首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
BACKGROUND: Using a procedure first developed by Hall (1979), we examined ethanol self-administration in preweanling pups from Wistar rats and in lines of rats selectively bred for divergent ethanol preference (alcohol-preferring P, alcohol-nonpreferring NP, high-alcohol-drinking HAD-1 and -2, and low-alcohol-drinking LAD-2) to determine if factors contributing to high and low alcohol intakes are present early in development. METHODS: From postnatal days 5 to 20, nondeprived male and female rat pups received 30 min daily access to either water or a 15% (v/v) ethanol solution. In each daily session, pups were placed in a heated chamber containing Kimwipes soaked with a water or ethanol solution. Pups were weighed before and after each session, and intake levels were calculated as a percentage of body weight change. RESULTS: Similar to previous reports, Wistar pups exhibited over a 2-fold higher level of ethanol ingestion than water on postnatal days 9 through 14, with ethanol intakes approaching 3 g/kg body weight. When the drinking patterns of the selected lines were examined, only the HAD replicate lines showed a comparable preference for ethanol versus water during the preweanling period. The ethanol consumption of P, NP, and LAD lines was not consistently distinguishable from water intake levels. To reveal whether early ethanol exposure would influence later ethanol drinking behavior, a subset of HAD and LAD rat pups received free-choice ethanol access upon weaning. Although the divergent ethanol preference between high- and low-alcohol-drinking lines was evident within the first 4 days of access (>4 g/kg/day for HAD; <2 g/kg/day for LAD), preweanling ethanol exposure did not alter the acquisition or maintenance of ethanol drinking in either line. CONCLUSIONS: Overall, these results suggest that (a) the enhanced ethanol ingestion observed during the middle portion of the preweanling period is a robust phenomenon and generalizes across nonselected strains of rats, (b) selective breeding for divergent alcohol preference has arrested this age-specific effect in all but the HAD lines of rats, and (c) early ethanol exposure does not alter genetic dispositions for later high or low alcohol preference.  相似文献   

2.
A characteristic of heritable alcoholism is an early onset of alcohol abuse, which may begin at or before the age of adolescence. The objective of the present study was to determine the ontogeny of alcohol drinking behavior before and during puberty in the selectively bred alcohol-preferring (P), alcohol-nonpreferring (NP), high alcohol drinking (HAD), and low alcohol drinking (LAD) lines of rats. In addition, the effects of postweaning housing conditions (single- or pair-housed) and initiation procedure (4 days forced ethanol or free-choice) were evaluated in male and female P rats. Results indicate that high alcohol drinking in P and HAD (replicate line 2) rats, as well as low alcohol drinking behavior in NP and LAD (replicate line 2) rats, is present as early as 3 to 4 weeks of age. Ethanol intakes in juvenile P and HAD rats reached levels of ∼4 to 5 g/kg/day by 38 to 41 days of age and were comparable with levels observed in adults. Neither housing conditions nor ethanol initiation procedure significantly altered the acquisition or magnitude of alcohol intake levels in juvenile male and female P rats. These results suggest that the neural substrates underlying divergent ethanol drinking behavior in P/NP and HAD/LAD lines of rats are present early in life.  相似文献   

3.
Background: The purpose of the present study was to determine whether alcohol‐naïve rats selectively bred for alcohol preference or nonpreference differ in alcohol withdrawal severity using two sets of rat lines selectively bred for the same phenotype. Methods: Alcohol‐naïve male rats from the high alcohol drinking (HAD1) and low alcohol drinking (LAD1) rat lines and from the alcohol preferring (P) and nonpreferring (NP) rat lines received an intragastric infusion of alcohol (4.0 g/20.3 ml/kg; 25% v/v) or an equal volume of water once a day for 10 consecutive days. Alcohol withdrawal severity was assessed at using a behavioral rating scale and a radiant heat assay measured analgesia at 10, 12, 14, 16, 18, and 24 hrs following infusion of alcohol or water on days 1, 5, and 10 of treatment. Results: Data were analyzed using body weight as a co‐factor to correct for differences in body weight between the HAD1/LAD1 and P/NP lines. Acute (1 day) but not repeated alcohol treatment (5 or 10 days) produced mild behavioral signs of withdrawal in LAD1 but not in HAD1 rats. HAD1 and LAD1 rats showed alcohol‐induced analgesia after 1 and 5 days of alcohol treatment that disappeared by day 10 in both lines. Repeated alcohol treatment (5 days) produced mild behavioral signs of withdrawal in NP but not in P rats. Neither P nor NP rats showed alcohol‐induced analgesia after 1, 5, or 10 days of alcohol treatment. Conclusions: An inverse genetic association was found between alcohol preference and severity of alcohol withdrawal in two sets of rat lines selected for the same phenotype. The pattern of alcohol withdrawal that emerged over the course of the 10 days of alcohol treatment differed between the two lines selected for low alcohol drinking (LAD1 and NP), suggesting that unique sets of genes may influence alcohol withdrawal severity in the two lines.  相似文献   

