首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the striking characteristics of the developing neuroendocrine system of rats and mice is the stress hypo-responsive period (SHRP), i.e. low basal corticosterone secretion and the inability to increase corticosterone in response to mild stressors during the first 2 weeks of life. However, immediately after 24 h of deprivation from maternal care the response of the hypothalamic–pituitary–adrenal (HPA) axis to mild stressors is enhanced. This study examines in CD1 mouse pups the recovery pattern of markers of HPA axis (re)activity from maternal deprivation (once for 24 h from postnatal days (pnds) 3 to 4). As expected, deprivation induced a profound corticosterone response to novelty immediately after deprivation. In contrast, 1 day after reunion with the mother (pnd 5), this effect was abolished, lasting for at least 3 days. Basal corticosterone remained even below control levels. Corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) was suppressed for 2 days, exceeded control levels at pnds 7 and 8, and subsequently followed the gradual decline observed in controls until pnd 12. Delayed and rather short-lasting changes were found for adrenocorticotropic hormone (low at pnd 5), and glucocorticoid receptor mRNA expression (decreased in the PVN at pnd 4, and in the hippocampal CA1 area at pnd 5). Hippocampal mineralocorticoid receptor mRNA expression was unaffected. From pnds 9 to 13, both deprived and control pups gradually emerged from the SHRP in a similar temporal pattern. In conclusion, maternal deprivation at pnd 3 augments hypo-responsiveness of corticosterone secretion to mild stress for several days, but does not affect the duration of the SHRP. Whether CRH and glucocorticoid receptor changes are cause or consequence remains to be established.  相似文献   

2.
Rat pups subjected to a single 24h maternal deprivation show altered stress responsiveness and cognitive performance in the water maze in adulthood. Here we show in 6-month-old male CD1 mice (deprived 24h at postnatal day 8) an initial impairment in reversal learning: relocating the platform revealed perseverance in search for the former location. Spatial learning, long-term memory and swim-induced corticosterone responses were not affected. We conclude that reduced flexibility is a subtle long-lasting behavioural change induced by maternal deprivation.  相似文献   

3.
A close contact between the dam and the litter is essential for the normal development of the hypothalamic-pituitary-adrenal (HPA) axis in rats and mice. Maternal signals, as licking and feeding, have been shown to sustain the HPA axis of the pups in a hypo-responsive state. Disruption of this mother-pup interaction by 24 h of maternal deprivation activates the otherwise quiescent stress system of the neonates, resulting in an enhanced adrenal sensitivity to adrenocorticotropic hormone (ACTH) and a decreased expression of central HPA markers, such as corticotropin-releasing hormone (CRH). However, the dynamics of these central and peripheral changes over the 24h period are largely unknown. In this study, we examined the time course of some of the central and peripheral indices of HPA activity during 24 h of maternal deprivation. We measured corticosterone and ACTH in the blood as well as CRH, mineralocorticoid and glucocorticoid receptor expression in the brain. Our results demonstrate that each of the components of the HPA axis responds to maternal deprivation at different time points following removal of the mother and with a very specific time course. The main activation of the HPA axis occurred between 4 h and 8 h of maternal absence. By contrast, during the second half of the deprivation period, negativefeedback mechanisms restrained the further increase in ACTH and corticosterone release. We conclude that maternal deprivation triggers a cascade of sequential changes at the various levels of the stress system, and that measuring only one aspect of the system at one time point does not accurately reflect the dynamic alterations of the HPA axis.  相似文献   

4.
5.
In the neocortex, synaptic zinc level is regulated by sensory experience. Previously, we found that trimming of mystacial vibrissae resulted in an increase of synaptic zinc level in corresponding deprived barrels in the cortex of mice. The present study focused on the relationship between synaptic zinc and zinc transporter 3 (ZnT3) protein expression in the barrel cortex of mice during postnatal development and after sensory deprivation of selected vibrissae. Using immunocytochemistry and western blot analysis, we found that ZnT3 expression is delayed as compared with the onset of synaptic zinc and presynaptic markers, such as synapsin I and synaptophysin. Further, neither long-term deprivation in young mice nor short deprivation in adult mice, that resulted in an increase of synaptic zinc level, produced alterations in ZnT3, synapsin I or synaptophysin expression in deprived barrels. These results suggest that in the barrel cortex ZnT3, synapsin I or synaptophysin are not determinant for the activity-dependent regulation of the synaptic zinc level.  相似文献   

