共查询到19条相似文献,搜索用时 109 毫秒
1.
截短的弓形虫P30基因在E.coli中的高效表达及纯化条件的探索 总被引:10,自引:2,他引:10
目的:构建能在E.coli中高效表达的弓形虫主要表面抗原(P30)基因的重组表达质粒,并对纯化条件进行优化。方法:对已知的弓形虫P30基因序列进行部分取舍,用PCR技术从弓形虫ZS1株的基因组DNA中扩增出截短的P30基因片段,插入载体pET-30(a)中,转化大肠杆蓖DH5α,IPTG诱导表达,包涵体经洗涤、变性、复性及不同程度的浓缩后,进行SDS-PAGE及免疫印迹分析。结果:从弓形虫ZS1株基因组DNA中扩增出截短的P30基因片段,成功构建重组表达质料粒pET-P30;SDS-PAGE显示蛋白表达带的分子量约为31kD,表达量占菌体总蛋白的31.58%,经1M及2M尿素洗涤后,其纯度分别达63.42%及75.7%;免疫印迹显示,该纯蛋白能被弓形虫病人阳性血清所识别,产而且当浓缩至初始体积的1/3-1/6时,纯化蛋白与DNA免疫鼠血清的反应最强。结论: 成功构建重组质粒pET-P30,并以融合蛋白的形式进行了高效表达,经变 性、复性后,该蛋白具有特异的免疫反应性,为弓形虫诊断试剂盒的研制打下基础。 相似文献
2.
目的亚克隆弓形虫RH株表面抗原P22编码基因,构建表达质粒pBK/P22,并对其在大肠杆菌(E.coli)中的表达作初步研究. 方法以限制性内切酶BamHⅠ和KpnⅠ双酶切质粒pBCG5.6/P22,获得弓形虫表面抗原P22编码基因目的片段,在以低熔点琼脂糖回收纯化后,插入表达质粒载体pBK-CMV的多克隆位点,构建重组体pBK/P22,并转化大肠杆菌DH 5α,快速酚法初筛阳性重组子,阳性克隆以PCR法与限制性酶切分析鉴定后,以IPTG进行诱导在E.coli DH 5α中表达,表达产物以SDS-PAGE与免疫印迹分析. 结果双酶切质粒pBCG5.6/P22,获得约593 bp的P22编码基因片段,与预期片段大小相符;所构建pBK/P22重组体阳性克隆经双酶切和PCR鉴定与预期结果一致;SDS-PAGE与免疫印迹显示,表达产物的大小约28 ku. 结论成功亚克隆并构建了弓形虫表面抗原P22编码基因pBK/P22表达质粒,诱导表达了弓形虫P22表面抗原蛋白,为抗原免疫特性的研究奠定了基础. 相似文献
3.
目的 构建编码弓形虫RH株表面抗原P30基因的分枝杆菌 -大肠杆菌穿梭表达重组质粒并进行其序列测定。方法 弓形虫RH株腹腔接种小鼠 ,收集腹水 ,酚 /氯仿法抽提基因组DNA ;根据基因库P30基因序列设计合成一对引物 ,采用PCR法扩增编码P30的基因片段 ,经低熔点琼脂糖法回收并纯化 ;将P30基因定向克隆到分枝杆菌 -大肠杆菌穿梭表达质粒 ,转化大肠杆菌DH5dα,在卡那霉素阳性LB培养基平板筛选阳性重组子 ,并经双酶切及PCR鉴定 ;最后对重组子进行序列测定。结果 PCR所扩增的P30基因片段为 10 37bp ,阳性重组质粒pBCG -P30经XbaI+KpnI双酶切 ,获得包含P30和热休克蛋白 (hsp70 )启动子的复合基因片段 ,此片段的大小为 1170bp ,与预期的理论值相符合。序列测定分析进一步表明所克隆的基因为编码P30抗原的基因片段。结论 成功构建编码弓形虫表面抗原P30基因大肠杆菌 -分枝杆菌穿梭质粒pBCG -P30。 相似文献
4.
