首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and characterization of a second complementary DNA for human tryptase.   总被引:13,自引:2,他引:13  
A second cDNA for human tryptase, called beta-tryptase, was cloned from a mast cell cDNA library in lambda ZAP. Its nucleotide sequence and corresponding amino acid sequence were determined and compared with those of a previously cloned tryptase cDNA, now called alpha-tryptase. The 1,142-base sequence of beta-tryptase encodes a 30-amino acid leader sequence of 3,089 D and a 245-amino acid catalytic region of 27,458 D. The amino acid sequence of beta-tryptase is 90% identical with that of alpha-tryptase, the first 20 amino acids of the catalytic portions being 100% identical. This identity, together with recognition of each recombinant protein by monoclonal antibodies directed against purified tryptase validate the tryptase identity of both alpha-tryptase and beta-tryptase cDNA molecules. Modest differences between the nucleic acid sequences of alpha- and beta-tryptase occurred throughout the cDNA molecules except in the 3' noncoding regions, which were identical. Although most highly conserved regions of amino acid sequence in the trypsin superfamily are conserved in both tryptase molecules, beta-tryptase has one carbohydrate binding site compared to two in alpha-tryptase, and one additional amino acid in the catalytic sequence. Regions of the substrate binding pocket in beta-tryptase (DSCQ, residues 218-221; SWG, residues 243-245) differ slightly from those in alpha-tryptase (DSCK, residues 217-220; SWD, residues 242-244). The presence of both alpha- and beta-tryptase sequences in each haploid genome was indicated by finding alpha- and beta-tryptase specific fragments after amplification by PCR of genomic DNA in 10 unrelated individuals. Localization of both alpha- and beta-tryptase sequences to human chromosome 16 was then performed by analysis of DNA preparations from 25 human/hamster somatic hybrids by PCR. It is now possible to assess the expression of each tryptase cDNA by mast cells and the relationship of each gene product to the active enzyme.  相似文献   

2.
Among the TEM-type extended-spectrum beta-lactamases (ESBLs), an amino acid change at Ambler position 104 (Glu to Lys) results in increased resistance to ceftazidime and cefotaxime when found with other substitutions (e.g., Gly238Ser and Arg164Ser). To examine the role of Asp104 in SHV beta-lactamases, site saturation mutagenesis was performed. Our goal was to investigate the properties of amino acid residues at this position that affect resistance to penicillins and oxyimino-cephalosporins. Unexpectedly, 58% of amino acid variants at position 104 in SHV expressed in Escherichia coli DH10B resulted in beta-lactamases with lowered resistance to ampicillin. In contrast, increased resistance to cefotaxime was demonstrated only for the Asp104Arg and Asp104Lys beta-lactamases. When all 19 substitutions were introduced into the SHV-2 (Gly238Ser) ESBL, the most significant increases in cefotaxime and ceftazidime resistance were noted for both the doubly substituted Asp104Lys Gly238Ser and the doubly substituted Asp104Arg Gly238Ser beta-lactamases. Correspondingly, the overall catalytic efficiency (kcat/Km) of hydrolysis for cefotaxime was increased from 0.60 +/- 0.07 microM(-1) s(-1) (mean +/- standard deviation) for Gly238Ser to 1.70 +/- 0.01 microM(-1) s(-1) for the Asp104Lys and Gly238Ser beta-lactamase (threefold increase). We also showed that (i) k3 was the rate-limiting step for the hydrolysis of cefotaxime by Asp104Lys, (ii) the Km for cefotaxime of the doubly substituted Asp104Lys Gly238Ser variant approached that of the Gly238Ser beta-lactamase as pH increased, and (iii) Lys at position 104 functions in an energetically additive manner with the Gly238Ser substitution to enhance catalysis of cephalothin. Based on this analysis, we propose that the amino acid at Ambler position 104 in SHV-1 beta-lactamase plays a major role in substrate binding and recognition of oxyimino-cephalosporins and influences the interactions of Tyr105 with penicillins.  相似文献   

