首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: A population of CD4+CD25+ regulatory T (Treg) cells is thought to regulate alloreactive T cells in many autoimmune diseases. Lack of Treg cells resulted in abortions in mice and transfer of them prevented miscarriage. FOXP3 is now considered the most specific marker for Treg cells. In this study, we investigated whether levels of peripheral blood Treg cells in women with recurrent spontaneous abortion (RSA) of unknown etiology or with repeated implantation failures (IF) are different from those of normal fertile women. Materials and Methods: Non‐pregnant women with a history of idiopathic RSA or repeated IF were enrolled in the study group (n = 15) and non‐pregnant fertile females served as controls (n = 7). A flow cytometry assay was used. Peripheral blood mononuclear cells (PBMCs) were isolated and stained with appropriate monoclonal antibodies that identify Treg cells: for surface markers, such as anti‐CD4 and anti‐CD25, and for intracellular marker, anti‐FOXP3. Results: The proportions of CD4+CD25+FOXP3+ Treg cells were significantly different between the patients and controls, 1.5% versus 2.4%, respectively (P < 0.05). In addition, an alteration in the expression of surface CD25 was noted after permeabilization of PBMC which allows antibodies to enter the cells and bind to FOXP3. The mean percentage of CD25+ cells before permeabilization, 9.9 + 4.8%, was decreased to 5.3+3.5% after permeabilization (P < 0.01). The ratios of CD4+CD25+/CD4+ between the surface and the intracellular staining also decreased by 46% (P < 0.001). Conclusion: CD4+CD25+FOXP3+ cells were significantly lower in the patients with idiopathic RSA or multiple IF than in the controls. Permeabilization for intracellular staining induces a decrease in expression of surface markers.  相似文献   

2.
CD4+CD25+Foxp3+ regulatory T (Treg) cells can undergo both thymic selection and peripheral expansion in response to self peptides that are agonists for their T cell receptors (TCR). However, the specificity by which these TCR must recognize peptide:MHC complexes to activate Treg cell function is not known. We show that CD4+CD25+Foxp3+ Treg cells can mediate suppression in response to peptides that are only weakly cross‐reactive with the self peptide that induced their formation in vivo. Moreover, suppression could be efficiently activated by peptide analogs that were inefficient at inducing CD69 up‐regulation, and that also induced little or no proliferation of naïve CD4+CD25Foxp3 T cells expressing the same TCR. These findings provide evidence that self peptide‐specific CD4+CD25+Foxp3+ Treg cells can exert regulatory function in response to self‐ and/or pathogen‐derived peptides with which they are only weakly cross‐reactive.  相似文献   

3.
CTLA‐4 is constitutively expressed by CD4+CD25+Foxp3+ Treg but its precise role in Treg function is not clear. Although blockade of CTLA‐4 interferes with Treg function, studies using CTLA‐4‐deficient Treg have failed to reveal an essential requirement for CTLA‐4 in Treg suppression in vivo. Conditional deletion of CTLA‐4 in Foxp3+ T cells disrupts immune homeostasis in vivo but the immune processes disrupted by CTLA‐4 deletion have not been determined. We demonstrate that Treg expression of CTLA‐4 is essential for Treg control of lymphopenia‐induced CD4 T‐cell expansion. Despite IL‐10 expression, CTLA‐4‐deficient Treg were unable to control the expansion of CD4+ target cells in a lymphopenic environment. Moreover, unlike their WT counterparts, CTLA‐4‐deficient Treg failed to inhibit cytokine production associated with homeostatic expansion and were unable to prevent colitis. Thus, while Treg developing in the absence of CTLA‐4 appear to acquire some compensatory suppressive mechanisms in vitro, we identify a non‐redundant role for CTLA‐4 in Treg function in vivo.  相似文献   

4.
5.
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4+Foxp3+ Treg cells upon exposure to infective L3 larvae. Within 7 days post‐infection this resulted in an increased percentage of CD4+T cells at the infection site expressing Foxp3. Antibody‐mediated depletion of CD25+ cells prior to infection to remove pre‐existing ‘natural’ CD4+CD25+Foxp3+ Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post‐infection. Anti‐CD25 pre‐treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen‐specific IL‐4, IL‐5, IL‐13 and IL‐10. Thus, upon infection filarial larvae rapidly provoke a CD4+Foxp3+ Treg‐cell response, biasing the initial CD4+ T‐cell response towards a regulatory phenotype. These CD4+Foxp3+ Treg cells are predominantly recruited from the ‘natural’ regulatory pool and act to inhibit protective immunity over the full course of infection.  相似文献   