目的通过分子克隆技术获取弓形虫主要表面抗原P30蛋白。方法自行设计引物,通过PCR扩增获得P30基因片段,采用EcoRⅠ、XhoⅠ双酶切,定向克隆到载体pThioHis中,转化大肠杆菌Top10,利用酶切、DNA序列分析鉴定阳性克隆,异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达,融合蛋白通过镍结合树脂(ProBond~(TM)Resin)进行纯化,并用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和蛋白质印迹(Westernblotting)鉴定。结果PCR、酶切、连接的产物经电泳鉴定,均与预期设计相符合。DNA序列分析结果表明,除一个同义突变,其余均与文献报道相符。IPTG诱导表达后经层析纯化获得46kDa含P30的融合蛋白。结论通过定向克隆、表达与纯化,获得含P30的融合蛋白。 相似文献
5.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒,为进一步表达融合蛋白及研制核酸疫苗做准备。方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组DNA;用PCR技术从基因组DNA中扩增编码表而抗原P30、P22的基因片段,分别重组入pMD18T载体中。将pMD18-T载体中的P30、P22基因片段分别酶切,定向克隆入pUC18克隆载体中,pUC18-P30-P22中的P30P22片段经酶切、纯化后,亚克隆入pcDNA3.1(-)真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。结果 从弓形虫RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆pUC18-P30P22重组质粒的酶切片段分别与P30、P22基冈大小一敛:经亚克隆、筛选鉴定获得了pcDNA3.1-P30-P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫pUC8-P30P21重组质粒和pcDNA3.1-P30-P22重组质粒,为研制弓形虫DNA疫苗奠定了基础。 相似文献
6.
刚地弓形虫P30(SAGl)基因的克隆与表达 总被引:1,自引:0,他引:1
目的 构建弓形虫P30基因表达载体并获得重组表达蛋白。方法 将弓形虫P30基因的开读框用PCR扩增,NcoⅠ和Hind Ⅲ酶切后,与同样酶切的表达质粒pET-30a( )经T4连接酶连接,然后转化到DH5a中。菌液经PCR扩增和质粒酶切及基因测序鉴定后,将阳性重组质粒转化到大肠埃希菌BL21(DE3)中,经IPTG诱导,表达产物用SDSPAGE和Western blot进行鉴定。结果 扩增的P30基因片段为750bp,重组质粒诱导表达产物分子质量单位为30ku,与理论值相符。Western blot确认重组质粒表达蛋白与小鼠抗弓形虫单克隆抗体(P30McAb)发生特异性反应。结论 成功构建重组体并获得弓形虫主要表面抗原P30的高效表达产物,为弓形虫病的诊断和疫苗研究奠定了基础。 相似文献
7.
弓形虫表面抗原P22编码基因片段的亚克隆与表达 总被引:3,自引:1,他引:3
目的 亚克隆弓形虫RH株表面抗原P22编码基因,构建表达质粒pBK/P22,并对其在大肠杆菌(E.coli)中的表达作初步研究。方法 以限制性内切酶BamHⅠ和KpnⅠ双酶切质粒pBCG5.6/P22,获得弓形虫表面抗原P22编码基因目的片段,在以低熔点琼脂糖回收纯化后,插入表达质粒载体pBK-CMV的多克隆位点,构建重组体pBK/P22,并转化大肠杆菌DH5α,快速酚法初筛阳性重组子,阳性克隆以PCR法与限制性酶切分析鉴定后,以IPTG进行诱导在E.coliDH5α中表达,表达产物以SDS-PAGE与免疫印迹分析。要双酶切质粒pBCG5.6/P22,获得约593bp的P22码基因片段,与预期片段大小相符;所构建pBK/P22重组性体阳性克隆以双酶切和PCR鉴定与预期结果一致;SDS-PAGE与免疫印迹显示,表达产物的大小约28ku。结论 成功亚克隆并构建了弓形虫表面抗原P22编码基因pBK/P22表达质粒,诱导表达了弓形虫P22表面抗原蛋白,为抗原免疫特性的研究奠定了基础。 相似文献
8.
弓形虫表达抗原P30基因分枝杆菌—大肠杆菌穿梭表达重组质 … 总被引:2,自引:1,他引:2
目的 构建编码弓形虫RH株表面抗原P30基因分枝杆菌-大肠杆菌穿梭表达重组质粒并进行其序列测定。方法 弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提基因组DNA;根据基因库P30基因序列设计合成一对引物采用PCR法扩增编码P30的基因片段,经低熔点琼脂糖法回收并纯化;将P30基因定向克隆到分枝杆菌-大肠杆菌穿梭表达质粒,转化大肠杆菌DH5da,在卡那霉素阳性LB培养基平板筛选阳性重组子,并经双 相似文献
9.
