首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenotypic and genetic characteristics of spirochetes isolated from the blood of one U.S. and six French patients with severe clinical disease or impaired immunity were examined. All spirochetes were anaerobic, weakly beta-hemolytic, positive for hippurate hydrolysis, and negative for beta-glucosidase activity. Cell lengths ranged from 4 to 8 microm, and each isolate had between 8 and 12 periplasmic flagella per cell. These features were consistent with the spirochetes' being Serpulina pilosicoli, the agent of intestinal spirochetosis. All isolates were positive in a PCR assay amplifying a portion of the S. pilosicoli 16S rRNA gene, and they all grouped with fecal isolates of S. pilosicoli in multilocus enzyme electrophoresis (MLEE). The blood isolates could be differentiated from each other by MLEE, although the U.S. and two French isolates were closely related. Apparently S. pilosicoli may translocate from the large intestine to establish spirochetemia. The clinical significance of this finding remains uncertain and requires further investigation.  相似文献   

2.
Four canine weakly beta-hemolytic intestinal spirochetes associated with intestinal spirochetosis (IS-associated WBHIS) were compared with IS-associated human and porcine WBHIS and the type species for Serpulina hyodysenteriae and S. innocens by using phenotypic and genotypic parameters. The IS-associated canine, human, and porcine WBHIS belonged to a phyletic group distinct from but related to previously described Serpulina type species.  相似文献   

3.
Two intestinal spirochete isolates obtained from chickens with diarrhea were examined by electron microscopy, biochemical tests, rRNA gene restriction pattern analysis, and multilocus enzyme electrophoresis. One isolate (strain 91-1207/C1) was pathogenicity tested in vivo in chickens. The chicken spirochetes were morphologically indistinguishable from Serpulina innocens and Serpulina hyodysenteriae and phenotypically similar to S. innocens. However, the chicken spirochetes could be distinguished from S. innocens, S. hyodysenteriae, and other swine intestinal spirochetes by rRNA gene restriction pattern analysis and multilocus enzyme electrophoresis. In pathogenicity tests in 1-day-old chicks and 14-month-old hens, chicken spirochete 91-1207/C1 produced pale-yellow, watery cecal contents and mild lymphocytic typhlitis. These findings support the conclusion that avian intestinal spirochetes can be pathogenic to commercial poultry and that the microorganisms are different from intestinal spirochetes that infect pigs.  相似文献   

4.
Human intestinal spirochetosis, characterized by end-on attachment of densely packed spirochetes to the epithelial surface of the large intestines as a fringe has been associated with the weakly beta-hemolytic spirochetes Brachyspira aalborgi and Brachyspira (Serpulina) pilosicoli. In this study, fluorescent in situ hybridization with oligonucleotide probes targeting 16S or 23S rRNA of B. aalborgi, B. pilosicoli, and the genus Brachyspira was applied to 40 sections of formalin-fixed, paraffin-embedded intestinal biopsy specimens from 23 Danish and 15 Norwegian patients with histologic evidence of intestinal spirochetosis. Five biopsy specimens from patients without intestinal spirochetosis and three samples from pigs with experimental B. pilosicoli colitis were examined as well. In addition, the 16S ribosomal DNAs of two clinical isolates of B. aalborgi were sequenced, and a PCR procedure was developed for the identification of B. aalborgi in cultures. The genotypic characteristics of the two clinical isolates showed very high (99.5%) similarity with two existing isolates, the type strain of B. aalborgi and a Swedish isolate. Hybridization with the Brachyspira genus-specific probe revealed a brightly fluorescing fringe of spirochetes on the epithelia of 39 biopsy specimens, whereas 1 biopsy specimen was hybridization negative. The spirochetes in biopsy specimens from 13 Danish and 8 Norwegian patients (55.3%) were identified as B. aalborgi. The spirochetes in the biopsy specimens from the other 17 patients hybridized only with the Brachyspira probe, possibly demonstrating the involvement of as-yet-uncharacterized Brachyspira spirochetes in human intestinal spirochetosis.  相似文献   