6.
7.
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3× SEB) is partially due to an increased frequency of Foxp3+ CD4 T cells. Importantly, reduced number of conventional CD25? Foxp3? cells, rather than conversion of such cells to Foxp3+ cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3× OVA) and OVA—peptide (OVAp) (3× OVAp). Cell‐transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3× OVAp and 3× SEB mice. However, the in vivo anergy was CD4 T‐cell autonomous and independent of Foxp3+ Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3+ cells. These data provide important implications for Foxp3+ cell‐mediated tolerance in situations of repeated antigen exposure such as human persistent infections.  相似文献   

8.
Regulatory T (Treg) cells can balance normal tissue homeostasis by limiting inflammatory tissue damage, e.g. during pathogen infection, but on the other hand can also limit protective immunity induced during natural infection or following vaccination. Because most studies have focused on the role of CD4+ Treg cells, relatively little is known about the phenotype and function of CD8+ Treg cells, particularly in infectious diseases. Here, we describe for the first time the expression of CD39 (E‐NTPDase1) on Mycobacterium‐activated human CD8+ T cells. These CD8+CD39+ T cells significantly co‐expressed the Treg markers CD25, Foxp3, lymphocyte activation gene‐3 (LAG‐3), and CC chemokine ligand 4 (CCL4), and suppressed the proliferative response of antigen‐specific CD4+ T helper‐1 (Th1) cells. Pharmacological or antibody mediated blocking of CD39 function resulted in partial reversal of suppression. These data identify CD39 as a novel marker of human regulatory CD8+ T cells and indicate that CD39 is functionally involved in suppression by CD8+ Treg cells.  相似文献   

9.
Tolerogenic DC and suppressive Foxp3+ Treg play important roles in preventing autoimmunity and allograft rejection. We report that (adenovirus mediated) ectopic expression of Foxp3 in human DC (i.e. DC.Foxp3) yields an APC that severely limits T‐cell proliferation and type‐1 immune responses from the naïve, but not memory, pool of responder T cells in vitro. In marked contrast, the frequencies of type‐2 and Treg responses were dramatically increased after stimulation of naïve T cells with DC.Foxp3 versus control DC. DC.Foxp3‐induced CD4+CD25+ Treg cells potently suppressed the proliferation of, and IFN‐γ production from, CD4+ and CD8+ responder T cells. Notably, the immunosuppressive biology of DC.Foxp3 was effectively normalized by addition of 1‐methyl‐tryptophan or neutralizing anti‐TGF‐β1 Ab during the period of T‐cell priming. These data suggest the potential utility of regulatory DC.Foxp3 and/or DC.Foxp3‐induced CD4+CD25+ Treg as translational agents for the amelioration or prevention of pathology in the setting of allograft transplantation and/or autoimmunity.  相似文献   

10.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

11.
CD4+ CD25+ regulatory T (Treg) cells expressing Foxp3+ play a critical role in maintaining immune homoeostasis and controlling excessive immune responses. However, controversy about the immunoregulatory role of Treg cells exists in malaria studies. Given the role of maintenance of Foxp3 expression in Treg cells’ activities, we investigated whether anti‐CD25 mAb (7D4 clone) treatment affects Foxp3 expression in CD4+ T cells in DBA/2 mice infected with Plasmodium chabaudi chabaudi AS (P. c. chabaudi AS). We found that DBA/2 mice succumbed to P. c. chabaudi AS infection, which was accompanied by increased expression of Foxp3 in CD4+ T cells at the peak parasitemia. In contrast, Foxp3 expression was impaired in CD25‐depleted mice with 7D4 mAb treatment, leading to delayed parasitemia and extended survival of infected mice. Production of IFN‐γ, TNF‐α and IL‐6, as well as NO was significantly enhanced in CD25‐depleted mice. The majority of CD4+ CTLA‐4+ cells expressed high levels of Foxp3 (Foxp3hi cells) in control mice with P. c. chabaudi AS infection. However, the number of CD4+ Foxp3hiCTLA‐4+ cells was reduced in CD25‐depleted mice. Together, these data suggest that CD4+ Foxp3hiCTLA‐4+ cells may be involved in regulating the intensity of pro‐inflammatory responses via CTLA‐4.  相似文献   