4.
Abstract : Background: The low‐dose stimulatory effect of ethanol (EtOH) in rats has been hypothesized to reflect its hedonic effects and to be associated with a genetic predisposition toward high alcohol preference. To test the hypothesis that phenotypes associated with high alcohol preference in adulthood are also present in adolescent rats at the time of onset of alcohol drinking, the current study examined the effects of EtOH on locomotor activity (LMA) during adolescence in lines of rats selectively bred for divergent alcohol intakes. Methods: Subjects were adolescent (31–40 days of age) rats from the alcohol‐preferring (P) and ‐nonpreferring (NP) lines and from the high–alcohol‐drinking (HAD) and low–alcohol‐drinking (LAD) replicate lines. On day 1, all subjects (n= 8–10/line/gender/dose) received intraperitoneal saline injections and were placed in the activity monitor for 30 min. On day 2, subjects received intraperitoneal saline or 0.25, 0.50, 0.75, 1.0, or 1.5 g EtOH/kg. Results: The LMA of male and female P rats was increased with low doses (0.25–0.75 g/kg) and decreased at the highest dose (1.5 g/kg) of EtOH. Similar effects were observed with low doses of EtOH on the LMA of HAD‐1 and HAD‐2 rats. None of the EtOH doses stimulated LMA in the NP, LAD‐1, or LAD‐2 rats, although all of the low–alcohol‐intake lines of rats showed decreased LMA at the highest dose of EtOH. Only the P rats among the high–alcohol‐consuming lines of rats showed decreased LMA at the highest dose of EtOH. Conclusion: Selective breeding for high alcohol consumption seems to be associated with increased sensitivity to the low‐dose stimulating effects of EtOH and reduced sensitivity to the high‐dose motor‐impairing effects of ethanol. The expression of these phenotypes emerges during adolescence by the age of onset of alcohol‐drinking behavior.  相似文献   

5.
BACKGROUND: The alcohol deprivation effect (ADE) is a temporary increase in the ratio of alcohol/total fluid intake and voluntary intake of ethanol (EtOH) solutions over baseline drinking conditions when EtOH access is reinstated after a period of alcohol deprivation. The ADE has been posited to be an animal model for alcohol craving. In the current study, we examined the effects of initial deprivation length and number of deprivation exposures on the ADE in the replicate lines of the high-alcohol-drinking (HAD) rats. METHODS: Adult male HAD-1 and HAD-2 rats received 24 hr free-choice access to 10% (v/v) EtOH and water for 6 weeks. Rats were then assigned to groups deprived of EtOH for 0 (control), or 2 to 8 weeks. All deprived groups were then given 24 hr access to EtOH for 2 weeks before being deprived of EtOH for another 2 weeks. This cycle of 2 weeks of access and 2 weeks of deprivation was carried out for a total of four deprivations. RESULTS: After the initial EtOH deprivation period, EtOH consumption in HAD-1 and HAD-2 rats returned to baseline levels but failed to exhibit either an early onset ADE (initial 2 hr) or prolonged ADE (24 hr). An ADE was observed in two of the four deprived groups for the HAD-1 rats (2 week and 6 week groups) and in all deprived groups for the HAD-2 rats after a second deprivation, and in all deprived groups of both lines after a third deprivation. In the HAD-2 line, but not in the HAD-1 line, the duration of the ADE was prolonged into the second reinstatement day after the fourth deprivation. CONCLUSIONS: The expression of an ADE was observed only after repeated deprivation periods in the HAD lines. The duration of the ADE was prolonged in the HAD-2 line, but not in the HAD-1 line, with repeated deprivations, which suggests a dissociation between selection for alcohol preference and the effects of repeated deprivations on the duration of the ADE.  相似文献   