3.
Tryptase is the major protein constituent of human mast cells, where it is stored within the secretory granules as a fully active tetramer. Two tryptase genes (alpha and beta) are expressed by human mast cells at the level of mRNA and protein, each with a 30 amino acid leader sequence. Recombinant precursor forms of human alpha- and beta-tryptase were produced in a baculovirus system, purified, and used to study their processing. Monomeric beta-protryptase first is shown to be intermolecularly autoprocessed to monomeric beta-pro'tryptase at acid pH in the presence of heparin by cleavage between Arg-3 and Val-2 in the leader peptide. The precursor of alpha-tryptase has an Arg-3 to Gln-3 mutation that precludes autoprocessing. this may explain why alpha-tryptase is not stored in secretory granules, but instead is constitutively secreted by mast cells and is the predominant form of tryptase found in blood in both healthy subjects and those with systemic mastocytosis under nonacute conditions. Second, the NH2-terminal activation dipeptide on beta-pro'tryptase is removed by dipeptidyl peptidase I at acid pH in the absence of heparin to yield an inactive monomeric form of tryptase. Conversion of the catalytic portion of beta-tryptase to the active homotetramer at acid pH requires heparin. Thus, beta-tryptase homotetramers probably account for active enzyme detected in vivo. Also, processing of tryptase to an active form should occur optimally only in cells that coexpress heparin proteoglycan, restricting this pathway to a mast cell lineage.  相似文献   

4.
A cDNA encoding a trypsin‐like protease from the salivary glands of the haematophagous reduviid Panstrongylus megistus was cloned and sequenced. The deduced protein sequence showed similarities to serine proteases of other hemipterans but with substitutions in the catalytic triad and the substrate binding site. The expression of the gene increased more than sixfold after feeding. Saliva showed the highest proteolytic activity at neutral to slightly basic pH. Substrate and inhibitor profiles and zymography indicated the presence of a trypsin‐like protease with preference for Arg and Lys at P1. Using chromatography, a fibrinolytic enzyme was purified whose sequence was identified by tandem mass spectrometry as that encoded by the cDNA.  相似文献   

5.
Closely similar but nonidentical NH2-terminal amino acid sequences have been reported for a protein or proteins in human neutrophils whose bioactivities is/are diverse (as a serine protease, antibiotic, and Wegener's granulomatosis autoantigen) but that share(s) several features: localization in the azurophil granules, a molecular mass of approximately 29 kD, reactivity with diisopropylfluorophosphate, and the ability to degrade elastin. We previously purified one such entity, termed p29b. Using a monospecific antibody, we have cloned from human bone marrow a cDNA encoding the complete p29b protein in its mature form, along with pre- and pro-sequences. The predicted amino acid sequence agrees closely with the NH2-terminal sequence obtained previously from purified p29b, as well as with sequences newly obtained from CNBr fragments. The primary structure is highly homologous to elastase, cathepsin G, T cell granzymes, and other serine proteases, and shares both the catalytic triad and substrate binding pocket of elastase. Hybridization of the full-length cDNA with restriction enzyme digests of human genomic DNA revealed only one fragment. This suggests that the closely related species described previously are the same, and can be subsumed by the term used for the first-described activity, proteinase 3. Proteinase 3 is more abundant in neutrophils than elastase and has a similar proteolytic profile and specific activity. Thus, proteinase 3 may share the role previously attributed to neutrophil elastase in tissue damage, and has the potential to function as an antimicrobial agent.  相似文献   

6.
Mast cell tryptase is a mitogen for cultured fibroblasts.   总被引:19,自引:3,他引:19       下载免费PDF全文
Mast cells appear to promote fibroblast proliferation, presumably through secretion of growth factors, although the molecular mechanisms underlying this mitogenic potential have not been explained fully by known mast cell-derived mediators. We report here that tryptase, a trypsin-like serine proteinase of mast cell secretory granules, is a potent mitogen for fibroblasts in vitro. Nanomolar concentrations of dog tryptase strongly stimulate thymidine incorporation in Chinese hamster lung and Rat-1 fibroblasts and increase cell density in both subconfluent and confluent cultures of these cell lines. Tryptase-induced cell proliferation appears proteinase-specific, as this response is not mimicked by pancreatic trypsin or mast cell chymase. In addition, low levels of tryptase markedly potentiate DNA synthesis stimulated by epidermal growth factor, basic fibroblast growth factor, or insulin. Inhibitors of catalytic activity decrease the mitogenic capacity of tryptase, suggesting, though not proving, the participation of the catalytic site in cell activation by tryptase. Differences in Ca++ mobilization and sensitivity to pertussis toxin suggest that tryptase and thrombin activate distinct signal transduction pathways in fibroblasts. These data implicate mast cell tryptase as a potent, previously unrecognized fibroblast growth factor, and may provide a molecular link between mast cell activation and fibrosis.  相似文献   

