首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In vitro effects of benzene metabolites on mouse bone marrow stromal cells   总被引:2,自引:0,他引:2  
Benzene exposure can result in bone marrow myelotoxicity. We examined the effects of benzene metabolites on bone marrow stromal cells of the hemopoietic microenvironment. Male B6C3F1 mouse bone marrow adherent stromal cells were plated at 4 X 10(6) cells per 2 ml of DMEM medium in 35-mm tissue culture dishes. The growing stromal cell cultures were exposed to log 2 doses of five benzene metabolites: hydroquinone, benzoquinone, phenol, catechol, or benzenetriol for 7 days. The dose which caused a 50% decrease in colony formation (TD50) was 2.5 X 10(-6) M for hydroquinone, 17.8 X 10(-6) M for benzoquinone, 60 X 10(-6) M for benzenetriol, 125 X 10(-6) M for catechol, and 190 X 10(-6) M for phenol. We next examined the effect of benzene metabolites on the ability of stromal cells to influence granulocyte/monocyte colony growth (G/M-CFU-C) in a coculture system. Adherent stromal cells were plated and incubated for 14 days and then exposed to a benzene metabolite. After 3 days the medium and metabolite were removed and an agar:RPMI layer containing 10(6) fresh bone marrow cells was placed over the stromal layer. After incubation for 7 days the cultures were scored for G/M colony formation. Hydroquinone and benzoquinone were most toxic, while catechol and benzenetriol inhibited colony growth only at high doses. These results indicate that injured bone marrow stromal cells may be a significant factor in benzene-induced hemotoxicity.  相似文献   

3.
DNA damage in L5178YS cells following exposure to benzene metabolites   总被引:2,自引:0,他引:2  
Because DNA modification may be a prerequisite for chemical carcinogenesis, the DNA-damaging potential of benzene and its metabolites was examined in order to identify the proximate DNA-damaging agent associated with benzene exposure. A DNA synthesis inhibition assay previously identified p-benzoquinone as the most potent overall cellular toxin and inhibitor of DNA synthesis, but failed to discriminate among the hydroxylated metabolites. Therefore, the ability of benzene and its metabolites to induce DNA strand breaks in the mouse lymphoma cell line, L5178YS, was examined in order to provide a more accurate indication of the DNA damage associated with benzene and its metabolites. Cells were exposed to benzene, hydroquinone, catechol, phenol, 1,2,4-benzenetriol, or p-benzoquinone over a 1000-fold concentration range (1.0 microM-1.0 mM). Concentrations of benzene, phenol, or catechol as high as 1.0 mM did not increase the percentage of single-stranded DNA observed. Concentrations of hydroquinone as high as 0.1 mM were also ineffective. In contrast, both p-benzoquinone and 1,2,4-benzenetriol produced DNA breaks in a dose-related fashion. Of the two, benzoquinone proved to be more potent with an ED50 of approximately equal to 2.5 microM compared with 55.0 microM for benzenetriol. The DNA damage induced by 6.0 microM benzoquinone was maximal within 3 min of exposure and yielded approximately 70% single-stranded DNA after alkaline denaturation. By contrast, the single-stranded DNA observed after benzenetriol exposure required 60 min of exposure to achieve the same extent of damage as that found with benzoquinone. These results suggest that the benzene metabolites, benzenetriol and benzoquinone, may cause DNA damage and that the mechanisms responsible for the damage associated with these two compounds may be different.  相似文献   