6.
Offspring of mothers with adrenal hyperactivity during pregnancy have been reported to have changes in brain monoamines and altered emotional, reactive, sexual and maternal behavior. Since the hypothalamic-pituitary-adrenal (HPA) axis is known to be involved in the expression of such behaviors and is itself under monoaminergic control, we examined the development of the HPA axis and brain monoamines in pups whose mothers had adrenal hyperactivity, reflecting administration of ACTH during the last third of their pregnancy. The adrenals of the experimental animals weighed less and had aberrant morphology. The abnormal histology was more pronounced in the adrenals of the experimental females than of the males, suggesting that females were more vulnerable to the prenatal treatment. In both experimental males and females, basal plasma corticosterone levels were higher compared to the controls, while after exposure to stress, experimental animals attained lower plasma corticosterone levels than the controls. In the brain of the experimental animals, dopaminergic activity appeared to be decreased, while serotonergic activity increased. Our results indicate that the prenatal treatment affected brain development in the offspring and as a consequence programmed the developing HPA axis in such a way as to hyperfunction under basal conditions, leading to its exhaustion and its inability to react properly to stress.  相似文献   

7.
Prenatal maternal infection is an environmental risk factor for neurodevelopmental psychiatric illness and disease-associated cognitive impairments. Modeling this epidemiological link in animals shows that prenatal immune challenge is capable of inducing long-lasting deficits in numerous cognitive domains. Here, we combined a neonatal cross-fostering design with a mouse model of prenatal immune challenge induced by maternal gestational treatment with the viral mimetic poly(I:C) to dissect the relative contribution of prenatal and postnatal maternal effects on the offspring. We show that offspring prenatally exposed to poly(I:C) display significant impairments in spatial matching-to-position working memory and spatial novelty presence regardless of whether they are raised by gestationally immune-challenged or non-challenged control surrogate mothers. Likewise, prenatally immune challenged offspring exhibit reduced glutamic acid decarboxylase 65-kDa (GAD65) and 67-kDa (GAD67) gene expression in the adult medial prefrontal cortex and dorsal hippocampus largely independently of the postnatal rearing conditions. In addition, we confirm that being raised by a gestationally immune-challenged surrogate mother is sufficient to increase the offspring’s locomotor response to systemic amphetamine treatment. Our data thus suggest that prenatal infection-induced deficits in spatial short-term memory are mediated by prenatal maternal effects on the offspring. At the same time, our study adds further weight to the notion that being reared by a surrogate mother that experienced immune activation during pregnancy may constitute a risk factor for specific dopaminergic abnormalities.  相似文献   

8.
S Morara  L Provini  A Rosina 《Brain research》1989,504(2):315-319
CGRP-like immunoreactivity was studied in the cerebellar cortex and precerebellar nuclei of neonatal rats. From postnatal day (PD) 0 to PD 13-15, CGRP immunoreactivity was transiently found in fiber-like structures around Purkinje cells, defining parasagittal bands. Following the same time course, transient labeling was also found in the inferior olive neurons which, in the adult, distribute their axons to the olivocerebellar compartments corresponding to the immunoreactive bands. It is concluded that CGRP is transiently expressed in specific climbing fiber compartments.  相似文献   

9.
The localization of glycosylated molecules and glia has been studied during early postnatal development in the mouse central nervous system (CNS) using autoradiographic detection of radiolabeled fucose incorporation, and in sections processed either for histochemistry or immunocytochemistry following binding of labeled lectins or an antibody to glial fibrillary acidic protein. Radiolabeled sugar incorporation, lectin binding of glycoconjugates, and glial labeling all reveal borders between nuclei within the diencephalon, midbrain, and brainstem through the first postnatal week. Glycoconjugate and glial boundaries exist throughout the CNS during pattern formation events, and they also are seen in relation to fine aspects of developing functional organization within individual structures (e.g. segmentation associated with the representation of mystacial vibrissae within the brainstem trigeminal complex). The observation that each of the probes employed in this study fails to label boundary organization during later postnatal times suggests that the distribution and chemistry of the glial/glycoconjugate network are dynamic, and they change in accordance with distinct maturational states of the nervous system.  相似文献   