7.
A novel aspartokinase mutant M372I/T379W from Corynebacterium pekinense was constructed by using site-directed mutagenesis. The enzyme was then purified, characterized, and its molecular mechanism was comprehensively analyzed. Compared with wild-type AK, the catalytic activity of M372I/T379W AK was 16.51 fold higher and the optimum temperature increased from 28 to 35 °C. The thermostability of M372I/T379W AK was significantly improved. Microscale thermophoresis analysis indicated that M372I/T379W AK not only weakened the inhibitory effect of Lys, but also had stronger binding force with Asp. Molecular dynamics simulation showed that mutations M372I and T379W could regulate the activity of CpAK through affecting the flexibility of Asp and ATP binding pocket residues and the hydrogen bond between CpAK and Asp. In addition, mutations could affect the relative position of protein domains. The width of the Asp binding pocket entrance gate Arg169–Ala60 of M372I/T379W AK was greater than that in wild-type AK and the CpAK switched from T-state to R-state, which promoted the binding of the enzyme to Asp and improving the catalytic efficiency of this enzyme. These results explain the molecular mechanism of M372I/T379W AK, which will greatly facilitate the rational design of more aspartokinase mutants, with have potential applications in aspartic acid metabolism.

A novel aspartokinase mutant M372I/T379W from Corynebacterium pekinense was constructed by using site-directed mutagenesis.  相似文献   

8.
A serine protease of the silkworm, Bombyx mori, with an isoelectric point of pH 10–11 and a pH optimum for succinyl-Leu-Leu-Val-Tyr-MCA degrading activity of about 10, was found in a 0.33 m NaCI-eluted fraction obtained from cation-exchange chromatography of digestive juice. The activity of the enzyme was strongly inhibited by chymostatin and PMSF, indicating that the protease is a chymotrypsin-like serine protease. The N-terminal amino acid sequence of the protease was determined, and a full-length cDNA clone (0.92 kbp) which was isolated from a midgut cDNA library was sequenced. The cDNA encodes a pre-proenzyme of 284 amino acids with a pro-segment of 50 amino acids and mature protein of 234 amino acids. From its primary structure, the predicted molecular mass of the mature protein is 24.5 kDa. A sequence comparison of the Bombyx highly basic protease with other serine proteases revealed that this enzyme is a mammalian-type serine protease with a catalytic triad consisting of His45, Asp92 and Ser186. A large number of Arg residues are encoded by the cDNA which may be responsible for its stability and/or function in the alkaline condition, by remaining charged at high pH.  相似文献   

9.
10.
11.
Recent evidence suggests that nonadrenergic airway relaxation may be controlled by vasoactive intestinal peptide (VIP). The magnitude and duration of smooth muscle relaxation in response to VIP may be influenced by rates of peptide degradation after release from efferent peptidergic neurons. To explore the potential role of mast cell mediators in modulating neural control of airway tone, we studied the effect of the mast cell proteases tryptase and chymase on airway smooth muscle relaxation induced by VIP in ferret airway. Tracheal rings precontracted by serotonin (10(-6) M) in a muscle bath were relaxed by VIP (10(-7) M). We found that protease-rich supernatant obtained by degranulation of dog mastocytoma cells reversed VIP-induced relaxation, as did highly purified tryptase and chymase incubated with the tracheal rings. Either enzyme completely reversed the effect of VIP, but tryptase was more potent than chymase, paralleling previous test tube observations on the relative rates of VIP cleavage by the two enzymes. Inhibitors of mast cell tryptase and chymase preincubated with the supernatant or with the purified proteases prevented reversal of VIP-induced relaxation. Mast cell proteases did not reverse the tracheal relaxation caused by the nonpeptide adrenergic agonist isoproterenol. These findings show that mast cell proteases tryptase and chymase counteract the smooth muscle relaxant effects of VIP in ferret trachea and suggest a potential role for the mast cell proteases in the modulation of nonadrenergic neural control of airway tone by VIP.  相似文献   

12.
Enterobacter aerogenes clinical isolate LOR was resistant to penicillins and ceftazidime but susceptible to cefuroxime, cephalothin, cefoxitin, cefotaxime, ceftriaxone, and cefepime. PCR and cloning experiments from this strain identified a novel TEM-type beta-lactamase (TEM-121) differing by five amino acid substitutions from beta-lactamase TEM-2 (Glu104Lys, Arg164Ser, Ala237Thr, Glu240Lys, and Arg244Ser) and by only one amino acid change from the extended-spectrum beta-lactamase (ESBL) TEM-24 (Arg244Ser), with the last substitution also being identified in the inhibitor-resistant beta-lactamase IRT-2. Kinetic parameters indicated that TEM-121 hydrolyzed ceftazidime and aztreonam (like TEM-24) and was inhibited weakly by clavulanic acid and strongly by tazobactam. Thus, TEM-121 is a novel complex mutant TEM beta-lactamase (CMT-4) combining the kinetic properties of an ESBL and an inhibitor-resistant TEM enzyme.  相似文献   

