacin > grepafloxacin > gatifloxacin > levofloxacin > ciprofloxacin. The investigational compounds ABT-773 (MIC(90), 0.008 microg/ml), ABT-492 (MIC(90), 0.015 microg/ml), GAR-936 (tigecycline; MIC(90), 0.06 microg/ml), and BMS284756 (garenoxacin; MIC(90), 0.06 micro g/ml) displayed excellent activities. Despite decreases in the rates of antibiotic consumption in Canada over the 5-year period, the rates of both high-level penicillin-resistant and multidrug-resistant S. pneumoniae isolates are increasing in Canada.  相似文献   

10.
The activity of ABT-773 was studied against extracellular and intracellular Legionella pneumophila and for the treatment of guinea pigs with L. pneumophila pneumonia. The ABT-773 MIC at which 50% of isolates are inhibited (MIC(50)) for 20 different Legionella sp. strains was 0.016 microg/ml, whereas the MIC(50)s of clarithromycin and erythromycin were 0.032 and 0.125 microg/ml, respectively. ABT-773 (1 microg/ml) was bactericidal for two L. pneumophila strains grown in guinea pig alveolar macrophages. In contrast, erythromycin and clarithromycin had easily reversible static activity only. Therapy studies of ABT-773 and erythromycin were performed with guinea pigs with L. pneumophila pneumonia. When ABT-773 was given to infected guinea pigs by the intraperitoneal route (10 mg/kg of body weight), mean peak levels in plasma were 0.49 microg/ml at 0.5 h and 0.30 microg/ml at 1 h postinjection. The terminal half-life phase of elimination from plasma was 0.55 h, and the area under the concentration-time curve from 0 to 24 h (AUC(0-24)) was 0.65 microg. h/ml. For the same drug dose, mean levels in the lung were 15.9 and 13.2 microg/g at 0.5 and 1 h, respectively, with a half-life of 0.68 h and an AUC(0-24) of 37.0 microg. h/ml. Ten of 15 L. pneumophila-infected guinea pigs treated with ABT-773 (15 mg/kg/dose given intraperitoneally once daily) for 5 days survived for 9 days post-antimicrobial therapy, as did 14 of 15 guinea pigs treated with erythromycin (30 mg/kg given intraperitoneally twice daily) for 5 days. All of the ABT-773-treated animals that died appeared to do so because of drug-induced peritonitis rather than overwhelming pneumonia. None of 12 animals treated with saline survived. ABT-773 is as effective as erythromycin against L. pneumophila in infected macrophages and in a guinea pig model of Legionnaires' disease. These data support studies of the clinical effectiveness of ABT-773 for the treatment of Legionnaires' disease.  相似文献   

11.
The in vitro activities of ABT-773 were evaluated against 324 strains of gram-positive bacteria, including multidrug-resistant Staphylococcus spp. and Enterococcus spp. ABT-773 had lower MIC ranges, MICs at which 50% of isolates are inhibited (MIC(50)s), and MIC(90)s than erythromycin or clindamycin for almost all isolates tested. The MICs of ABT-773 were also lower than those of quinupristin-dalfopristin (Q-D) for methicillin-susceptible Staphylococcus aureus, Rhodococcus spp., and Streptococcus spp., while the MICs of Q-D were lower than those of ABT-773 for methicillin-resistant S. aureus and Enterococcus faecium, including vancomycin-resistant isolates.  相似文献   