5.
The periplasmic-flagellum (PF) proteins of Triton X-100-soluble and Triton X-100-insoluble sodium dodecyl sulfate-treated fractions from reference and field strains of Serpulina hyodysenteriae, Serpulina innocens, and Serpulina pilosicoli were characterized by Western blotting with a rabbit polyclonal antibody (PAb) specific for the 44-kDa PF sheath protein of S. hyodysenteriae (Z. Li, F. Dumas, D. Dubreuil, and M. Jacques, J. Bacteriol. 175:8000-8007, 1993) and a murine monoclonal antibody (MAb), designated 7G2, specific for the PF core FlaB proteins of S. hyodysenteriae. The MAb 7G2 reacted with a conserved epitope present in the 37-, 34-, and 32-kDa PF core FlaB proteins of all Serpulina species. This suggested that the core FlaB proteins are conserved among porcine Serpulina species. An immunoreactive band of approximately 44 kDa was present with all S. hyodysenteriae, S. innocens, and S. pilosicoli strains that were reacted with the PAb. The specificities of the PAb and the MAb for the FlaA1 and FlaB proteins of Serpulina species were confirmed by N-terminal amino acid sequencing of 44- and 37-kDa proteins, respectively, of S. hyodysenteriae and S. pilosicoli. Results from this study provide further evidence that the 44-kDa protein FlaA1 and the 37-, 34-, and 32-kDa FlaB proteins are conserved among porcine Serpulina species.  相似文献   

6.
Cultures of Serpulina pilosicoli 95/1000, isolated from a pig with porcine intestinal spirochetosis (PIS), and S. pilosicoli WesB, isolated from an Aboriginal child with diarrhea, were used to infect 5-week-old newly weaned pigs. Four of 12 pigs infected with strain 95/1000 and 2 of 12 pigs infected with strain WesB became colonized and developed watery, mucoid diarrhea within 2 to 11 days postinfection. Affected pigs all had moderate subacute mucosal colitis, with gross and histological changes similar to those previously reported in both natural and experimentally induced cases of PIS. Silver-stained histological sections of the colon and cecum from affected pigs demonstrated spirochetes within dilated intestinal crypts, where they were associated with neutrophilic exocytosis and mucus secretion. Sections from one pig infected with strain 95/1000 showed large numbers of spirochetes attached by one end to the colonic epithelium, a feature consistent with PIS. This study confirms the role of S. pilosicoli in the etiology of PIS and provides evidence that S. pilosicoli strains of human origin have pathogenic potential in an animal model.  相似文献   

7.
Chemotaxis of porcine spirochetes towards a variety of mucins was measured quantitatively by a capillary method. A chemotaxis buffer consisting of 0.01 M potassium phosphate buffer (pH 7.0) and 0.2 mM L-cysteine hydrochloride was necessary for chemotaxis of spirochetes. The optimum incubation time and incubation temperature were 1 h and 40 degrees C, respectively. The mucin concentration also affected the chemotaxis observed, and a concentration of 1% (wt/vol) was near the optimum. Virulent Serpulina hyodysenteriae strains were chemotactic towards 1% (wt/vol) hog gastric mucin and 1% (wt/vol) porcine colonic mucin but not towards 1% (wt/vol) bovine submaxillary mucin. Virulent S. hyodysenteriae strains were significantly more chemotactic than avirulent strains of S. hyodysenteriae (SA3 and VS1), Serpulina intermedius, and Serpulina innocens. Other spirochetes belonging to the proposed group of spirochetes Anguillina coli were also not chemotactic. Pathogenicity of S. hyodysenteriae strains that cause swine dysentery may, in part, be attributed to their attraction to porcine intestinal mucus.  相似文献   