13.
The platelet glycoprotein complex alphaIIb beta3 is required for platelet-fibrinogen binding and platelet aggregation. This study was designed to characterize the nucleotide sequence of the canine platelet beta3 gene from cDNA. The nucleotide and deduced amino acid sequences of the canine beta3 gene were 92% and 96% homologous, respectively, with the sequences previously established for the beta3 gene of human beings. Within the beta3 gene, the nucleotide sequence of cDNA prepared from canine platelets shared homology of 89% for the cytoplasmic domain, 93% for the transmembrane domain, 92% for the extracellular domain, 94% for the arginine-glycine-aspartic acid (RGD) binding domain, and 97% for the region associated with Ca2+-dependent stabilization of the alphaIIb beta3 fibrinogen-binding pocket. The deduced amino acid sequence of canine beta3 was 100%, 97%, 96%, and 95% homologous with the cytoplasmic, transmembrane, extracellular, and RGD-binding domains, respectively, and was 100% homologous with the region associated with Ca2+-dependent stabilization of the alphaIIb beta3 fibrinogen-binding pocket of beta3 in human beings. The canine platelet cDNA signal peptide segment of the beta3 gene encodes for 22 amino acids, as compared with 26 amino acids previously reported for human beings. The deduced amino acid sequence of canine beta3 corresponds to the high-frequency allelic form for five of the six alloantigenic sites reportedly associated with human platelets: Leu33Leu40Pro407Arg489Arg636. The apparent amino acid residue in position 143 (Pen alloantigen) of canine platelet beta3 is histidine compared with arginine in human beings. Knowledge of the beta3 gene nucleotide sequence of normal dogs will facilitate the understanding of platelet alphaIIb beta3 structure-function relationships.  相似文献   

14.
Beta-Lactamases of Ambler's Class A are the most commonly encountered mechanism of bacterial resistance to beta-lactam antibiotics. In the face of selective pressure arising from use of either newer cephalosporins or beta-lactam/beta-lactamase inhibitor combinations, mutations arose among Class A beta-lactamase genes, leading to resistance. Clavulanic acid, a naturally occurring clavam, and the penicillanic acid sulfones sulbactam and tazobactam are the inhibitors in clinical use. This review focuses on the mechanism of inhibition by these currently marketed beta-lactamase inhibitors and on the mechanism by which specific amino acid substitutions might lead to resistance. The key amino acid positions important for inhibitor-resistance include Met69, Ser130, Arg244, Arg275, and Asn276. Ser130 is vital to the chemical mechanism of inhibition. Arg244 appears to be coordinated to Arg275 and Asp276 by hydrogen bonds. Arg244 is involved in positioning beta-lactams, especially penicillins and beta-lactamase inhibitors, via their carboxyl groups. Site-directed mutagenesis studies confirm the role of Arg244 and its coordinating partners in beta-lactam turnover and in the reactions leading to enzyme inactivation. This mechanism is dependent on the donation of a proton via a water coordinated to Arg244 and Val216 to clavulanic acid to allow formation of a favorable leaving group. This proton donation is probably not required for formation of a favorable leaving group for the sulfone inhibitors sulbactam and tazobactam. Therefore, some amino acid substitutions have differing effects on inhibition by clavulanic acid compared with the penicillanic acid sulfones. Met69 may play a more structural role in beta-lactam positioning within the oxyanion hole.  相似文献   

15.
Three new cDNA clones (designated MCSP-1, MCSP-2, and MCSP-3) encoding mouse serine proteases were isolated from cloned cytolytic T lymphocytes (CTL) by a modified differential screening procedure. The putative mature proteins of MCSP-2 and MCSP-3 are each composed of 228 amino acids with molecular weights of 25,477 and 25,360, respectively. NH2-terminal amino acids of MCSP-2- and MCSP-3-predicted proteins were identical to those reported for granzyme E and F, respectively. The third species, MCSP-1, was closely related to the two other cDNA species but approximately 30 amino acids equivalents of the NH2- terminal portion of the cDNA were not cloned. The amino acids forming the active sites of serine proteases were well conserved among the three predicted proteins. The active site pocket residue positioned six residues before the active-site Ser184 is alanine in MCSP-1, threonine in MCSP-2, and serine in MCSP-3, indicating that both MCSP-2 and MCSP-3 may have chymotrypsin-like specificity. There are three potential asparagine-linked glycosylation sites in MCSP-1 and MCSP-3, and four in MCSP-2-deduced amino acid sequences. Amino acid comparison of MCSP-1 with four other reported serine proteases whose active site pocket residue is alanine revealed that MCSP-1 was substantially different from the other molecules, indicating that MCSP-1 may be a new member of mouse T cell serine protease family. Antibodies made against a MCSP-1 lacZ gene fusion protein stain granules of CTL and react on immunoblots with two distinct granule protein bands of 29 and 35-40 kD. Only the 35- kD species labels with [3H]DFP. Since a protease cascade may play a key role in cytolytic lymphocyte activation, our isolation of cDNAs representative of unique serine esterases should help to investigate such a cascade process.  相似文献   