6.
Background: We have previously shown that a genetic association exists between low alcohol drinking and high alcohol withdrawal magnitude after acute alcohol exposure in alcohol‐naïve rats. However, the behavioral rating scale used in this prior study was not optimal for assessing the magnitude of mild alcohol withdrawal. The present study examined whether a genetic relationship is again found between alcohol preference and alcohol withdrawal magnitude when a sensitive measure is used to index mild alcohol withdrawal in rats. Methods: Alcohol‐naïve, male rats selectively bred for alcohol preference (P, HAD1, HAD2) or nonpreference (NP, LAD1, LAD2) received a single intragastric infusion of alcohol (4.0 g/20.3 ml/kg body weight; 25% v/v) or water followed by acoustic startle testing. Results: Startle probability and magnitude was greater in water‐treated P than in water‐treated NP rats. During alcohol withdrawal, startle probability and magnitude was suppressed in P rats and elevated in NP rats relative to water‐treated controls. Startle probability and magnitude was greater in water‐treated LAD1 rats than in water‐treated HAD1 rats. During alcohol withdrawal, startle probability and magnitude was suppressed in HAD1 and elevated in LAD1 rats relative to water‐treated controls at 20 hr after acute alcohol exposure. Startle probability and magnitude did not differ between water‐treated HAD2 and water‐treated LAD2 rats. During alcohol withdrawal, there was a trend toward decreased startle probability and magnitude in HAD2 rats compared with water‐treated controls. Conclusions: The acoustic startle response to a tone stimulus is a sensitive measure of mild alcohol withdrawal in rats. Rats selectively bred for low alcohol intake showed greater alcohol withdrawal magnitude than did rats selectively bred for high alcohol intake. These results provide further evidence that an inverse genetic association exists between alcohol withdrawal magnitude and propensity toward alcohol drinking in rats.  相似文献   

7.
BACKGROUND: Stress has long been thought to influence the initiation and maintenance of alcohol drinking in humans. However, results of studies in animals suggest that the relationship between stress and alcohol drinking is not well understood. The purpose of this study was to examine the effect of unpredictable and uncontrollable restraint stress on alcohol consumption in two sets of rat lines selectively bred for alcohol preference (P) and high alcohol drinking (HAD1) and for alcohol nonpreference (NP) and low alcohol drinking (LAD1). METHODS: Male P (n = 26) and NP (n = 26) and HAD1 (n = 17) and LAD1 (n = 20) rats were counterbalanced on the basis of alcohol intake and assigned, in matched pairs, to either a stress (Stress) or a no-stress (Control) group. All rats were given a free choice between a 10% v/v alcohol solution and water, with food freely available. Unpredictable, uncontrollable stress, which consisted of immobilization in a nylon restraint sleeve for 30 to 120 min/day, was applied for 10 consecutive days. RESULTS: Stress moderately reduced alcohol intake in both P and HAD1 rats versus controls and had no effect on alcohol intake in either the NP or the LAD1 rats during the 10 days of stress application. Alcohol intake was increased for the first 5 days after stress termination in P rats but not in HAD1 rats. Alcohol intake remained stable for several weeks in both the NP and LAD1 lines after stress termination and then increased during the last 15 days of the 35-day poststress period in NP rats, but not in LAD1 rats. CONCLUSIONS: A reduction in alcohol intake during stress in rats with a genetic predisposition toward high alcohol intake seems to be a moderate but consistent finding, whereas an increase in alcohol intake after stress termination is less consistent and may be influenced by genetic background.  相似文献   

8.
Several lines of alcohol-preferring and alcohol-nonpreferring rats have been developed using selective breeding based on 24-hr homecage ethanol consumption. However, it remains unclear if the selection based on two-bottle choice resulted in similar ethanol self-administration when measured using an operant procedure. In this paper, we compare our previous work using alcohol-accepting (AA) and alcohol-nonaccepting (ANA) rats with data obtained using the identical procedures in the (P) and (NP) rat lines, and both replicate lines of the high alcohol drinking (HAD1 and HAD2) and low alcohol drinking (LAD1 and LAD2) lines. All rats from each line were initiated to self-administer 10% ethanol using the sucrose fading procedure. After initiation, increasing concentrations of ethanol up to 30% ethanol were tested. The results indicated that only in the LAD1 and LAD2 lines was ethanol presentation not able to maintain lever pressing after initiation. Compared with the AA line, the P, HAD1, HAD2, and NP lines all self-administered more ethanol in the operant paradigm after initiation. The ANA line self-administered less ethanol than the AA line, but more than the LAD lines. Correlational analysis of homecage consumption with operant ethanol self-administration suggested that -62% of the genetic variance in operant self-administration resulted from genes selected for the homecage drinking. At the same time, it was clear that there were genetic influences on operant self-administration that were not selected for by homecage ethanol drinking.  相似文献   