8.
The spirochetes inhabiting the large intestines of humans and animals consist of a diverse group of related organisms. Intestinal spirochetosis caused by Serpulina pilosicoli is a newly recognized enteric disease of human beings and animals with potential public health significance. The purpose of this study was to determine the species identity of canine intestinal spirochetes by comparing 30 isolates obtained from dogs in Australia (n = 25) and the United States (n = 5) with reference strains representing Serpulina species and Brachyspira aalborgi, by phenotypic and genetically based typing methods. All of the canine isolates were indole negative and produced a weak β-hemolysis when cultured anaerobically on agar medium containing blood. Four isolates were identified as S. pilosicoli by 16S rRNA-specific PCR assays, rRNA gene restriction fragment length polymorphism or ribotyping, and multilocus enzyme electrophoresis. The remaining 26 isolates formed a cluster related to porcine Serpulina innocens as determined by multilocus enzyme electrophoresis but had a unique ribotype pattern. The data suggested the existence of a novel Serpulina species, provisionally designated “Serpulina canis,” colonizing the intestines of dogs.  相似文献   

9.
The purpose of this study was to determine the presence of lipopolysaccharide-like material in the intestinal spirochaete Serpulina pilosicoli and the extent of antigenic cross-reactivity of this material in different strains of the species. Hot water-phenol, aqueous-phase extracts from five porcine and three human strains of S. pilosicoli, and from seven strains of four other Serpulina spp., were separated by SDS-PAGE and silver-stained profiles were obtained. All S. pilosicoli strains had a predominant band at c. 16 kDa. Some also had a partial ladder-like profile, consistent with the presence of semi-rough lipo-oligosaccharide (LOS); this was more obvious in Western immunoblot analysis. LOS from each S. pilosicoli strain was serologically distinct in immunoblot analysis and there was no cross-reactivity with other Serpulina spp. The serological diversity found amongst the LOS of S. pilosicoli strains may help to explain why individual people and animals can suffer repeated infections with different strains of the organism.  相似文献   

10.
Twenty-nine intestinal spirochetes isolated from Australian aboriginal children and six strains from Italian adults (HRM1, -2, -4, -5, -7, and -14) were genetically examined at 15 enzyme loci by using multilocus enzyme electrophoresis. Results were compared with those previously obtained for 188 porcine intestinal spirochetes. DNA from human strain HRM7 and porcine strain Serpulina hyodysenteriae P18A were also radioactively labeled and hybridized with DNA from 12 other human and porcine intestinal spirochetes. Both the multilocus enzyme electrophoresis and hybridization techniques demonstrated that the human spirochetes were not S. hyodysenteriae. They belonged to another distinct genetic group of spirochetes that included P43/6/78, the bacterium recovered from the first recorded case of porcine intestinal spirochetosis. Bacteria in this distinct group also differed from Serpulina spp. in possessing only four, five, or occasionally six axial filaments, being slightly thinner, and having more pointed ends. These findings add further weight to the possibility that human intestinal spirochetes may act as enteric pathogens.  相似文献   

11.
The chromosomal DNA of spirochetes isolated from human, swine, dog, mouse, rat, and chicken intestine or feces was subjected to restriction enzyme analysis and hybridization with three different DNA probes, derived from a flagellin gene, a hemolysin gene, and the 16S rDNA sequence of the pathogenic swine intestinal spirochete Serpulina hyodysenteriae. This genetic analysis showed that intestinal spirochetes represent a heterogeneous but related population of bacteria. In general, unique genotypes were distinguished among isolates from the same host species; they were not present among isolates from other host species. This suggests the host specificity of some strains. An exception to this are isolates from humans and dogs suffering from gastrointestinal disorders; these isolates showed highly similar or even identical genotypes. None of them resembled any of the genotypes of isolates found in other host species without apparent disease.  相似文献   