10.
We investigated the postnatal alterations of neuronal nuclei (NeuN)-positive neurons, parvalbumin (PV)-positive interneurons, neuronal nitric oxide synthase (nNOS)-positive interneurons, and neurotrophic factors in the mouse striatum and frontal cortex using immunohistochemistry. NeuN, PV, nNOS, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse striatum and frontal cortex from 1 up to 8 weeks of age. In contrast, a significant decrease in the number of PV-positive interneurons was observed in the striatum and frontal cortex of 1-, 2- and 4-week-old mice. Furthermore, a significant increase of nNOS-positive interneurons was found in the striatum and frontal cortex of 1- and/or 2-week-old mice. NGF-positive neurons were unchanged in the mouse striatum from 1 up to 8 weeks of age. In the frontal cortex, a significant increase in the number of NGF-positive neurons was observed only in 1-week-old mice. In contrast, a significant increase in the number of NGF-positive glia 1 cells was found in the striatum and frontal cortex of 4-week-old mice. Our double-labeled immunostaining showed that nNOS immunoreactivity was not found in PV-immunopositive interneurons. Furthermore, BDNF immunoreactivity was observed in both nNOS-positive and PV-positive interneurons in the striatum of 1- or 2-week-old mice. These results show that the maturation of nNOS-immunopositive interneurons precedes the maturation of PV-immunopositive interneurons in the striatum and frontal cortex during postnatal development. Furthermore, our results demonstrate that the expression of BDNF may play some role in the maturation of interneurons in the striatum and frontal cortex during postnatal development. Moreover, our findings suggest that the expression of NGF in glia cells may play some role in the maturation of glial cells and PV-positive interneurons in the striatum and frontal cortex during postnatal development.  相似文献   

11.
Using biochemical analyses, we have demonstrated the presence of a high-affinity, sodium- and temperature-dependent uptake system for GABA in the retinas of newborn rabbits. The activity of this system two days after birth is approximately 70 percent of adult values, slowly increasing to adult level by postnatal day 6–8. An intraocular injection nipecotic acid (final concentration = 10 mM) into one-day-old rabbit pups resulted in a 60 percent inhibition in uptake activity. In order to study the possible role of the GABA uptake system in retinal development, we have determined the consequences of blocking GABA uptake with nipecotic acid on the postnatal development of post-synaptic GABA receptors, as measured by 3H-muscimol binding. Nipecotic acid treatment caused a significant increase in receptor binding in retinas prior to eye opening, with the maximal stimulation being one day after the intraocular injection. Our data indicate that the development of GABA receptor sites is influenced by the activity of the GABA uptake system and suggest that GABA may function as a trophic factor in the developing rabbit retina.  相似文献   

12.
Newborn Long-Evans rats were undernourished by maternal deprivation so that by 20 days of age their body and brain weights were about 45 and 80%, respectively, of the values obtained for control (well-nourished) values. Proteins from myelin of undernourished and control rats were separated by polyacrylamide gel electrophoresis in buffers containing sodium dodecyl sulfate. At 15 and 20 days of age the proportion of basic and proteolipid protein was reduced in the starved animals relative to controls, indicative of a delay in maturation. However, by 30 days of age the composition of myelin from starved and control animals appeared similar. At all ages the yield of myelin from brains of starved rats was less than 25% of that obtained from control animals. A series of isotope labeling experiments, using a double label design, was carried out to compare relative rates of incorporation of radioactive amino acids into individual proteins of various brain subcellular fractions. In 20-day-old rats the incorporation of [3H] OR [14C] leucine or glycine into myelin proteins, relative to incorporation into proteins of other subcellular fractions, is preferentially depressed (about 60%) in starved animals. Synthesis of all the myelin proteins was depressed, supporting the hypothesis that the high molecular weight proteins isolated with myelin are true myelin constituents. Similar experiments were conducted using [3H]-and [14C] acetate, choline, or glycerol as precursors of lipids. Incorporation of isotope into lipids of myelin, relative to lipids of other subcellular fractions, was also depressed by about 60% in starved animals. In several experiments we studied synthesis during rehabilitation (ad libitum feeding) following 20 days of postnatal starvation. After 6 days of rehabilitation, incorporation of radioactive precursors into myelin, relative to other subcellular fractions, was still depressed. This result was true for both proteins and lipids, and was interpreted as evicence against the initiation of a process leading to a net recovery of myelin (i.e., an irreversible deficit of myelin synthesis is induced by this regime of nutritional deprivation).  相似文献   