弓形虫表面抗原P22基因片段的克隆、表达及鉴定 总被引:1,自引:0,他引:1
目的 扩增弓形虫表面抗原P22基因编码序列,并进行表达和鉴定。方法 设计合成引物,PCR法从RH株弓形虫基因组DNA中扩增P22基因编码序列,克隆人载体pET-32a,转化大肠埃希菌BL21,IPTG诱导表达,表达产物进行SDS-PAGE和Western blot鉴定。结果 从弓形虫基因组DNA中扩增出P22基因编码序列,并诱导表达出能被兔抗弓形虫血清识别的重组P22。结论 成功获得弓形虫表面抗原P22的表达产物,为弓形虫病的诊断和疫苗研究创造了条件。 相似文献
10.
目的 构建编码弓形虫RH株表面抗原P30、P22复合基因的真核表达重组质粒, 为进一步表达融合蛋白及研制核酸疫苗做准备。 方法 用弓形虫RH株腹腔接种小鼠,收集腹水,酚/氯仿法抽提弓形虫基因组 DNA;用 PCR技术从基因组DNA中扩增编码表面抗原 P30、P22 的基因片段,分别重组入 pMD18 T载体中。将 pMD18 T载体中的P30、P22基因片段分别酶切,定向克隆入 pUC18克隆载体中, pUC18 P30 P22 中的 P30 P22 片段经酶切、纯化后,亚克隆入 pcDNA3.1( )真核表达载体,用酶切、PCR及测序的方法对重组子进行鉴定。 结果 从弓形虫 RH株基因组DNA中扩增出特异的P30及P22片段;大小均与预测值相符;克隆 pUC18 P30 P22 重组质粒的酶切片段分别与 P30、P22基因大小一致;经亚克隆、筛选鉴定获得了 pcDNA3.1 P30 P22重组质粒,所测P30、P22基因序列与文献报道一致。结论 成功构建弓形虫 pUC18 P30 P22重组质粒和 pcDNA3.1 P30 P22 重组质粒,为研制弓形虫 DNA疫苗奠定了基础。 相似文献
11.
弓形虫RH株膜蛋白P30的原核表达与鉴定 总被引:1,自引:0,他引:1
目的在E.coli中表达弓形虫RH株膜蛋白P30。方法将P30基因定向克隆到pET28b,构建含目的基因的pET28b-P30重组质粒,转化E.coliBL21(DE3),接种含pET28b-P30的BL21(DE3)单菌落于LB培养基,1∶100稀释后用0.2mmol/L的IPTG诱导表达,SDS-PAGE和Westernblot鉴定诱导表达产物。结果1构建了重组质粒pET28b-P30,2在E.coli中表达了一分子量约为30kDa的融合蛋白,经Westernblot鉴定正确。结论在E.coli中高效表达了弓形虫RH株膜蛋白P30,并以包涵体形式存在。 相似文献
12.
目的 获得能表达弓形虫P3 0 蛋白的小鼠巨噬细胞克隆并观察内源性表达的P3 0 蛋白对小鼠巨噬细胞凋亡的影响。方法 通过PCR扩增获得P3 0 基因片段 ,定向克隆到真核表达载体pcDNA3.1/Hygro(- )中 ,利用酶切、DNA序列分析鉴定阳性克隆 ,采用脂质体将重组质粒转染到RAW 2 6 4 .7巨噬细胞中 ,通过Hygromycin筛选和PCR、免疫组化鉴定 ,用流式细胞术DNA倍体分析计算稳定转染和瞬时转染P3 0 基因的巨噬细胞的凋亡率。结果 1.PCR、酶切、连接的产物经电泳鉴定 ,均与预期设计相符合 ,DNA序列分析发现重组质粒中的目的基因序列与文献报道相符。2 .PCR和免疫组化鉴定发现转染P3 0 重组质粒的巨噬细胞能稳定地复制质粒并表达弓形虫P3 0 蛋白。 3.P3 0 稳定转染的细胞凋亡率均在 2 %左右 ,不同细胞之间没有区别。 4 .瞬时转染空载体和P3 0 重组质粒的巨噬细胞其凋亡率均在 6 %左右 ,没有区别。结论 1.获得了含P3 0 基因的重组质粒以及能稳定表达弓形虫P3 0 蛋白的小鼠巨噬细胞克隆。2 .无论是稳定转染还是瞬时转染 ,均不能引起巨噬细胞的凋亡 ,说明内源性表达的弓形虫P3 0 蛋白对小鼠巨噬细胞的凋亡没有影响。 相似文献
13.