4.
It has long been recognized that benzene exposure produces disparate toxic responses among different species or even among different strains within the same species. There is ample evidence that species- or strain-dependent differences in metabolic activity correlate with the disparate responses to benzene. However, bone marrow cells (the putative targets of benzene toxicity) may also exhibit species- or strain-dependent differences in susceptibility to the toxic effects of benzene. To investigate this hypothesis, two sets of companion experiments were performed. First, two strains of mice, Swiss Webster (SW) and C57B1/6J (C57), were exposed to 300 ppm benzene via inhalation and the effects of the exposures were determined on bone marrow cellularity and the development of bone marrow CFU-e (Colony Forming Unit-erythroid, an early red cell progenitor). Second, bone marrow cells from the same strains were exposed in vitro to five known benzene metabolites (1,4 benzoquinone, catechol, hydroquinone, muconic acid, and phenol) individually and in binary combinations. Benzene exposure, in vivo, reduced bone marrow cellularity and the development of CFU-e in both strains; however, reductions in both these endpoints were more severe in the SW strain. When bone marrow cells from the two strains were exposed in vitro to the five benzene metabolites individually, benzoquinone, hydroquinone, and catechol reduced the numbers of CFU-e in both strains in dose-dependent responses, phenol weakly reduced the numbers of the C57 CFU-e only and in a non-dose-dependent manner, and muconic acid was without effect on cells from either strain. Only benzoquinone and hydroquinone exhibited differential responses to CFU-e from the two strains and both of these metabolites were more toxic to SW cells than to C57 cells. Six of the ten possible binary mixtures of metabolites were differentially toxic to the CFU-e from the two strains and five of these mixtures were more toxic to SW cells than to C57 cells. Thus, SW mice were more susceptible to the toxic effects of inhaled benzene and their bone marrow cells were more severely affected by in vitro exposure to benzene metabolites. The binary combinations containing phenol produced little or no enhancement of the toxic effects of the non-phenol metabolites. The weak toxic response induced by phenol, whether delivered alone or in binary mixtures, suggests that little metabolism occurred during the 48 h of the in vitro exposures since benzoquinone and hydroquinone, which were clearly toxic when added to the CFU-e culture system, are formed by further metabolic oxidation of phenol. Thus, strain-dependent differential metabolism appeared to play a minimal role in the disparate toxicity observed in the in vitro studies, implying that the diverse responses were due to inherent differences in the susceptibilities of the CFU-e to the toxic action of the benzene metabolites.  相似文献   

5.
Benzene, a widely used compound, is a known carcinogen and hematopoietictoxicant. Several studies have shown gender and age differencesin the responses to benzene-induced hematotoxic-ity. It is notknown if these differences in response are due to age-or gender-associatedmetabolic differences or to age- or gender-associated differencesin the susceptibilities of the target cells. In order to addressthis issue, mouse colony-forming units-erythroid (CFU-e, anerythroid precursor cell particularly susceptible to benzenetoxicity) were cultured in the presence of either individualbenzene metabolites or binary mixtures of these metabolites.CFU-e were obtained from unexposed age-matched adult male andfemale (both virgin and pregnant) Swiss Webster (SW) mice andfrom SW male and female 16-day fetuses. The metabolites usedwere phenol, hydroquinone, catechol, benzoquinone, and trans,trans-muconic acid. The concentrations of the individual metabolitesused were 10, 20, and 40 µM. Binary mixtures of metaboliteswere prepared using the lowest concentrations of the individualmetabolites that caused cytotoxicity. These concentrations were10 µM for hydroquinone, catechol, and benzoquinone, and40 µM for phenol and muconic acid. In general, the CFU-efrom adult females (both virgin and pregnant) were more resistantto the toxic effects of the individual metabolites than CFU-efrom other subjects. CFU-e from adult males were more susceptibleto the cytotoxic effects of hydroquinone and benzoquinone thanCFU-e from other subjects and CFU-e from both male and femalefetuses were highly sensitive to the toxic effects of catechol.On the other hand, CFU-e from adult males were less susceptibleto the cytotoxic effects of catechol than CFU-e from other subjects.Similar results were observed with binary mixtures of metabolites.CFU-e from adult males were more susceptible to the binary mixturesthan CFU-e from virgin females and CFU-e from fetal males weremore susceptible than CFU-e from fetal females. In addition,CFU-e from fetuses were more resistant than CFU-e from adultsto the cytotoxic effects of those binary mixtures that did notcontain catechol. In contrast, binary mixtures containing catecholwere more toxic to fetal cells than to adult cells. These resultssuggest that differences in benzene hematotoxicity associatedwith gender and age may be due, at least in part, to intrinsicfactors at the level of the target cell rather than solely toage- or gender-related differences in the metabolism of benzene.  相似文献   