9.
BACKGROUND: The alcohol deprivation effect (ADE) is a temporary increase in the voluntary intake of ethanol solutions following a period of alcohol deprivation. Multiple deprivations can prolong the expression of an ADE. This study examined the effects of initial deprivation length, concurrent exposure to multiple ethanol concentrations, and number of deprivation exposures on the magnitude and duration of the ADE in alcohol-preferring (P) rats. METHODS: Adult female P rats received 24-hr free-choice access to 10, 20, and 30% ethanol and water for 6 weeks. Rats were then randomly assigned to three groups; one group served as a nondeprived control, whereas the other two groups were initially deprived of ethanol for 2 or 8 weeks. The ethanol solutions were restored to both deprived groups for 2 weeks before the groups were deprived of ethanol for another 2 weeks. This cycle was repeated three times for a total of four deprivations. RESULTS: After the initial ethanol deprivation period, both deprived groups displayed a similar 2-fold increased ethanol intake (g/Kg/day) during the initial 24-hr period when ethanol was restored. Both deprived groups showed greater than 2-fold increases in intake of the 20 and 30% ethanol solutions after re-exposure. Ethanol consumption returned to baseline levels within 2 weeks, before the subsequent deprivation period. Multiple deprivations increased the magnitude of the ADE over that observed in the first deprivation during the initial 24-hr period of re-exposure and prolonged the duration of the ADE. In addition, repeated deprivations increased ethanol intake in the first 2-hr period of re-exposure and produced blood ethanol levels in excess of 150 mg/100 ml. CONCLUSIONS: Alterations in the reinforcing and/or aversive effects of alcohol occurred after a single prolonged deprivation and were enhanced with repeated deprivations.  相似文献   

10.
BACKGROUND: Relapse-like drinking has been studied through the expression of the alcohol deprivation effect (ADE), which is measured by a pronounced increase in ethanol preference and consumption after imposed abstinence. No studies have characterized the ADE in C57BL/6J (B6) mice. The present study examined the effects of length and number of deprivations on the expression of the ADE in B6 mice. METHODS: Adult male B6 mice received 24-hour continuous access to ethanol and water for 6 weeks (baseline). Experiment 1 determined the ADE in mice receiving weekly access to 15% ethanol (i.e., exposed 1 day a week and deprived during the other 6 days) for a total of 10 weeks. Experiments 2 and 3 determined the ADE after a single 2-week deprivation period in mice receiving a single concentration of 15% ethanol or multiple concentrations of 7.5, 15, and 30% ethanol, respectively, followed by weekly access to their respective ethanol solutions for 10 weeks. Experiment 4 determined the ADE after a single 2-week deprivation period, followed by daily access to 15% ethanol. Mice never deprived of ethanol (i.e., continuous access) were used as age-matched drinking controls. RESULTS: The ADE was observed after the initial 6-day deprivation period and was profoundly enhanced (i.e., escalation of the ADE) following weekly reexposure to 15% ethanol. Compared with a single concentration of 15% ethanol, concurrent access to multiple ethanol concentrations resulted in a near 2-fold increase in baseline ethanol consumption. Regardless of having access to single or multiple concentrations of ethanol, the ADE was not observed immediately after a 2-week deprivation period. The ADE was observed (although to a lesser magnitude and duration) following weekly reexposure to single or multiple concentrations of ethanol. Alternatively, following a 2-week deprivation period, mice receiving daily access to 15% ethanol showed a significant decrease in ethanol intake and preference (i.e., negative ADE). CONCLUSIONS: Short-term deprivations followed by repeated intermittent (weekly) reexposure to ethanol produces a robust ADE in B6 mice. Increasing the initial deprivation length to 2 weeks produces various opposing effects, including erasure of an initial ADE, diminished expression and magnitude of the ADE following weekly exposure, and complete reversal of the ADE following daily exposure to ethanol.  相似文献   