12.
Colonic spirochetosis (CS) is a newly emerging infectious disease of humans and animals caused by the pathogenic spirochete Brachyspira (formerly Serpulina) pilosicoli. The purpose of this study was to characterize an antigen that was recognized by antibodies present in sera of challenge-exposed pigs. The gene encoding the antigen was identified by screening a plasmid library of human B. pilosicoli strain SP16 (ATCC 49776) genomic DNA with hyperimmune and convalescent swine sera. The predicted amino acid sequence encoded by the cloned B. pilosicoli gene had a high degree of similarity and identity to glucose-galactose MglB lipoprotein. Located 106 bp downstream of the putative mglB gene was a 3'-truncated open reading frame with 73.8% similarity and 66.3% identity to mglA of Escherichia coli, suggesting a gene arrangement within an operon which is similar to those of other bacteria. A single copy of the gene was present in B. pilosicoli, and homologous sequences were widely conserved among porcine intestinal spirochetes Serpulina intermedia, Brachyspira innocens, Brachyspira murdochii, and the avian Brachyspira alvinipulli, but not in porcine Brachyspira hyodysenteriae, human Brachyspira aalborgi, and porcine Treponema succinifaciens. The deduced molecular weight of the mature MglB lipoprotein was consistent with expression by the cloned gene of a polypeptide with an apparent molecular weight of 36,000, as determined by Western blot analysis and [(3)H]palmitate labeling. Because mucin is the principal constituent of the colonic mucus gel and consists of glycoproteins that can serve as the substrate for growth and chemotaxis of B. pilosicoli in vitro, a role for MglB in mucosal localization of the spirochete appears consistent with the pathogenesis of CS. However, the presence of homologous sequences in closely related but nonpathogenic commensal spirochetes suggests that other virulence determinants may be required for pathogenesis.  相似文献   

13.
Twelve intestinal spirochete strains of porcine origin were characterized on the basis of their phenotypic properties, by multilocus enzyme electrophoresis, and by pathogenicity testing in gnotobiotic pigs. The spirochetes used included two strains of Serpulina hyodysenteriae (B204 and P18A), two strains of Serpulina innocens (B256 and 4/71), one strain from the proposed new genus and species "Anguillina coli" (P43/6/78), and seven non-S. hyodysenteriae strains recently isolated from United Kingdom pig herds with a history of nonspecific diarrhea and typhlocolitis. By multilocus enzyme electrophoresis, five of these were identified as S. innocens, one was identified as an unspecified Serpulina sp., and one was identified as "A. coli." S. hyodysenteriae B204 and P18A, "A. coli" P43/6/78 and 2/7, and three (22/7, P280/1, and 14/5) of the five S. innocens field isolates induced mucoid feces and typhlocolitis in gnotobiotic pigs. None of the other spirochetes produced clinical signs or large intestinal pathology in this model. The "A. coli" strains induced a more watery diarrhea, with lesions present more proximally in the large intestine, than did the other pathogenic spirochetes. S. innocens 22/7 was also tested for pathogenicity in hysterotomy-derived pigs that had previously been artificially colonized with a spirochete-free intestinal flora and shown to be susceptible to swine dysentery. Despite effective colonization, strain 22/7 did not produce any disease, nor was there any exacerbation of large intestinal pathology or clinical signs when pigs with an experimentally induced existing colitis caused by Yersinia pseudotuberculosis were superinfected with strain 22/7. Certain non-S. hyodysenteriae spirochetes are therefore capable of inducing disease in gnotobiotic pigs, but their role as primary or opportunistic pathogens in conventional pigs remains equivocal.  相似文献   