6.
Benzene is an important industrial chemical that is also widely present in cigarette smoke, automobile exhaust, and gasoline. It is reported that benzene can cause hematopoietic disorders and has been recognized as a human carcinogen. However, the mechanisms by which it increases the risk of carcinogenesis are only partially understood. Aberrant DNA methylation is a major epigenetic mechanism associated with the toxicity of carcinogens. To understand the carcinogenic capacity of benzene, experiments were designed to investigate whether exposure to benzene and its metabolites would change the global DNA methylation status in human normal hepatic L02 cells and then to evaluate whether the changes would be induced by variation of DNA methyltransferase (DNMT) activity in HaeIII DNMT‐mediated methylation assay in vitro. Our results showed that hydroquinone and 1,4‐benzoquinone could induce global DNA hypomethylation with statistically significant difference from control (p < 0.05), but no significant global DNA methylation changes were observed in L02 cells with benzene, phenol, and 1,2,4‐trihydroxybenzene exposure. Benzene metabolites could not influence HaeIII DNMT activity except that 1,4‐benzoquinone shows significantly inhibiting effect on enzymatic methylation reaction at concentrations of 5 μM (p < 0.05). These results suggest that benzene metabolites, hydroquinone, and 1,4‐benzoquinone can disrupt global DNA methylation, and the potential epigenetic mechanism by which that global DNA hypomethylation induced by 1,4‐benzoquinone may work through the inhibiting effects of DNMT activity at 10 μM (p < 0.05). © 2011 Wiley Periodicals, Inc. Environ Toxicol 29: 108–116, 2014.  相似文献   

7.
The influence of P-4502E1 induction on the metabolite pattern of benzene was studied in hepatocytes in vitro and in bile in vivo, and compared with that obtained with phenol (the major benzene metabolite). Eight metabolites from benzene and four from phenol (including conjugates) represented over 90% of total metabolites. Benzene metabolism (0.1 mM) in hepatocytes from isopropanol-treated rats (2.5 ml/kg, orally) was 3-fold higher than in corresponding cells from control rats, primarily because of increased formation of hydroquinone and phenylglutathione. Immunoblotting of microsomes revealed a parallel induction of P-4502E1 in hepatocytes from isopropanol-treated rats. In contrast, treatment with 3-methylcholanthrene or phenobarbital caused a decrease of P-4502E1, together with reduced benzene metabolism at 0.01 mM benzene. Addition of isoniazid (5 mM) resulted in a strong inhibition of benzene and phenol metabolism. Benzene metabolites were determined in bile following intraperitoneal administration of benzene (2.5 and 150 mg/kg). Biliary benzene metabolites were increased 2- to 3-fold after isopropanol treatment. Hydroquinone sulfate was identified as a major biliary metabolite of phenol. The results suggest that treatment with inducers of P-4502E1 leads, even at low benzene exposure, to an increased release of potentially myelotoxic metabolites from liver into the systemic circulation.  相似文献   

8.
Little information is available on benzene disposition after exposure by inhalation despite the importance of this route in man. Benzene metabolites as a group have been measured in bone marrow, but quantitation of individual metabolites in this target tissue has not been reported. Male Fischer-344 rats were exposed to 500 ppm benzene in air and the uptake and elimination was followed in several tissues. Concentrations of free phenol, catechol, and hydroquinone in blood and bone marrow were also measured. Steady-state concentrations of benzene (11.5, 37.0, and 164.0 μg/g in blood, bone marrow, and fat, respectively) were achieved within 6 hr in all tissues studied. Benzene half-lives during the first 9 hr were similar in all tissues (0.8 hr). A plot of amount of benzene remaining to be excreted in the expired air was biphasic with t12 values for the α and β phases of 0.7 and 13.1 hr, respectively. Phenol was the main metabolite in bone marrow at early times (peak concentration, 19.4 μg/g). Catechol and hydroquinone predominated later (peak concentrations, 13.0 and 70.4 μg/g, respectively). Concentrations of these two metabolites declined very slowly during the first 9 hr. These data indicate that free catechol and hydroquinone persist in bone marrow longer than benzene or free phenol.  相似文献   