11.
BACKGROUND: We have previously reported an association between greater alcohol withdrawal magnitude after a single alcohol exposure and a genetic predisposition toward low alcohol drinking in rats selectively bred for differences in alcohol intake when acoustic startle reactivity to a tone stimulus was used to index acute alcohol withdrawal. The purpose of this study was to examine whether the quality of the acoustic startle stimulus (noise versus tone) is important for detecting a genetic relationship between alcohol withdrawal magnitude and alcohol drinking behavior. METHODS: Alcohol-naive male rats selectively bred for high alcohol intake [alcohol-preferring (P), high-alcohol-drinking (HAD)1, and HAD2] or low alcohol intake [alcohol-nonpreferring (NP), low-alcohol-drinking (LAD)1, and LAD2] received a single intragastric infusion of water or alcohol (4.0 g/20.3 ml/kg; 25% v/v), and acoustic startle test sessions were given at 14, 16, 18, 20, and 24 hr after infusion. Each test session consisted of a 5-min acclimation period followed by random presentation of various white noise stimuli (90, 100, 110, and 120 dB.) RESULTS: Line differences in acoustic startle magnitude under control conditions were present in all three pairs of selectively bred lines; P rats showed a greater startle magnitude relative to NP rats, whereas both LAD lines showed a greater startle magnitude relative to both HAD lines. During alcohol withdrawal, the P, HAD1, and HAD2 lines showed enhanced startle magnitude compared with their water-treated controls. No change in startle magnitude during alcohol withdrawal was found in the NP, LAD1, or LAD2 lines. CONCLUSIONS: In contrast to our prior findings, these results showed a genetic association between high alcohol drinking and a greater startle response magnitude to a noise stimulus during alcohol withdrawal. It seems that the genetic association between alcohol drinking and alcohol withdrawal, as assessed by the acoustic startle response, depends on the quality of the acoustic startle stimulus.  相似文献   

12.
BACKGROUND: Alcohol relapse is a major problem in the treatment of alcohol abuse and alcoholism. Understanding the long-term neuronal alterations that promote relapse of alcohol drinking is critical for the development of pharmacotherapies to treat alcoholism and alcohol abuse. The major objectives of this workshop were to present recent findings, by using rodent models, on behavioral and neurobiological factors that may underlie alcohol relapse and the results of clinical and pharmacological treatment strategies for preventing relapse. METHODS: Prolonged ethanol drinking and repeated periods of alcohol deprivation were studied in nonselected rats and in rats selectively bred for high alcohol preference (P rat). The expression of a robust alcohol deprivation effect (ADE) was used as a model for alcohol relapse in rodents. Operant techniques were used to examine responding for ethanol after deprivation in both rats and C57BL/6J mice. Environmental cues and stress were used to assess their effects on reinstatement of alcohol responding. Microdialysis and [14C]-2-deoxyglucose techniques were used to examine neuronal alterations associated with alcohol relapse. RESULTS: Prolonged free-choice ethanol drinking followed by deprivation produced an ADE in both stock and P rats. These rats demonstrated loss of control on reinstatement after chronic drinking and after prolonged deprivation. Acamprosate and naltrexone effectively reduced the ADE in stock rats. Stress reinstated operant responding for alcohol, and rats trained to associate a cue with ethanol presentation increased responding on the ethanol-associated lever in the absence of ethanol. After repeated deprivations, P rats shifted their preference toward drinking higher concentrations of ethanol, which increased the magnitude and duration of the ADE. Stock rats also shifted their preference toward solutions with higher ethanol concentrations and demonstrated a loss of control after prolonged ethanol drinking and deprivation. Long-lasting alterations in neuronal activity, serotonin-3 receptor function, and dopamine neurotransmission within the mesolimbic system were evident after chronic drinking that followed a prolonged deprivation period. CONCLUSIONS: The ADE is a useful model for studying alcohol relapse in both rats and mice. The potential validity of this model is supported by the findings that acamprosate and naltrexone are effective in preventing the ADE in rodents, and both compounds have gained recognition for their therapeutic effects in clinical populations. Genetics, stress, and environmental cues are all important factors that influence alcohol relapse. Long-term alterations in neuronal activity within the mesolimbic system, which possibly involve dopamine and serotonin, may underlie alcohol relapse.  相似文献   