14.
Susceptibilities of predominantly Australian isolates of the pathogenic intestinal spirochaetes Brachyspira intermedia (n = 25) and Brachyspira pilosicoli (n = 17) from chickens were tested in agar dilution against four concentrations each of the antimicrobials tiamulin, lincomycin, tylosin, metronidazole, tetracycline and ampicillin. Based on available minimum inhibitory concentration (MIC) breakpoint values for Brachyspira hyodysenteriae or other Gram-negative enteric veterinary pathogens, isolates of both species generally were susceptible to tiamulin, lincomycin, metronidazole and tetracycline. Although not classed as resistant, four isolates of B. intermedia had an elevated MIC range for tiamulin (1 to 4 mg/l), 11 isolates of B. intermedia and five of B. pilosicoli had an elevated MIC range for lincomycin (10 to 50 mg/l), one isolate of B. pilosicoli had an elevated MIC range for tetracycline (10 to 20 mg/l), and one isolate of B. intermedia and five of B. pilosicoli had an elevated MIC range for ampicillin (10 to 50 mg/l). A clear lack of susceptibility to tylosin (MIC > 4 mg/l) was seen in 11 isolates each of B. intermedia and B. pilosicoli, and to ampicillin (MIC > 32 mg/l) in two isolates of B. pilosicoli. These data suggest that some resistance to common antimicrobials exists among intestinal spirochetes obtained from laying hens and supports the need of MIC data for clinical isolates before any treatment is considered.  相似文献   

15.
A PCR assay for the detection of Serpulina hyodysenteriae in diagnostic specimens was developed on the basis of sequence analysis of a recombinant clone designated pRED3C6. Clone pRED3C6, which contained a 2.3-kb DNA fragment unique to S. hyodysenteriae, was identified by screening a plasmid library of S. hyodysenteriae isolate B204 genomic DNA in Escherichia coli by colony immunoblot with the mouse monoclonal antibody 10G6/G10, which was produced against cell-free supernatant antigens from the same isolate. Southern blot analysis of HindIII-digested genomic DNA of S. hyodysenteriae serotypes 1 through 7 and of four weakly beta-hemolytic intestinal spirochetes, including Serpulina innocens, with the 2.3-kb DNA fragment of pRED3C6 indicated that the cloned sequence was present exclusively in the seven serotypes of S. hyodysenteriae. An oligonucleotide primer pair for PCR amplification of a 1.55-kb fragment and an internal oligonucleotide probe were designed and synthesized on the basis of sequence analysis of the 2.3-kb DNA fragment of pRED3C6. Purified genomic DNAs from reference isolates of S. hyodysenteriae serotypes 1 through 9, S. innocens, weakly beta-hemolytic intestinal spirochetes belonging to genotypic groups distinct from those of reference Serpulina spp., other cultivable reference isolates of the order Spirochaetales, and enteric bacteria including Escherichia coli, Salmonella spp., Campylobacter spp., and Bacteroides vulgatus were amplified with the oligonucleotide primer pair in a hot-start PCR. The 1.55-kb products were obtained only in the presence of genomic DNA from each of the nine serotypes of S. hyodysenteriae. The specificity of the 1.55-kb products for S. hyodysenteriae was confirmed on the basis of production of a restriction endonuclease pattern of the PCR products identical to the predicted restriction map analysis of pRED3C6 and positive hybridization signal with the S. hyodysenteriae-specific internal oligonucleotide probe. By using total DNA obtained from normal swine feces inoculated with decreasing concentrations of S. hyodysenteriae cells, the sensitivity of the PCR assay was calculated to be between 1 and 10 organisms per 0.1 g of feces. The PCR assay was 1,000 times more sensitive than conventional culture of dysenteric feces on selective medium. There was complete agreement between the results of PCR assays and anaerobic culture on selective agar medium with diagnostic specimen (n = 9) obtained from six farms on which there were cases with clinical signs suggestive of swine dysentery. Detection of S. hyodysenteriae by PCR amplification of DNA has great potential for rapid identification of S. hyodysenteriae in diagnostic specimens.  相似文献   