12.
《Autoimmunity》2013,46(8):667-677
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory disease of the peripheral nervous system that is probably autoimmune in origin. Different components of the adaptive and innate immunity may be responsible for the aberrant response towards nerve antigens. To investigate this, we examined lymphocyte subsets and regulatory T cell (Treg) function in the blood of CIDP patients, healthy controls (HC) and subjects with non-immune mediated neuropathies (other neuropathies, ON). We used flow cytometry to determine the frequency of monocytes, B cells, natural killer (NK) and NK-T cells, total and activated CD4+ and CD8+ T cells, effector memory and central memory CD4+ and CD8+ T cells, and CD4+CD25highFoxp3+ Tregs. Treg function was studied after polyclonal stimulation and antigen specific stimulation with myelin protein peptides in CIDP and HC. There was an increased frequency of monocytes (p = 0.02) and decreased frequency of NK cells (p = 0.02) in CIDP compared with HC but not ON. There were no significant differences in other populations. Treg function was impaired in CIDP compared to HC (p = 0.02), whilst T cell proliferation to myelin protein peptides before and after depletion of Tregs was not different between patients and controls. This study shows increased circulating monocytes and reduced NK cells in CIDP. Although Treg frequency was not altered, we confirm that Tregs display a defect of suppressive function. Myelin protein peptides were not the target of the altered peripheral regulation of the immune response. The mechanisms of peripheral immune tolerance in CIDP and their relevance to the pathogenesis deserve further exploration.  相似文献   

13.
Although Treg‐cell‐mediated suppression during infection or autoimmunity has been described, functions of Treg cells during highly pathogenic avian influenza virus infection remain poorly characterized. Here we found that in Foxp3‐GFP transgenic mice, CD8+ Foxp3+ Treg cells, but not CD4+ Foxp3+ Treg cells, were remarkably induced during H5N1 infection. In addition to expressing CD25, the CD8+ Foxp3+ Treg cells showed a high level of GITR and produced IL‐10. In an adoptive transfer model, CD8+ Treg cells suppressed CD8+ T‐cell responses and promoted H5N1 virus infection, resulting in enhanced mortality and increased virus load in the lung. Furthermore, in vitro neutralization of IL‐10 and studies with IL‐10R‐deficient mice in vitro and in vivo demonstrated an important role for IL‐10 production in the capacity of CD8+ Treg cells to inhibit CD8+ T‐cell responses. Our findings identify a previously unrecognized role of CD8+ Treg cells in the negative regulation of CD8+ T‐cell responses and suggest that modulation of CD8+ Treg cells may be a therapeutic strategy to control H5N1 viral infection.  相似文献   

14.
1α,25‐Dihydroxyvitamin D3 (1α25VitD3) has potent immunomodulatory properties. We have previously demonstrated that 1α25VitD3 promotes human and murine IL‐10‐secreting CD4+ T cells. Because of the clinical relevance of this observation, we characterized these cells further and investigated their relationship with Foxp3+ regulatory T (Treg) cells. 1α25VitD3 increased the frequency of both Foxp3+ and IL‐10+ CD4+T cells in vitro. However, Foxp3 was increased at high concentrations of 1α25VitD3 and IL‐10 at more moderate levels, with little coexpression of these molecules. The Foxp3+ and IL‐10+ T‐cell populations showed comparable suppressive activity. We demonstrate that the enhancement of Foxp3 expression by 1α25VitD3 is impaired by IL‐10. 1α25VitD3 enables the selective expansion of Foxp3+ Treg cells over their Foxp3? T‐cell counterparts. Equally, 1α25VitD3 maintains Foxp3+ expression by sorted populations of human and murine Treg cells upon in vitro culture. A positive in vivo correlation between vitamin D status and CD4+Foxp3+ T cells in the airways was observed in a severe pediatric asthma cohort, supporting the in vitro observations. In summary, we provide evidence that 1α25VitD3 enhances the frequency of both IL‐10+ and Foxp3+ Treg cells. In a translational setting, these data suggest that 1α25VitD3, over a broad concentration range, will be effective in enhancing the frequency of Treg cells.  相似文献   