13.
Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.  相似文献   

14.
In the nervous system of adult rodents, the aminoacylhistidine dipeptides (carnosine and/or homocarnosine) have been shown to be expressed in three main populations of cells: the mature olfactory receptor neurons, a subset of glial cells, and the neuroblasts of the rostral migratory stream. The current study analyzed the distribution of these dipeptides during postnatal development within the rat brain and spinal cord focusing on their pattern of appearance in the glial cells. Double staining methods using antibodies against carnosine and some markers specific for immature (vimentin) and mature (glial fibrillary acidic protein and Rip) glial cell types were used. Glial immunostaining for the aminoacylhistidine dipeptides appears starting from postnatal day 6 and reaches the final distribution in 3-week-old animals. The occurrence of carnosine-like immunoreactivity in astrocytes lags behind that in oligodendrocytes suggesting that, as previously demonstrated by in vitro studies, oligodendrocytes are also able to synthesize carnosine and/or homocarnosine in vivo. Furthermore, the spatiotemporal patterns observed support the hypothesis that the production of these dipeptides coincides with the final stages of glia differentiation. In addition, a strong carnosine-like immunoreactivity is transiently seen in a small population of cells localized in the hypothalamus and in the subfornical organ from birth to postnatal day 21. In these cells, carnosine-like immunoreactivity was not colocalized with any of the glial specific markers used. Moreover, no evidence for colocalization of carnosine and gonadotropin-releasing hormone (GnRH) has been observed.  相似文献   

15.
The development of the hypothalamic-pituitary-adrenal (HPA) response to stress is influenced by the early mother-infant relationship. In rats, early handling (brief daily mother-offspring separations) attenuates the adult offspring's HPA and fear responses compared to both nonhandling (no separations) and maternal separation (prolonged daily separations). It has been proposed that variation in the amount of maternal care mediates these effects of neonatal manipulations on the adult offspring's stress and fear responses. Here we tested this hypothesis by assessing maternal care and the adult offspring's HPA and fear responses in Lister hooded rats which were subjected to either early handling (EH) or maternal separation (MS) from postnatal day 1-13, or were left completely undisturbed (nonhandled, NH) throughout this period. Both EH and MS induced a more active nursing style and elevated levels of maternal care compared to NH. Total levels of maternal care were indistinguishable between EH and MS, but diurnal distribution differed. MS dams showed elevated levels of maternal care following the 4-h separation period, thereby fully compensating for the amount of maternal care provided by EH dams during the time MS dams were separated from their pups. However, while EH resulted in reduced HPA and fear responses in the adult offspring compared to NH, MS and NH offspring did not differ. Our findings therefore demonstrate dissociation in the effects of EH and MS on maternal care and on the stress and fear responses in the offspring. This indicates that maternal care cannot be the sole mediator of these effects.  相似文献   

16.
The endocrine response to stress is an important homoeostatic mechanism, and the secretion of glucocorticoids from the adrenal cortex is a central feature of this response. During early postnatal development, the neonatal rat displays a reduced hypothalamic-pituitary-adrenal (HPA) response to stress. This early period has been termed the 'stress hyporesponsive period' (SHRP). Maternal separation (Sep) of neonates from their mothers during early postnatal development alters the HPA response to stress. In this study, we report the effects of Sep during the SHRP. Female rats were time mated and randomly divided into control or Sep groups before birth. The Sep litters were removed from the mothers during the dark cycle for 6 h per day from postnatal day (PND) 2 to 10. On PND 28, the pups from both groups were weighed, the anogenital distance (AGD) was measured and the animals weaned. At 40 days of age, male and female animals from both groups were tested for open-field activity. As the animals matured, vaginal opening and estrous cycles were measured in females, and males were tested for male sexual behavior at adulthood. Basal, stress, and stress recovery serum corticosterone levels were measured from control and Sep male and female animals. Open-field activity was not significantly different between control or Sep male or female animals. Sep did not affect either vaginal opening or estrous cycles in female animals. Corticosterone secretion in response to stress was similar in control and Sep males and females; however, the recovery levels were significantly higher in Sep females than in Sep males or female control values. In male sexual behavior tests, Sep males had significantly longer mount latencies (time to the first mount), longer intromission latencies (time to the first intromission) and a significant reduction in the percent of animals ejaculating versus control values (controls 84 and Sep 50%). Therefore, Sep males as adults displayed altered reproductive behavior, whereas their stress recovery levels of corticosterone returned to near basal levels in a similar fashion to that observed for control non-handled males. In contrast, females displayed normal reproductive physiology, while their recovery levels of corticosterone remained high, unlike that observed with control females. Thus, significant gender differences in response to Sep (during the dark phase of the circadian cycle) were observed in the paradigm used in the present study.  相似文献   