12.
A total of 2,245 clinical isolates of Streptococcus pneumoniae were collected from 63 microbiology laboratories from across Canada during 2000 and characterized at a central laboratory. Of these isolates, 12.4% were not susceptible to penicillin (penicillin MIC, >or=0.12 microg/ml) and 5.8% were resistant (MIC, >or=2 microg/ml). Resistance rates among non-beta-lactam agents were the following: macrolides, 11.1%; clindamycin, 5.7%; chloramphenicol, 2.2%; levofloxacin, 0.9%; gatifloxacin, 0.8%; moxifloxacin, 0.4%; and trimethoprim-sulfamethoxazole, 11.3%. The MICs at which 90% of the isolates were inhibited (MIC90s) of the fluoroquinolones were the following: gemifloxacin, 0.03 microg/ml; BMS-284756, 0.06 microg/ml; moxifloxacin, 0.12 microg/ml; gatifloxacin, 0.25 microg/ml; levofloxacin, 1 microg/ml; and ciprofloxacin, 1 microg/ml. Of 578 isolates from the lower respiratory tract, 21 (3.6%) were inhibited at ciprofloxacin MICs of >or=4 microg/ml. None of the 768 isolates from children were inhibited at ciprofloxacin MICs of >or=4 microg/ml, compared to 3 of 731 (0.6%) from those ages 15 to 64 (all of these >60 years old), and 27 of 707 (3.8%) from those over 65. The MIC90s for ABT-773 and telithromycin were 0.015 microg/ml for macrolide-susceptible isolates and 0.12 and 0.5 microg/ml, respectively, for macrolide-resistant isolates. The MIC of linezolid was 相似文献   

13.
ABT-773, a novel ketolide, was compared to erythromycin, azithromycin, clarithromycin, ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin, gatifloxacin, and gemifloxacin against antibiotic-resistant strains recently isolated from patients with respiratory tract infections. MICs were determined by agar dilution using standard NCCLS methodology. ABT-773 (MIC(90) 0.06 mg/L) was more active than the macrolides (MIC(90) > or = 2 mg/L) and fluoroquinolones (MIC(90) > or = 0.5 mg/L) against penicillin-resistant Streptococcus pneumoniae. The fluoroquinolones were the most active agents tested against beta-lactamase-positive Haemophilus influenzae (MIC(90) < or = 0.01-0.06 mg/L), against which ABT-773 (MIC(90) 4 mg/L) was comparable to azithromycin and two- and four-fold more active than erythromycin and clarithromycin, respectively. Against beta-lactamase positive Moraxella catarrhalis, the activity of ABT-773 (MIC(90) 0.06 mg/L) was comparable to gemifloxacin, trovafloxacin, levofloxacin, and ciprofloxacin (MIC(90) 0.03-0.06 mg/L) and 4- to eightfold greater than that of clarithromycin, gatifloxacin, and erythromycin. These data suggest ABT-773 could be a valuable compound for the treatment of respiratory tract infections, including those resistant to usual oral therapy.  相似文献   

14.
The in vitro activities of ABT-773 were evaluated against 15 Listeria monocytogenes strains and 196 coryneform bacteria isolated from clinical samples. One hundred percent of the L. monocytogenes strains were inhibited by 32 (Corynebacterium jeikeium), 0.03 and >32 (Corynebacterium minutissimum), >32 and >32 (Corynebacterium pseudodiphtheriticum and Corynebacterium urealyticum), 0.125 and >32 (Corynebacterium striatum), and 0.03 and 0.5 (Rhodococcus equi), respectively.  相似文献   

15.
The in vitro activity of ABT-773, a new ketolide, was compared with those of clarithromycin, amoxicillin, metronidazole, and tetracycline against 15 strains of Helicobacter pylori. The MIC of ABT-773 at which 90% of isolates were inhibited was 0.25 microg/ml, which was 3 dilutions higher than that of the most active agent, clarithromycin. Synergy and antagonism were not seen with any combinations. Additive activity was seen with tetracycline, metronidazole, and amoxicillin in 100, 60, and 40% of the combinations, respectively.  相似文献   

16.
The susceptibilities of 228 penicillin- and erythromycin-susceptible and -resistant pneumococci to RU 64004, a new ketolide, were tested by agar dilution, and the results were compared with those for penicillin G, erythromycin, azithromycin, clarithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. RU 64004 was very active against all strains tested, with MICs at which 90% of the isolates are inhibited (MIC90s) of 0.016 microg/ml for erythromycin-susceptible strains (MIC, < or = 0.25 microg/ml) and 0.25 microg/ml for erythromycin-resistant strains (MIC, > or = 0.5 microg/ml). All other macrolides had MIC90s of 0.03 to 0.25 and > or = 128 microg/ml for erythromycin-susceptible and -resistant strains, respectively. Among erythromycin-resistant strains, clindamycin MICs for 28 of 91 (30.7%) were < or = 0.125 microg/ml. Pristinamycin MICs for all strains were < or = 1.0 microg/ml. MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.25 microg/ml, respectively, and were unaffected by susceptibility to penicillin or erythromycin. Vancomycin and imipenem inhibited all strains at < or = 0.5 and < or = 0.25 microg/ml, respectively. MICs of cefuroxime and cefotaxime rose with those of penicillin G. MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher for penicillin- and erythromycin-resistant strains. RU 64004 is the first member of the macrolide group which has low MICs for erythromycin-resistant pneumococci.  相似文献   