含有弓形虫表面抗原P22、P30复合基因的载体构建 总被引:1,自引:0,他引:1
目的 选择弓形虫表面抗原P2 2、P30的有效基因片段 ,共同构建在同一克隆载体pUC19和表达载体 pGE MEXTM- 1上 ,并保证其连接方向及开放读码框的正确。方法 根据已发表P30基因序列 ,用PCR技术调取所需基因片段 ,P2 2基因片段来自重组质粒pGEX - 2T -v2 2 ,将两片段定向克隆于克隆载体 pUC19及表达质粒pGEMEXTM- 1上 ,用酶切及测序的方法对重组子进行鉴定。结果 酶切产物经电泳显示条带清晰 ,P2 2、P30基因片段的泳动位置分别在 4 4 6bp和 86 0bp的位置 ,与预计结果一致 ;测序结果表明插入的复合基因片段方向及序列均正确。结论 成功构建的含有P2 2、P30基因片段的质粒重组体 ,保证了两基因连接方向、序列及开放读码框的正确 ,为今后两基因的进一步复合表达研究奠定了基础。 相似文献
14.
目的克隆表达弓形虫RH株SAG3基因,为深入研究其结构及功能奠定基础。方法从弓形虫RH株基因组DNA中特异性扩增出编码SAG3基因的片段,相应酶切后克隆入原核表达载体pET-30a(+)中,构建pET-SAG3重组质粒。将pET30-SAG3重组质粒转化大肠杆菌BL21(DE3)菌株。经EcoRⅠ、Hind III酶切及测序鉴定后,异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达融合蛋白,用SDS-PAGE和Western blot鉴定蛋白表达情况。结果体外扩增的SAG3基因片段与目的片段大小相符约1 155bp,成功构建了重组表达质粒pET30-SAG3,SDS-PAGE、Western blot显示SAG3-His融合蛋白的分子量大小约为50kd。结论弓形虫表面抗原SAG3基因在大肠杆菌中成功表达,为进一步研究SAG3的结构和功能奠定基础。 相似文献
15.
弓形虫P30基因重组质粒的构建及其免疫效果 总被引:9,自引:2,他引:9
目的 通过构建含弓形虫P30不同表达形式 (膜型、分泌型及细胞内型 )的重组质粒 ,并将其用于免疫小鼠 ,测定抗体水平 ,以期初步筛选出一种对弓形虫感染具有良好保护作用的核酸疫苗。 方法 利用PCR技术和亚克隆技术分别构建弓形虫表膜型P30基因重组质粒 (含完整的P30编码序列 ,包括信号肽及疏水尾 )pcDNA3 P30Mb ,分泌型P30基因重组质粒 (含完整的P30编码序列 ,不包括疏水尾 )pcDNA3 P30Se以及细胞内型P30基因重组质粒 (含完整的P30编码序列 ,但不包括信号肽 )pcDNA3 P30In。将以上 3种重组质粒分别与脂质体混合后免疫小鼠 ,ELISA及免疫印迹测定小鼠血清中特异的IgG抗体。 结果 成功构建了弓形虫P30基因 3种表达形式的重组质粒 ,经双酶切鉴定及DNA序列测定 ,3种重组质粒中的插入片段确为P30的编码基因 ,且读码框架正确 ;抗体测定显示 :3个免疫组均能诱导小鼠产生特异的IgG抗体 ,但各组之间IgG出现的时间及强度有一定的差异。 结论 用编码弓形虫P30抗原的重组质粒进行核酸免疫 ,能诱导免疫小鼠产生特异性的IgG抗体 ;膜型及分泌型免疫小鼠的特异IgG抗体出现的时间早于细胞内型免疫鼠 ,但 4wk后 3组间差异无显著性。 相似文献
16.