17.
Cannabinoid receptor type 1 (CB1R) participates in developmental processes in the central nervous system (CNS). The rodent retina represents an interesting and valuable model for studying CNS development, because it contains well-identified cell types with clearly established and distinct developmental timelines. Very little is known about the distribution or function of CB1R in the developing retina. In this study, we investigated the expression pattern of CB1R in the rat retina during all stages of postnatal development. Western blots were performed on retinal tissue at different time points between P1 and adulthood. In order to identify the cells expressing the receptor and the age at which this expression started, immunohistochemical co-staining was carried out for CB1R and markers of the different cell types comprising the retina. CB1R was already present at P1 in various cell types, i.e., ganglion, amacrine, horizontal, and mitotic cells. In the course of development, it appeared in cone photoreceptors and bipolar cells. For some cell types (bipolar, Müller, and some amacrine cells), CB1R was transiently expressed, suggesting a potential role of this receptor in developmental processes, such as migration, morphological changes, sub-identity acquisition, and patterned retinal spontaneous activity. Our results also indicated that CB1R is largely expressed in the adult retina (cone photoreceptors and horizontal, most amacrine, and retinal ganglion cells), and may therefore contribute to retinal functions. Overall these results indicate that, as shown in other structures of the brain, CB1R could play an instrumental role in the development and function of the retina.  相似文献   

18.
Several regulated mRNAs were detected by applying differential display to the mouse cerebellum during postnatal development. One cDNA fragment, referred to as CPD1 (GenBank U89345), was characterized and cloned. Northern blots showed maximum mRNA expression at postnatal day seven (P7). The mRNA encodes a protein of 260 amino acids. In situ RT-PCR showed that CPD1 is expressed mainly in granule cells and faintly in Purkinje cells. Polyclonal rabbit antibodies and oligobodies (oligonucleotide-based synthetic antibodies) revealed a protein of 34 kDa in Western blots. Immunohistochemistry showed not only marked nuclear staining but also mild cytoplasmic localization. Granule cells undergoing active division (P4) showed very little expression of CPD1 protein, which increases from P7 to P17. CPD1, affinity-purified using a chemically synthesized oligobody inhibits the activity of protein phosphatase PP2A but not protein phosphatase PP1. Differentiated PC12 cells also showed nuclear and cytoplasmic localization. Interestingly, maximal cytoplasmic CPD1/PP2A colocalization was observed near cell membrane regions that are far from growing neurites, and on growing cones. These results suggest that CPD1 might have an important role in cerebellar development.  相似文献   

19.
One day after intraocular injection of [3H]proline, significant amounts of axonally transported radioactive protein were present in the contralateral visual cortex of neonatal hamsters, postnatal age 14 days (P14) and older. Transneuronal transfer from the optic nerve to geniculocortical neurons was greatest in animals injected at the time of normal eye-opening, P14 to P16, and decreased with age. No significant accumulation of [3H]proline-derived radioactivity was found in the visual cortex of prefunctional (P12) animals or in old adults, although primary transport to the lateral geniculate body did not differ significantly from P14 animals. Accumulation in the nonvisual retrosplenial cortex showed a similar developmental pattern. In contrast, cortical incorporation of blood-borne [3H]-proline decreased steadily with age from P8 to adult. The failure to demonstrate transneuronal transfer of [3H]proline-labeled material in the prefunctional visual system was not due to a generalized inability to transfer rapidly transported protein, because significant radioactivity was found in visual cortex of P10, prefunctional hamsters 1 day after intraocular injection of [3H]fucose. It is suggested that enhanced transneuronal transfer of [3H]proline-derived label at the time of eye-opening depends primarily on events occurring in the retinal ganglion cell, e.g., changes in the synthetic fate of precursors and in the processes by which axonally transported materials are released from the optic nerve. Nonspecific developmental changes in uptake and reincorporation may also contribute to the observed pattern of transneuronal transfer.  相似文献   

20.
Early life stress interrupts brain development through the disturbance of various neurotransmitter and neurotrophic factor activities, but the details remain unclear. In the current study, we focused on the serotonergic system, which plays a critical role in brain development, and examined the time-dependent influence of prolonged maternal separation on male Sprague-Dawley rats. The rats were separated from their dams for 3 h twice-daily during postnatal days (PDs) 2–20. The influence of prolonged maternal separation was analyzed on PDs 7, 14, 21, and 28 using HPLC to assess concentrations of serotonin and 5-hydroxyindoleacetic acid and using real-time RT-PCR to measure mRNA expression of the serotonin 1A and 2A receptors in various brain regions. HPLC revealed imbalance between serotonin and 5-hydroxyindoleacetic acid in midbrain raphe nuclei, the amygdala, the hippocampus, and the medial prefrontal cortex (mPFC) on PDs 7 and 14. Furthermore, real-time RT-PCR showed attenuation of mRNA expression of the serotonin 1A receptor in the hippocampus and the mPFC and of the serotonin 2A receptor only in the mPFC on PDs 7 and 14. The observed alterations returned to control levels after maternal separation ended. These findings suggest that the early life stress of prolonged maternal separation disturbs the serotonergic system during a crucial period of brain development, which might in part be responsible for emotional abnormalities later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号