9.
The effects of benzene and its metabolites on the rate of DNA synthesis were measured in the mouse lymphoma cell line, L5178YS. The direct toxicity of benzene could be distinguished from that of its metabolites since bioactivation of benzene in L5178YS cells was not observed. Cells were exposed to benzene, phenol, catechol, hydroquinone, p-benzoquinone, or 1,2,4-benzenetriol over the range of 1.0 X 10(-7) to 1.0 X 10(-2) M for 30 min, and the rate of DNA synthesis was measured at various times after chemical washout. Cell viability and protein synthesis were determined by trypan blue dye exclusion and [3H]leucine incorporation, respectively. Effects were designated as "DNA specific" when DNA synthesis was inhibited in the absence of discernible effects on cell membrane integrity and protein synthesis. Concentrations of benzene as high as 1 mM had no effect on DNA synthesis. Comparison of the effects at the maximum nontoxic dose for each compound showed that catechol and hydroquinone were the most effective, inhibiting DNA synthesis by 65%. Phenol, benzoquinone, and benzenetriol inhibited DNA synthesis by approximately 40%. Maximum inhibition was observed 60 min after metabolite washout in each case. Benzoquinone was the most potent inhibitor of DNA synthesis, followed by hydroquinone, benzenetriol, catechol, and phenol with ED50 values of 5 X 10(-6), 1 X 10(-5), 1.8 X 10(-4), 2.5 X 10(-4), and 8.0 X 10(-4), respectively. Cyclic voltammetric experiments were performed on the hydroxylated metabolites of benzene to assess the possible involvement of a redox-type mechanism in their inhibition of DNA synthesis. The ease of oxidation of these metabolites correlated with their ED50 values for inhibition of DNA synthesis (r = 0.997). This suggests that oxidation of phenol or one of its metabolites may be necessary for production of the species involved in inhibition of DNA synthesis.  相似文献   

10.
Benzene is a ubiquitous occupational and environmental toxicant. Exposures to benzene both prenatally and during adulthood are associated with the development of disorders such as aplastic anemia and leukemia. Mechanisms of benzene toxicity are unknown; however, generation of reactive oxygen species (ROS) by benzene metabolites may play a role. Little is known regarding the effects of benzene metabolites on erythropoiesis. Therefore, to determine the effects of in utero exposure to benzene on the growth and differentiation of fetal erythroid progenitor cells (CFU-E), pregnant CD-1 mice were exposed to benzene and CFU-E numbers were assessed in fetal liver (hematopoietic) tissue. In addition, to determine the effect of benzene metabolite-induced ROS generation on erythropoiesis, HD3 chicken erythroblast cells were exposed to benzene, phenol, or hydroquinone followed by stimulation of erythrocyte differentiation. Our results show that in utero exposure to benzene caused significant alterations in female offspring CFU-E numbers. In addition, exposure to hydroquinone, but not benzene or phenol, significantly reduced the percentage of differentiated HD3 cells, which was associated with an increase in ROS. Pretreatment of HD3 cells with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) prevented hydroquinone-induced inhibition of erythropoiesis, supporting the hypothesis that ROS generation is involved in the development of benzene erythrotoxicity. In conclusion, this study provided evidence that ROS generated as a result of benzene metabolism may significantly alter erythroid differentiation, potentially leading to the development of Blood Disorders.  相似文献   

11.
Powley MW  Carlson GP 《Toxicology》1999,139(3):207-217
Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most similar, both quantitatively and qualitatively, to the human in pulmonary microsomal metabolism of benzene. With hepatic microsomes, rat is most similar to human in metabolite formation at the two lower concentrations examined (24 and 200 microM), while at the two higher concentrations (700 and 1000 microM) mouse is most similar in phenol formation. In all species, the enzyme system responsible for benzene metabolism approached saturation in hepatic microsomes but not in pulmonary microsomes. In pulmonary microsomes from mouse, rat, and human, phenol appeared to competitively inhibit benzene metabolism resulting in a greater proportion of phenol being converted to hydroquinone when the benzene concentration increased. The opposite effect was seen in hepatic microsomes. These findings support the hypothesis that the lung plays an important role in benzene metabolism, and therefore, toxicity.  相似文献   