13.
Early alcohol drinking has been hypothesized to cause alcohol-related problems in adulthood. In addition, a potential role for genetic factors exist in the etiology of some types of alcoholism. The objective of the present study was to determine if taste aversion training to ethanol during adolescence in previously ethanol-naive, alcohol-preferring P and high-alcohol drinking HAD-1 lines of rats would retard or prevent the onset of high alcohol drinking. Taste aversion training began at 30 days of age. Male and female rat pups were fluid-deprived for 24 hr before 30 min access to a 10% (v/v) ethanol solution, followed by an intraperitoneal injection of either saline or 0.15 M LiCl (10 ml/kg). A total of five training sessions were administered every other day with unrestricted access to water on intervening training days. Twenty-four hours after the last training trial, rats were given continuous free-choice between water and 10% ethanol for 4 weeks with food available ad libitum. There were no obvious gender or line differences to the effects of taste aversion training. All LiCl-treated subjects avoided the usually preferred ethanol solution for the entire 4-week test period, whereas saline-treated rats steadily increased their alcohol intake to over 6.0 g/kg/day by week 4. Rats in the saline and LiCl-treated groups gained weight at comparable rates, and the groups did not differ in total fluid intake. The findings demonstrate that early environmental intervention can prevent the onset of high alcohol drinking in the selectively bred alcohol-preferring P and high-alcohol drinking HAD-1 lines of rats.  相似文献   

14.
Background: There has been some difficulty getting standard laboratory rats to voluntarily consume large amounts of ethanol without the use of initiation procedures. It has previously been shown that standard laboratory rats will voluntarily consume high levels of ethanol if given intermittent‐access to 20% ethanol in a 2‐bottle‐choice setting [ Wise, Psychopharmacologia 29 (1973), 203 ]. In this study, we have further characterized this drinking model. Methods: Ethanol‐naïve Long–Evans rats were given intermittent‐access to 20% ethanol (three 24‐hour sessions per week). No sucrose fading was needed and water was always available ad libitum. Ethanol consumption, preference, and long‐term drinking behaviors were investigated. Furthermore, to pharmacologically validate the intermittent‐access 20% ethanol drinking paradigm, the efficacy of acamprosate and naltrexone in decreasing ethanol consumption were compared with those of groups given continuous‐access to 10 or 20% ethanol, respectively. Additionally, ethanol consumption was investigated in Wistar and out‐bred alcohol preferring (P) rats following intermittent‐access to 20% ethanol. Results: The intermittent‐access 20% ethanol 2‐bottle‐choice drinking paradigm led standard laboratory rats to escalate their ethanol intake over the first 5 to 6 drinking sessions, reaching stable baseline consumption of high amounts of ethanol (Long–Evans: 5.1 ± 0.6; Wistar: 5.8 ± 0.8 g/kg/24 h, respectively). Furthermore, the cycles of excessive drinking and abstinence led to an increase in ethanol preference and increased efficacy of both acamprosate and naltrexone in Long–Evans rats. P‐rats initiate drinking at a higher level than both Long–Evans and Wistar rats using the intermittent‐access 20% ethanol paradigm and showed a trend toward a further escalation in ethanol intake over time (mean ethanol intake: 6.3 ± 0.8 g/kg/24 h). Conclusion: Standard laboratory rats will voluntarily consume ethanol using the intermittent‐access 20% ethanol drinking paradigm without the use of any initiation procedures. This model promises to be a valuable tool in the alcohol research field.  相似文献   

15.
Background: Alcohol abuse among adolescents is a major health and developmental problem. The 2‐[14C]deoxyglucose (2‐DG) technique allows for the in vivo quantification of local cerebral glucose utilization (LCGU) as a measure of functional neuronal activity. Methods: Local cerebral glucose utilization rates were examined after acute ethanol administration within selected brain regions of adolescent alcohol‐preferring (P) and ‐nonpreferring (NP) rats. Postnatal day 45 male P and NP rats were injected with saline or 1.0 g/kg ethanol, i.p., 10 minutes prior to an intravenous bolus of [14C]‐2‐deoxyglucose (125 μCi/kg). Image densities were determined using quantitative autoradiography and LCGU values calculated. Results: Acute ethanol injection significantly decreased LCGU rates in select brain regions including the olfactory tubercles, the frontal cortex (Fr), and subregions of the posterior hippocampus (pCA1 and pCA3). Acute ethanol had no significant effects on LCGU rates in any region of the adolescent NP rats. Significant basal LCGU rate differences were apparent between the rat lines in a nearly global fashion with adolescent P rats having much higher basal LCGU rates compared with adolescent NP rats. Conclusions: These findings suggest that the adolescent P and NP rats are less sensitive to the effects of acute ethanol than their adult counterparts. The adolescent P rat is relatively more sensitive to the initial effects of acute ethanol in select brain regions as compared with the adolescent NP rat. Additionally, the innate hyper‐excited state of the adolescent P central nervous system is a likely factor in the development of their high alcohol drinking behaviors.  相似文献   