17.
The rates of nonsusceptibility to penicillin, erythromycin, and clindamycin of 191 blood culture isolates of viridans group streptococci collected from across Canada in 2000 were 36, 42, and 10%, respectively. Although 8% of the strains were resistant to ciprofloxacin (MIC >or= 4 microg/ml), the MICs of gemifloxacin, BMS 284756, telithromycin, and ABT 773 at which 90% of the strains were inhibited were 0.06, 0.06, 0.12, and 0.03 microg/ml, respectively.  相似文献   

18.
Time-kill studies examined the activities of telithromycin (HMR 3647), erythromycin A, azithromycin, clarithromycin, roxithromycin, clindamycin, pristinamycin, amoxicillin-clavulanate, and metronidazole against 11 gram-positive and gram-negative anaerobic bacteria. Time-kill studies were carried out with the addition of Oxyrase in order to prevent the introduction of CO(2). Macrolide-azalide-ketolide MICs were 0.004 to 32.0 microg/ml. Of the latter group, telithromycin had the lowest MICs, especially against non-Bacteroides fragilis group strains, followed by azithromycin, clarithromycin, erythromycin A, and roxithromycin. Clindamycin was active (MIC /=99.9% killing) against 6 strains, with 99% killing of 9 strains and 90% killing of 10 strains. After 24 h at twice the MIC, 90, 99, and 99.9% killing of nine, six, and three strains, respectively, occurred. Lower rates of killing were seen at earlier times. Similar kill kinetics relative to the MIC were seen with other macrolides. After 48 h at the MIC, clindamycin was bactericidal against 8 strains, with 99 and 90% killing of 9 and 10 strains, respectively. After 24 h, 90% killing of 10 strains occurred at the MIC. The kinetics of clindamycin were similar to those of pristinamycin. After 48 h at the MIC, amoxicillin-clavulanate showed 99.9% killing of seven strains, with 99% killing of eight strains and 90% killing of nine strains. At four times the MIC, metronidazole was bactericidal against 8 of 10 strains tested after 48 h and against all 10 strains after 24 h; after 12 h, 99% killing of all 10 strains occurred.  相似文献   

19.
Among 1,011 recently isolated Streptococcus pyogenes isolates from 10 Central and Eastern European centers, the MICs at which 50% of isolates are inhibited (MIC(50)s) and the MIC(90)s were as follows: for telithromycin, 0.03 and 0.06 microg/ml, respectively; for erythromycin, azithromycin, and clarithromycin, 0.06 to 0.125 and 1 to 8 microg/ml, respectively; and for clindamycin, 0.125 and 0.125 microg/ml, respectively. Erythromycin resistance occurred in 12.3% of strains. Erm(A) [subclass erm(TR)] was most commonly encountered (60.5%), followed by mef(A) (23.4%) and erm(B) (14.5%). At <0.5 microg/ml, telithromycin was active against 98.5% of the strains tested.  相似文献   

20.
In this study (1998-1999), we collected 215 macrolide-resistant Streptococcus pneumoniae isolates from an ongoing Canadian Respiratory Organism Surveillance Study involving 23 centers representing all regions of Canada. The prevalence of erythromycin-resistant S. pneumoniae was 8% (215 of 2,688). Of the 215 isolates, 48.8% (105 of 215) were PCR positive for mef(A) and 46.5% (100 of 215) were PCR positive for erm(B). The ketolides telithromycin and ABT-773 demonstrated excellent activity against both mef(A) (MIC for 90% of strains [MIC(90)], 0.06 and 0.03 microg/ml, respectively) and erm(B) (MIC(90), 0.06 and 0.03 microg/ml, respectively) strains of S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号