12.
13.
14.
Benzene‐induced erythropoietic depression has been proposed to be due to the production of toxic metabolites. Presently, the cytotoxicities of benzene metabolites, including phenol, catechol, hydroquinone, and 1,2,4‐benzenetriol, to erythroid progenitor‐like K562 cells were investigated. After exposure to these metabolites, K562 cells showed significant inhibition of viability and apoptotic characteristics. Each metabolite caused a significant increase in activities of caspase‐3, ‐8, and ‐9, and pretreatment with caspase‐3, ‐8, and ‐9 inhibitors significantly inhibited benzene metabolites‐induced phosphatidylserine exposure. These metabolites also elevated expression of Fas and FasL on the cell surface. After exposure to benzene metabolites, K562 cells showed an increase in reactive oxygen species level, and pretreatment with N‐acetyl‐l ‐cysteine significantly protected against the cytotoxicity of each metabolite. Interestingly, the control K562 cells and the phenol‐exposed cells aggregated together, but the cells exposed to other metabolites were scattered. Further analysis showed that hydroquione, catechol, and 1,2,4‐benzenetriol induced a decrease in the cell surface sialic acid levels and an increase in the cell surface sialidase activity, but phenol did not cause any changes in sialic acid levels and sialidase activity. Consistently, an increase in expression level of sialidase Neu3 mRNA and a decrease in mRNA level of sialyltransferase ST3GAL3 gene were detected in hydroquione‐, catechol‐, or 1,2,4‐benzenetriol‐treated cells, but no change in mRNA levels of two genes were found in phenol‐treated cells. In conclusion, these benzene metabolites could induce apoptosis of K562 cells mainly through caspase‐8‐dependent pathway and ROS production, and sialic acid metabolism might play a role in the apoptotic process. © 2013 Wiley Periodicals, Inc. Environ Toxicol 29: 1437–1451, 2014.  相似文献   

15.
The metabolite 2-(S-glutathionyl)hydroquinone is formed when a microsomal incubation mixture containing either benzene or phenol is supplemented with glutathione. This metabolite is derived from the conjugation of benzoquinone, an oxidation product of hydroquinone. However, neither the glutathione conjugate or its mercapturate, N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine, have been identified as metabolites resulting from in vivo metabolism of benzene, phenol, or hydroquinone. To determine if a hydroxylated mercapturate is produced in vivo, we treated male Sprague-Dawley rats with either benzene (600 mg/kg), phenol (75 mg/kg), or hydroquinone (75 mg/kg) and collected the urine for 24 hr. HPLC coupled with electrochemical detection confirmed the presence of a metabolite that was chromatographically and electrochemically identical to N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine. The metabolite was isolated from the urine samples and treated with diazomethane to form the N-acetyl-S-(2,5-dimethoxyphenyl)-L-cysteine methyl ester derivative. The mass spectra obtained from these samples were identical to that of an authentic sample of the derivative. The results of these experiments indicate that benzene, phenol, and hydroquinone are metabolized in vivo to benzoquinone and excreted as the mercapturate, N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine.  相似文献   

16.
Benzene-induced myelotoxicity can be reproduced by the coadministration of two principal metabolites, phenol and hydroquinone. Coadministration of phenol (75 mg/kg) and hydroquinone (25-75 mg/kg) twice daily to B6C3F1 mice for 12 days resulted in a significant loss in bone marrow cellularity in a manner exhibiting a dose-response. One explanation for this potentiation is that phenol stimulates the peroxidase-dependent metabolism of hydroquinone. Addition of phenol to incubations containing horseradish peroxidase, H2O2, and hydroquinone resulted in a stimulation of both hydroquinone removal and benzoquinone formation. Stimulation occurred with phenol as low as 100 microM and with very low concentrations of horseradish peroxidase. When boiled rat liver protein was added to identical incubations containing [14C]hydroquinone, the level of radioactivity recovered as protein bound increased by 37% when phenol was added. Similar results were observed when [14C]hydroquinone was incubated in the presence of activated human leukocytes. Hydroquinone binding was increased by approximately 70% in the presence of phenol. Phenol-induced stimulation of hydroquinone metabolism and benzoquinone formation represents a likely explanation for the bone marrow suppression associated with benzene toxicity.  相似文献   