16.
BACKGROUND: Research comparing the alcohol-preferring (P) and -nonpreferring (NP) rat lines has detected an apparent association between ethanol preference and lower responsivity to ethanol, as well as the capacity to develop and maintain tolerance to ethanol's effects. However, past studies of tolerance to ethanol's effects generally involved relatively high doses. The present study examined recovery from functional impairment induced by moderate doses of ethanol after a single dose (responsivity) and after multiple doses (development of tolerance) in the P and NP rat lines. METHOD: Adult female P and NP rats were trained, for 5 consecutive days, to stay on an oscillating bar for 120 sec. Rats were then assigned to one of three groups to receive 1.0, 1.25, or 1.5 g/kg ethanol for 5 consecutive test days. Rats were tested each day at 15-min intervals, following intraperitoneal injection, until recovery to the 120 sec criterion. RESULTS: On the first test day, NP rats took longer to recover to criterion than the P rats following the 1.0 and 1.25 g/kg doses, whereas at the 1.5 g/kg dose no line difference was evident. Trunk blood alcohol concentrations (BACs), associated with time to recovery, indicated higher values for the P than NP rat on day 1 following injection of the two lower doses. Compared to day 1, NP rats demonstrated significantly shorter times to recovery beginning on day 2 following injections of the 1.0 and 1.25 g/kg doses. However, NP rats did not show significantly different recovery times on days 2-5 compared to day 1 following injection of the 1.5 g/kg dose. The shorter recovery times at the 1.0 and 1.25 g/kg doses were associated with BACs at recovery on day 3 being equal to or greater than values obtained on day 1. In contrast, compared to day 1, P rats did not show shorter recovery times until days 3 and 5 following the 1.0 and 1.25 g/kg doses, respectively. However, P rats did demonstrate shorter recovery times on day 2 and higher BACs on day 3 compared to day 1 following the 1.5 g/kg dose. CONCLUSION: With regard to motor impairment, lower responsivity to moderate doses of ethanol may be a factor associated with high alcohol-seeking behavior. The present results confirm past research supporting an association between ethanol preference and low ethanol responsivity but at doses that are more reflective of those self-administered by P rats.  相似文献   

17.
Background: This study was undertaken as one of a series of experiments designed to examine basic behavioral characteristics present in rats bred specifically for alcohol preference. The basic premise for these experiments has been the idea that alcohol‐preferring and ‐nonpreferring rats may differ in basic activation and inhibition control mechanisms that govern behavior and that different lines of alcohol‐preferring rats may demonstrate differential deficits in behavioral activation and behavioral inhibition tendencies. In the present experiment, conditioned approach and avoidance behaviors were studied in alcohol‐naïve high–alcohol‐drinking (HAD), low–alcohol‐drinking (LAD), and N/NIH rats to evaluate behavioral activation in this line of rats. Methods: High alcohol drinking (HAD1), low alcohol drinking (LAD1), and N/Nih stock rats were trained to press a response bar during a tone signal to avoid a mild foot shock or receive a food reward. In addition, HAD2 and LAD2 rats, independently‐bred replicate lines of the HAD1/LAD1 rats, were trained on the avoidance task. Results: Although the HAD1 rats easily learned the appetitive version of the bar‐pressing task, they did not learn the avoidance response. The LAD1 and N/Nih rats learned both the approach and the avoidance tasks normally. Similar to HAD1 rats, the HAD2 rats did not learn the avoidance response whereas LAD2 rats showed significant avoidance performance levels. Conclusions: The present data demonstrated that both HAD1 and HAD2 rats had a rather specific behavioral activation deficit: although they easily learned to press a bar to receive food reinforcement, they did not learn to press the bar to avoid a foot shock. We speculate that this failure to learn the avoidance response may be related to heightened anxiety in the HAD rats and that this excessive anxiety may lead to the development of high levels of alcohol consumption in these selectively bred rats.  相似文献   