15.
Costimulatory signals are required for priming and activation of naive T cells, while it is less clear how they contribute to induction of regulatory T (Treg)‐cell activity. We previously reported that the blockade of the B7‐CD28 and CD40L‐CD40 interaction efficiently suppresses allogeneic T‐cell activation in vivo. This was characterized by an initial rise in Foxp3+ cells, followed by depletion of host‐reactive T cells. To further investigate effects of costimulatory blockade on Treg cells, we used an in vitro model of allogeneic CD4+ cell activation. When CTLA‐4Ig and anti‐CD40L mAb (MR1) were added to the cultures, T‐cell proliferation and IL‐2 production were strongly reduced. However, Foxp3+ cells proliferated and acquired suppressive activity. They suppressed activation of syngeneic CD4+ cells much more efficiently than did freshly isolated Treg cells. CD4+ cells activated by allogeneic cells in the presence of MR1 and CTLA‐4Ig were hyporesponsive on restimulation, but their response was restored to that of naive CD4+ cells when Foxp3+ Treg cells were removed. We conclude that natural Treg cells are less dependent on B7‐CD28 or CD40‐CD40L costimulation compared with Foxp3? T cells. Reduced costimulation therefore alters the balance between Teff and Treg‐cell activation in favor of Treg‐cell activity.  相似文献   

16.
17.
Recently, we demonstrated elevated numbers of CD4+ Foxp3+ regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3+ Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios+ Foxp3+ Treg cells remained unchanged. Both Foxp3+ Nrp‐1+ and Foxp3+ Nrp‐1? Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3? T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3+ Treg cells.  相似文献   

18.
Human autoimmune diseases are often characterized by a relative deficiency in CD4+CD25+ regulatory T cells (Treg). We therefore hypothesized that expansion of Treg can ameliorate autoimmune pathology. We tested this hypothesis in an experimental model for autoimmune myasthenia gravis (MG), a B‐cell‐mediated disease characterized by auto‐Ab directed against the acetylcholine receptor within neuromuscular junctions. We showed that injection of immune complexes composed of the cytokine IL‐2 and anti‐IL‐2 mAb (JES6‐1A12) induced an effective and sustained expansion of Treg, via peripheral proliferation of CD4+CD25+Foxp3+ cells and peripheral conversion of CD4+CD25?Foxp3? cells. The expanded Treg potently suppressed autoreactive T‐ and B‐cell responses to acetylcholine receptor and attenuated the muscular weakness that is characteristic of MG. Thus, IL‐2/anti‐IL‐2 mAb complexes can expand functional Treg in vivo, providing a potential clinical application of this modality for treatment of MG and other autoimmune disorders.  相似文献   

19.
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is an autoimmune disorder caused by mutations in the FOXP3 gene, which plays a key role in the generation of CD4+CD25+regulatory T (Treg) cells. We selected CD127 as the surface marker of Treg cells to illustrate the development and function of Treg cells in IPEX syndrome. CD4+CD25+FOXP3+ T cells, the putative Treg cells, were almost completely absent in all patients. Importantly, a substantial number of CD4+CD25+CD127low T cells were observed in 3 IPEX patients with hypomorphic mutations in the FOXP3 gene. We demonstrated that CD4+CD25+CD127low T cells isolated from these 3 patients exhibited an appreciable suppressive activity on effector T cell proliferation, although less than that displayed by Treg cells from healthy controls. These results suggest that genetically altered FOXP3 can drive the generation of functionally immature Treg cells, but that intact FOXP3 is necessary for the complete function of Treg cells.  相似文献   

20.
The identification of regulatory T cells (Treg cells) in human peripheral blood is an important tool in diagnosis, research, and therapeutic intervention. As compared to lymphoid tissues, the frequencies of circulating Treg cells identified as CD4+CD25+Foxp3+ are, however, low. We here show that many of these cells remain undetected due to transient down regulation of Foxp3, which rapidly decays in the absence of cytokine‐mediated STAT5 signals. Short‐term incubation of PBMCs or isolated CD4+ T cells, but not of lymph node cells, with IL‐2, ‐7, or ‐15 more than doubles the frequency of Foxp3+CD25+ among CD4+ T cells detectable by flow cytometry. This increase is not due to cell division but to upregulation of both proteins. At the same time, the uncovered Treg cells up‐regulate CD25 and down‐regulate CD127, making them accessible to viable cell sorting. “Latent” Treg cells have a demethylated FOXP3 TSDR sequence, are enriched in naïve, non‐cycling cells, and are functional. The confirmation of our findings in RA and SLE patients shows the feasibility of uncovering latent Treg cells for immune monitoring in clinical settings. Finally, our results suggest that unmasking of latent Treg cells contributes to the increase in circulating CD4+CD25+Foxp3+ cells reported in IL‐2 treated patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号