16.
The pathogenic potential of the anaerobic intestinal spirochaetes Brachyspira ( Serpulina ) pilosicoli and Brachyspira innocens was evaluated in adult chickens. Thirty 17-week-old Cobb broiler breeder hens were individually caged in three groups of 10 birds. Control birds (group A) were sham inoculated with sterile broth medium. Birds in the other two groups (groups B and C) were inoculated, respectively, with an isolate of B. innocens or of B. pilosicoli . Birds were monitored daily, and killed at 41 weeks of age. Infection had no consistent effect on body weight gain, but inoculation with B. pilosicoli resulted in a transient increase in faecal water content. B. innocens infection had no effect on egg production, but B. pilosicoli infection caused a delayed onset of laying, and a highly significant reduction in egg production over the first 11 weeks of lay. This study confirms that B. pilosicoli can cause serious egg production losses in adult chickens, while B. innocens is not obviously pathogenic.  相似文献   

17.
Serpulina pilosicoli is an anaerobic spirochete which has been isolated from the colons of pigs with enteric disease. The clinical and pathologic features of experimental infections of conventional pigs (born by normal farrowing with a naturally acquired intestinal flora) with three strains of S. pilosicoli were determined in order to confirm the enteropathogenicity of this species. Strains were derived from the colons of British pigs with colitis and passaged 8 to 10 times during expansion and purification in vitro. Eighteen ten-week-old Large White-Landrace cross pigs were each inoculated once orally with 0.7 x 10(9) to 1.6 x 10(9) of one of three strains of S. pilosicoli. Six pigs were challenged with each strain. Control pigs were dosed with uninfected broth medium or with 1.8 x 10(7) cells of the nonpathogenic Serpulina innocens. Eight pigs (two to four per S. pilosicoli challenge group) developed soft or diarrheic feces (fecal dry matter < 24%) between 3 and 8 days after challenge, which persisted for 7 to 8 days or until necropsy at 14 days after challenge. Average weight gains in two of the three groups challenged with S. pilosicoli were significantly less than controls. The feed conversion ratios of all the groups challenged with S. pilosicoli were impaired compared to controls. The mean values for daily liveweight gain (and feed conversion ratio) for the three groups challenged with S. pilosicoli were 0.799 (2.13), 0.783 (2.05), and 0.844 kg (2.10), respectively, while that of the uninoculated controls was 0.944 kg (1.70). Gross lesions with slight mucosal thickening, congestion, and multifocal erosions were evident in seven of eight diarrheic pigs. The relative weights of the large intestines of pigs challenged with S. pilosicoli were significantly less than controls. Histologic lesions with an increase in mucosal height, infiltration of the lamina propria with mononuclear cells, mucosal erosion with mixed inflammatory cell infiltration, and goblet cell hyperplasia in colonic glands were evident in 15 of the 18 challenged pigs. S. pilosicoli was recovered on bacterial culture of the colon from all except one of the pigs with these histologic lesions. Serpulina sp. was clearly visible within the colonic glands of these affected pigs in silver-stained sections of the gut. Clinical and pathologic findings in control pigs were unremarkable, with no diarrhea or colonic lesions evident. The results provide further evidence that S. pilosicoli is a specific enteric pathogen for conventional pigs. It is capable of colonizing the large intestine and causing mucosal damage, which although mild is sufficient to result in significant adverse effects on growth.  相似文献   