17.
Benzene is a ubiquitous environmental pollutant primarily metabolized by a cytochrome P-450 (CYP-450) isoenzyme, CYP-450 IIE1. A consistent induction of CYP450 IIE1 has been observed in both rat and human affected by diabetes mellitus. The aim of this study was to evaluate whether streptozotocin (STZ)-induced diabetes determines modifications in the metabolic pathways of benzene in rat. Benzene (100 mg/kg per day, dissolved in corn oil) was administered i.p. once a day for 5 days. Urine samples were collected every day in STZ-treated and normoglycaemic animals, treated and untreated with benzene (n = 10). Urinary levels of trans,trans-muconic acid and of phenol, catechol and hydroquinone (free and conjugated with sulphuryl and glucuronic group) were measured by high-performance liquid chromatography (HPLC). In normoglycaemic rats during the 5 days of treatment with benzene we observed a progressive and significant decrement in the urinary excretion of phenol, phenyl sulphate and glucuronide, catechol, catechol glucuronide, hydroquinone, hydroquinone glucuronide and t,t-muconic acid (P < 0.05). In the diabetic animals, conversely, the same metabolites showed progressively increasing urinary levels (P < 0.05). Catechol sulphate and hydroquinone sulphate levels were below the instrument's detection limit. In the comparison between diabetic and normoglycaemic benzene treated rats, the inter-group difference was significant (P < 0.05) from day 3 of treatment for t,t-muconic acid, and from day 1 for free and conjugated phenol, free and glucuronide catechol and free hydroquinone. In the normoglycaemic rat exposed to benzene the decreasing trend observed in urinary excretion of free and conjugated metabolites may be due to their capability to reduce cytochromial activity. Conversely, in the diabetic rat, urinary levels of benzene metabolites tended to increase progressively, probably due to the consistent induction of CYP-450 IIE1 observed in diabetes, which would overwhelm the inhibition of this isoenzyme caused by phenolic metabolites. Furthermore, the metabolic switch towards detoxification metabolites observed after administration of high doses of benzene is not allowed in the diabetic because of reduced glutathione-S-transferase activity. As a consequence, higher levels of hydroquinone, phenol and catechol, considered the actual metabolites responsibles for benzene toxicity, will accumulate in the diabetic rat. Extrapolating these data to human, we may thus suggest that occupational exposure to benzene of a diabetic subject poses a higher risk level, as his metabolism tends to produce and accumulate higher levels of reactive benzene catabolites. Received: 14 December 1998 / Accepted: 23 March 1999  相似文献   

18.
Male Fischer-344 rats were given 100 μCi (14 mg/kg) [14C]catechol or [14C]hydroquinone by injection into the lateral tail vein. For a period of at least 24 hr, soluble radioactivity associated with either compound was retained in the bone marrow, but not in the liver or thymus. The amount of covalently bound radioactivity increased with time in all tissues examined and was significantly depressed in liver, white blood cells, and bone marrow in rats pretreated with Aroclor 1254, a regimen which protects against benzene toxicity. Potential enzymatic and nonenzymatic activation pathways for catechol, hydroquinone, and other known benzene metabolites were examined. In air-saturated 50 mm phosphate buffer (pH 7.4) at 37°C, only hydroquinone and 1,2,4-benzenetriol autoxidized. The oxidation product of hydroquinone had an uv absorption maximum (248 nm) identical to that of benzoquinone. With 250 units superoxide dismutase, hydroquinone autoxidation increased fivefold, whereas the oxidation of 1,2,4-benzenetriol was inhibited (4% of control). Epinephrine autoxidation, an indirect measure of superoxide anion generation, was stimulated by 1,2,4-benzenetriol and hydroquinone, but was barely detectable in the presence of catechol. Of the compounds studied, only benzoquinone augmented the oxidation of NADPH by a 3000g rat bone marrow supernatant. These data support a mechanism for benzene toxicity in which the formation of potentially cytotoxic metabolites, semiquinone, and quinone oxidation products and superoxide radicals, result from autoxidation of at least two polyphenol metabolites of benzene, hydroquinone, and 1,2,4-benzenetriol.  相似文献   