弓形虫主要表面抗原P30两个不同片段的重组表达、纯化及应用 总被引:2,自引:0,他引:2
目的将刚地弓形虫(简称弓形虫)主要表面抗原P30基因两个不同片段重组表达,纯化所获重组蛋白用于弓形虫病免疫学诊断。方法根据弓形虫P30基因的全长序列,用PCR法从弓形虫RH株基因组DNA中扩增出P30基因的两个不同片段,并构建相应克隆进行诱导表达,表达蛋白以western blot鉴定。用Amylase Resin以亲和层析法纯化所表达的蛋白。以弓形虫RH株感染家兔,用粗抗原和纯化重组抗原以ELISA法比较检测各种寄生虫病患者、感染家兔血清及疟原虫感染小鼠血清。结果1.成功构建相应克隆,并成功诱导表达,表达产物经纯化后获得高纯度日的蛋白。2.重组抗原与粗抗原相比。具有相同的敏感性和更高的特异性。结论成功获得弓形虫主要表面抗原P30的2个表达产物。以此重组抗原与粗抗原对比检测弓形虫相应抗体,结果证明重组抗原特异性高于粗抗原。 相似文献
17.
弓形虫多表位基因的构建及其在大肠杆菌系统中的表达鉴定 总被引:11,自引:0,他引:11
目的 构建弓形虫和破伤风毒素多个表位的编码基因 ,将其在大肠杆菌系统进行表达 ,评价重组抗原的特异反应性。方法 从弓形虫保护性抗原及通用免疫增强佐剂破伤风毒素中选取含有T和 (或 )B细胞表位的抗原片段 ,通过软件分析在各片段之间插入适当数目、起间隔作用的氨基酸 ,以保持个片段的空间构象独立性 ,从而确定氨基酸顺序。根据氨基酸序列选取适当的密码子构成弓形虫多表位基因。将该基因合成并鉴定后 ,亚克隆入原核表达载体 ,在大肠杆菌中表达并分析表达产物的表达形式和抗原活性。结果 成功构建了长度为 36 0bp的弓形虫多表位基因。该基因在原核表达系统中经诱导 ,得到了 14 4kDa的包涵体形式的表达产物。免疫印迹实验表明该产物具有强特异性抗原活性。结论 弓形虫多表位基因在原核中的表达产物在弓形虫病疫苗及诊断中有潜在的应用价值 相似文献
18.
目的构建表达弓形虫昆山分离株P30基因的乳酸乳球菌表达载体L2-Ps-P30-T,并在乳酸乳球菌中表达P30蛋白。方法用BamHⅠ/XhoⅠ将P30从质粒pSK-P30中切出并克隆至质粒pSK-PsT,构建pSK-Ps-P30-T质粒;用PvuⅡ将表达元件-Ps-P30-T-从pSK-Ps-P30-T质粒中切出,以相同的酶切位点导入大肠埃希菌与乳酸乳球菌穿梭质粒pTRKL2,构建L2-Ps-P30-T质粒;通过电转化将L2-Ps-P30-T导入乳酸乳球菌中,以Western blot鉴定P30蛋白的表达。结果酶切及PCR鉴定质粒L2-Ps-P30-T构建正确,并在乳酸乳球菌中表达能被弓形虫病患者血清识别的分子质量单位为30ku的蛋白。结论重组载体L2-Ps-P30-T构建正确,电转化入乳酸乳球菌后能表达具有反应原性的P30蛋白。 相似文献
19.
目的克隆截短的弓形虫表面抗原SAG2C基因,在大肠埃希菌中表达SAG2C蛋自,并探讨其在弓形虫病诊断中的应用。方法对已知的弓形虫SAG2C基因序列进行部分取舍,用RT-PCR技术从弓形虫Prugniaud(PRU)株的总RNA中扩增截短的SAG2基因片段,插入载体pET32a(+)中,转化大肠埃希菌BL21,IPTG诱导表达,应用westemblot和EI—ISA检测重组表达蛋白的免疫反应性。用重组SAG2C蛋自ELISA祛检测弓形虫感染血清特异抗体.观察初步应用效果。结果从弓形虫PRU株总RNA中扩增出截短的SAG2CC基因片段,成功构建了重组表达质粒pET32a(+)-tSAG2C;该重组质粒经IPTG诱导能表达可溶性大小为51ku的SAG2C蛋白。Western blot显求重组SAG2C能被弓形虫感染小鼠血清识别;以重组SAG2C蛋门、重组SAG1蛋白及BAG1蛋白ELISA检测精神病患者血清弓形虫抗体,阳性率分别为8.07%(23/285)、4.56%(13/285)和7.37%(21/285),差异无统计学意义(P〉0.05)。结论成功构建了重组质粒pET32a(+)-tSAG2C,表达的融合蛋白具有免疫反应性,具有用于弓形虫感染诊断的潜在价值。 相似文献