18.
Because identification of the species within the "Streptococcus milleri" group is difficult for the clinical laboratory as the species share overlapping phenotypic characteristics, we wished to confirm biochemical identification with identification by 16S rRNA gene sequence analysis. Ninety-four clinical isolates previously identified as the "Streptococcus milleri" group were reclassified as S. anginosus, S. constellatus, or S. intermedius with the API 20 Strep system (bioMerieux Vikek, Hazelton, Mo.) and the Fluo-card (Key Scientific, Round Rock, Tex.). In addition, we determined the Lancefield group, hemolysis, colony size, colony texture, repetitive extragenic palindromic PCR (rep-PCR) pattern, and cellular fatty acid (CFA) profile (MIDI, Newark, Del.). 16S rRNA gene sequence analysis with 40 selected representative strains showed three distinct groups, with S. constellatus and S. intermedius found to be more closely related to each other than to S. anginosus, and further distinguished a biochemically distinct group of urogenital isolates within the S. anginosus group of isolates. Except for strains unreactive with the Fluo-card (8%), all S. anginosus and S. intermedius strains identified by sequencing were similarly identified by biochemical testing. However, 23% of the selected S. constellatus isolates identified by sequencing (9% of all S. constellatus isolates) would have been identified as S. anginosus or S. intermedius by biochemical tests. Although most S. anginosus strains formed one unique cluster by CFA analysis and most S. constellatus strains showed similar rep-PCR patterns, neither method was sufficiently dependable for identification. Whereas Lancefield group or lactose fermentation did not correspond to sequence or biochemical type, S. constellatus was most likely to be beta-hemolytic and S. intermedius was most likely to have a dry colony type. The most frequent isolate in our population was S. constellatus, followed by S. anginosus. There was an association of S. anginosus with a gastrointestinal or urogenital source, and there was an association of S. constellatus and S. intermedius with both the respiratory tract and upper-body abscesses.  相似文献   

19.
The study described here was carried out to further characterize reference strains of Serpulina (Treponema) hyodysenteriae representing serotypes 8 and 9. Results obtained from restriction fragment length polymorphism analysis, enteropathogenicity testing, and endotoxin profiles confirmed their identifications. Electron microscopy indicated that both strains were covered with a thin layer of capsule-like material. Immunoblot analysis indicated that an antigen in the 19-kDa region of proteinase K-digested whole cells reacted only with homologous antiserum. The serotype-specific antigens were sensitive to periodate oxidation but resistant to proteinase K digestion and migrated in the same region as purified lipopolysaccharides. Immunoblotting with proteinase K-digested whole cells appeared as useful as immunodiffusion with extracted lipopolysaccharide for the serological classification of S. hyodysenteriae. Immunogold labeling of whole cells and purified periplasmic flagella showed strong cross-reactions between S. hyodysenteriae and Serpulina innocens. Outer membrane preparations of strains representing serotypes 8 and 9 contained four major proteins which reacted with antisera against both species, and one major protein with a molecular mass of 46 kDa which reacted only with antisera against S. hyodysenteriae, irrespective of the serotype. Our findings suggest that periplasmic flagella and some outer membrane proteins are antigens common to both S. hyodysenteriae and S. innocens, whereas a 46-kDa outer membrane protein may be a species-specific antigen of S. hyodysenteriae. Finally, we propose immunoblotting as an alternative method to immunodiffusion for the serotyping of S. hyodysenteriae.  相似文献   

20.
Brachyspira pilosicoli, the causative agent of porcine intestinal spirochetosis, usually has hippurate-cleaving capacity. We have regularly isolated hippurate-negative B. pilosicoli from cases of porcine diarrhea. In this study, we show that these biochemically atypical B. pilosicoli isolates can be classified as B. pilosicoli. 16S ribosomal DNA was partially sequenced from eight hippurate-negative and two hippurate-positive B. pilosicoli-like isolates from seven herds. The differences in nucleotide sequence with B. pilosicoli P43/6/78 type strain were not associated with hippurate cleavage. In 877 bp, the hippurate-negative isolates had a similarity of 98.63 to 100% to the type strain, with the corresponding figures for the two hippurate-positive isolates being 98.86 and 100%. The nucleotide sequences of hippurate-positive isolates were identical to the respective sequences of hippurate-negative isolates from one herd. The DNA macrorestriction patterns of a total of 20 hippurate-negative and -positive B. pilosicoli isolates were diverse, and no clustering in conjunction with the hippurate reaction was found. In two herds, hippurate-positive and -negative B. pilosicoli isolates had a common macrorestriction pattern. The ultrastructure of hippurate-negative isolates was similar to the type strain. In conclusion, B. pilosicoli can be either hippurate positive or negative and, thus, the scheme for biochemical differentiation of porcine Brachyspira should be revised to include identification of hippurate-negative B. pilosicoli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号