16.
Type I signal peptidases are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidases are unique serine proteases that utilize a Ser/Lys catalytic dyad mechanism in place of the classical Ser/His/Asp catalytic triad mechanism. They represent a potential novel antibiotic target at the bacterial membrane surface. This review will discuss the bacterial signal peptidases that have been characterized to date, as well as putative signal peptidase sequences that have been recognized via bacterial genome sequencing. We review the investigations into the mechanism of Escherichia coli and Bacillus subtilis signal peptidase, and discuss the results in light of the recent crystal structure of the E. coli signal peptidase in complex with a beta-lactam-type inhibitor. The proposed conserved structural features of Type I signal peptidases give additional insight into the mechanism of this unique enzyme.  相似文献   

17.
Extended-spectrum TEM beta-lactamases (ESBLs) do not usually confer resistance to beta-lactamase inhibitors such as clavulanate or tazobactam. To investigate the compatibility of the two phenotypes we used site-directed mutagenesis of the bla(TEM-1) gene to introduce into the TEM-1 beta-lactamase amino acid substitutions that confer the ESBL phenotype: TEM-12 (Arg164-->Ser), TEM-26 (Arg164-->Ser plus Glu104-->Lys), TEM-19 (Gly238-->Ser), and TEM-15 (Gly238-->Ser plus Glu104-->Lys). These were combined with three sets of substitutions that confer inhibitor resistance: TEM-31 (Arg244-->Cys), TEM-33 (Met69-->Leu), and TEM-35 (Met69-->Leu and Asn276-->Asp). Introduction of the Arg244-->Cys substitution gave rise to inhibitor-resistant hybrid enzymes that either lost ESBL activity (TEM-12, TEM-15, and TEM-19) or had reduced activity (TEM-26) against ceftazidime. In contrast, the introduction of Met69-->Leu or Met69-->Leu plus Asn276-->Asp substitutions did not significantly affect the abilities of the enzymes to confer resistance to ceftazidime, although increased susceptibility to cefotaxime was observed with Escherichia coli strains that expressed the TEM-19 and TEM-26 beta-lactamases. With the exception of the TEM-12 beta-lactamase, introduction of the Met69-->Leu substitution did not give rise to enzymes with increased resistance to clavulanate compared to that of the TEM-1 beta-lactamase. However, introduction of the double substitution Met69-->Leu plus Asn276-->Asp in the ESBLs did give rise to low-level (TEM-19, TEM-15, and TEM-26) or moderate-level (TEM-12) clavulanate resistance. None of the hybrid enzymes were as resistant to clavulanate as the corresponding inhibitor-resistant TEM beta-lactamase mutant, suggesting that active-site configuration in the ESBLs limits the degree of clavulanate resistance conferred.  相似文献   

18.
19.
TEM-56 produced by a Klebsiella pneumoniae clinical isolate is a novel beta-lactamase of isoelectric point 6.4 that confers a moderate resistance level to expanded-spectrum cephalosporins. The amino acid sequence deduced from the corresponding bla gene showed two amino acid replacements with respect to the TEM-2 sequence: Glu-104 to Lys and His-153 to Arg. This enzyme showed catalytic properties close to those of TEM-18. Thus, TEM-56 appears as a new TEM mutant, an intermediary between TEM-18 and the extended-spectrum beta-lactamase TEM-21.  相似文献   

20.
A novel inhibitor-resistant TEM (IRT) beta-lactamase was detected in an Escherichia coli isolate resistant to amoxicillin-clavulanate and susceptible to cephalothin. The substrate and inhibitor profiles of this beta-lactamase were similar to those of IRT-1 and IRT-2. The novel IRT's bla gene was sequenced, and the deduced amino acid sequence showed the amino acid replacement Arg for His-244 of the TEM-1 sequence. Substitutions for Arg-244 have been reported in three TEM-1 mutants: IRT-1 (which corresponds to TEM-31) (Cys), IRT-2/TEM-30 (Ser), and TEM-41 (Thr). We designated this novel beta-lactamase, which corresponds to TEM-51, IRT-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号