19.
Benzene is a carcinogenic compound used in industrial manufacturing and a common environmental pollutant mostly derived from vehicle emissions and cigarette smoke. Benzene exposure is associated with a variety of clinical conditions ranging from hematologic diseases to chronic lung disorders. Beside its direct toxicity, benzene exerts multiple effects after being converted to reactive metabolites such as hydroquinone and benzoquinone. Mast cells and basophils are primary effector cells involved in the development of respiratory allergies such as rhinitis and bronchial asthma and they play an important role in innate immunity. Benzene and its metabolites can influence mast cell and basophil responses either directly or by interfering with other cells, such as T cells, macrophages and monocytes, which are functionally connected to mast cells and basophils. Hydroquinone and benzoquinone inhibit the release of preformed mediators, leukotriene synthesis and cytokine production in human basophils stimulated by IgE- and non IgE-mediated agonists. Furthermore, these metabolites reduce IgE-mediated degranulation of mast cells and the development of allergic lung inflammation in rats. Both in vitro and in vivo studies indicate that benzene metabolites alter biochemical and functional activities of other immunocompetent cells and may impair immune responses in the lung. These inhibitory effects of benzene metabolites are primarily mediated by interference with early transduction signals such as PI3 kinase. Together, currently available studies indicate that benzene metabolites interfere by multiple mechanisms with the role of basophils and mast cells in innate immunity and in chronic inflammation in the lung.  相似文献   

20.
Two of the major cell types in bone marrow stroma, macrophages and fibroblasts, have been shown to be important regulators of both myelopoiesis and lymphopoiesis. The enzymology relating to cell-specific metabolism of phenolic metabolites of benzene in isolated mouse bone marrow stromal cells was examined. Fibroblastoid stromal cells had elevated glutathione-S-transferase (4.5-fold) and DT-diaphorase (4-fold) activity relative to macrophages, whereas macrophages demonstrated increased UDP-glucuronosyltransferase (UDP-GT, 7.5-fold) and peroxidase activity relative to stromal fibroblasts. UDP-GT and glutathione-S-transferase activities in macrophages and fibroblasts, respectively, were significantly greater than those in unpurified white marrow. Aryl sulfotransferase activity could not be detected in either bone marrow-derived macrophages or fibroblasts, and there were no significant differences in GSH content between the two cell types. Because UDP-GT activity is high in macrophages, these data suggest that DT-diaphorase levels would be rate limiting in the detoxification of benzene-derived quinones in bone marrow macrophages. The peroxidase responsible for bioactivation of benzene-derived phenolic metabolites in bone marrow macrophages is unknown but has been suggested to be prostaglandin H synthase (PGS). Hydrogen peroxide, but not arachidonic acid, supported metabolism of hydroquinone to reactive species in bone marrow-derived macrophage lysates. These data do not support a major role for PGS in peroxidase-mediated bioactivation of hydroquinone in bone marrow-derived macrophages, although PGS mRNA could be detected in these cells. Similarly, hydrogen peroxide, but not arachidonic acid, supported metabolism of hydroquinone in a human bone marrow homogenate. Peroxidase-mediated interactions between phenolic metabolites of benzene occurred in bone marrow-derived macrophages. Bioactivation of hydroquinone to species that would bind to acid-insoluble cellular macromolecules was increased by phenol and was markedly stimulated by catechol. Bioactivation of catechol was also stimulated by phenol but was inhibited by hydroquinone. These data define the enzymology and the cell-specific metabolism of benzene metabolites in bone marrow stroma and demonstrate that interactions between phenolic metabolites may contribute to the toxicity of benzene in this critical bone marrow compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号