18.
BACKGROUND: When rats with prior experience drinking ethanol solutions are deprived of ethanol for various time periods, a transitory increase in alcohol consumption is observed when ethanol solutions are again made available. This has been termed the alcohol deprivation effect (ADE). The ADE has been observed in limited-access operant procedures in which small dippers of ethanol are presented following completion of a lever press requirement. However, it has not been determined if the effect occurs in an operant model of ethanol self-administration that separates the ethanol-seeking responding from the consummatory drinking (the sipper procedure). METHODS: Rats were initiated to drink ethanol from a sipper tube using the sucrose-substitution procedure. Once initiated, the rats had to make 30 lever presses to gain access to a sipper-tube containing the ethanol solution for 20 min. The effects of 2-3 days, 7 days, and 14 days of ethanol deprivation were examined on ethanol consumption and extinction responding (seeking response). RESULTS: There were no effects of deprivation on intake at any deprivation period examined. Contrary to expectations, the alcohol-seeking response as measured by extinction responding was decreased after 7 and 14 days of deprivation. CONCLUSIONS: The data from this study and others using the limited access operant procedures suggest that the ADE may be more related to consummatory control (i.e., loss of control) and not to ethanol-seeking behaviors (i.e., craving).  相似文献   

19.
Several rat lines have been developed using preference/nonpreference and daily ethanol intake in the homecage as criteria for selective breeding. Using these lines, behavioral and neural factors that may underlie the genetic basis for the control of ethanol consumption have been examined. In this paper, we report data from eight of these selected lines: the Alcohol-Preferring (P) and Alcohol-Nonpreferring (NP), the Alcohol-Accepting (AA) and Alcohol-Nonaccepting (ANA), and the High Alcohol Drinking (HAD1 and HAD2) and Low Alcohol Drinking (LAD1 and LAD2) rats. All lines were tested using operant procedures and the same protocols for both the ethanol self-administration initiation and measurement of continuous-access ethanol consumption. During continuous access, the animals were housed in operant chambers with access to 10% (v/v) ethanol after responses on one lever, food pellets (45 mg) after responses on a second lever, and water in a drinking tube that was connected to a drinkometer circuit Under these procedures, both similarities and differences among the selected lines on continuous-access operant ethanol intake were observed. For example, overall total homecage ethanol drinking was similar for the AA and both HAD lines. When examined in the operant continuous-access situation, however, the AA rats displayed a different consumption pattern, compared with the HAD lines. Data suggest that the frequency of drinking bouts was a primary factor in the phenotypic homecage selection of the preferring lines that was revealed by the use of the continuous-access operant procedure. In general, data suggest that genes related to ethanol preference and intake in homecage continuous-access situations may not be identical to those related to ethanol's reinforcing function in operant continuous-access conditions. Because ethanol consumption appears to be controlled by different drinking patterns across lines, the selected lines provide for a variety of models to understand how varying genotypes can impact ethanol consumption.  相似文献   

20.
There is considerable variation in the consequences of alcohol abuse during pregnancy on infant outcome. Although it is clear that a number of factors contribute to this variability, one hypothesis that has received recent attention is the role of genetic differences in response to alcohol. This study examined activity levels in the alcohol-preferring (P) and alcohol-nonpreferring (NP) rats following neonatal alcohol exposure. Although these lines were selectively bred for differences in voluntary alcohol consumption, they also differ in their sensitivity and tolerance to alcohol. The P and NP offspring were artificially reared and administered ethanol (either 6 or 4 g/kg/day) from postnatal day 4 (PN 4) until PN 10 via intragastric cannula. An artificially reared isocaloric maltose group and a normally reared control group were also included. From PN 18 to PN 21, subjects were tested daily for 30 min in an automated activity monitor. Exposure to either the 4 or 6 g/kg dose of ethanol resulted in overactivity in P rats. However, only the 6 g/kg dose group displayed overactivity among the NP offspring. Furthermore, the level of overactivity displayed by the alcohol-exposed P rats was significantly greater than that displayed by the alcohol-exposed NP rats. These data suggest that genetic differences in response to alcohol may be a predictor for the behavioral teratogenic effects of alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号