首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pain mediator prostaglandin E2 (PGE2) sensitizes nociceptive pathways through EP2 and EP4 receptors, which are coupled to Gs proteins and increase cAMP. However, PGE2 also activates EP3 receptors, and the major signaling pathway of the EP3 receptor splice variants uses inhibition of cAMP synthesis via Gi proteins. This opposite effect raises the intriguing question of whether the Gi-protein–coupled EP3 receptor may counteract the EP2 and EP4 receptor-mediated pronociceptive effects of PGE2. We found extensive localization of the EP3 receptor in primary sensory neurons and the spinal cord. The selective activation of the EP3 receptor at these sites did not sensitize nociceptive neurons in healthy animals. In contrast, it produced profound analgesia and reduced responses of peripheral and spinal nociceptive neurons to noxious stimuli but only when the joint was inflamed. In isolated dorsal root ganglion neurons, EP3 receptor activation counteracted the sensitizing effect of PGE2, and stimulation of excitatory EP receptors promoted the expression of membrane-associated inhibitory EP3 receptor. We propose, therefore, that the EP3 receptor provides endogenous pain control and that selective activation of EP3 receptors may be a unique approach to reverse inflammatory pain. Importantly, we identified the EP3 receptor in the joint nerves of patients with painful osteoarthritis.  相似文献   

3.
4.
Prostaglandin E and F regulate diverse physiological functions including gastrointestinal motility, fever induction and reproduction. This multitude of biological effects is mediated via their four E receptor subtypes (EP(1), EP(2), EP(3) and EP(4)) and F receptor (FP), respectively. Majority of these studies was performed in mammalian species, while investigations on their roles were impeded by inadequate information on their receptors in avian species. In present study, full-length cDNAs of chicken EP(3) (cEP(3)) and two isoforms of FP - cFPa and cFPb - were cloned from adult hen ovary. The putative cEP(3) and cFPa share high amino acid sequence identity with their respective orthologs, while the predicted cFPb is a novel middle-truncated splice variant which lacks 107 amino acids between transmembrane domains 4 and 6. RT-PCR showed that cEP(3), cFPa and cFPb are widely expressed in adult tissues examined, including ovary and oviduct. Using a pGL3-CRE luciferase reporter system, cEP(3)-expressing DF1 cells inhibited forskolin-induced luciferase activity (EC(50): <1.9pM) upon PGE(2) treatment, suggesting that cEP(3) may functionally couple to Gi protein. Upon PGF(2α) addition, cFPa was shown to potentially couple to intracellular Ca(2+)-signaling pathway by pGL3-NFAT-RE reporter assay (EC(50): 2.9 nM), while cFPb showed no response. Using a pGL4-SRE reporter system, both cEP(3) and cFPa exhibited potential MAPK activation by PGE(2) and PGF(2α) at EC(50) 0.34 and 13nM, respectively. Molecular characterization of these receptors paved the road to the better understanding of PGE(2) and PGF(2α) roles in avian physiology and comparative endocrinology studies.  相似文献   

5.
6.
7.
We examined the role of prostaglandin (PG) E receptors in the secretion of aldosterone. PGE2 is known to exert its various biological functions by binding to PGE receptors. There are four subtypes of PGE receptors, EP1, EP2, EP3, and EP4. Among the PGE receptors EP2 and EP4 subtypes are coupled to Gs protein and stimulate adenylyl cyclase. In this study, PGE2 caused a dose-dependent increase in aldosterone production from the rat adrenal zona glomerulosa cells in vitro accompanied with an increase in intracellular cAMP concentration. A specific agonist for EP2, butaprost, did not increase the cAMP production or the aldosterone release, suggesting the possibility that EP4 mediates the secretion of aldosterone by PGE2. Northern blot hybridization analysis disclosed that EP4 gene was expressed in the rat adrenal gland but that EP2 gene was not. In situ hybridization revealed that EP4 mRNA is present abundantly in the zona glomerulosa of rat adrenal gland. These findings suggest that the PGE2-EP4 system is involved in the regulation of aldosterone secretion from the rat adrenal gland.  相似文献   

8.
With interest waning in the use of cyclooxygenase-2 (COX-2) inhibitors for inflammatory disease, prostaglandin receptors provide alternative targets for the treatment of COX-2-mediated pathological conditions in both the periphery and the central nervous system. Activation of prostaglandin E2 receptor (PGE(2)) subtype EP2 promotes inflammation and is just beginning to be explored as a therapeutic target. To better understand physiological and pathological functions of the prostaglandin EP2 receptor, we developed a suite of small molecules with a 3-aryl-acrylamide scaffold as selective EP2 antagonists. The 12 most potent compounds displayed competitive antagonism of the human EP2 receptor with K(B) 2-20 nM in Schild regression analysis and 268- to 4,730-fold selectivity over the prostaglandin EP4 receptor. A brain-permeant compound completely suppressed the up-regulation of COX-2 mRNA in rat cultured microglia by EP2 activation and significantly reduced neuronal injury in hippocampus when administered in mice beginning 1 h after termination of pilocarpine-induced status epilepticus. The salutary actions of this novel group of antagonists raise the possibility that selective block of EP2 signaling via small molecules can be an innovative therapeutic strategy for inflammation-related brain injury.  相似文献   

9.
10.
Prostaglandins E (PGE) and F (PGF) mediate diverse physiological functions via their cell surface receptors - prostaglandin E receptor (EP) subtypes 1, 2, 3 and 4 (EP(1); EP(2); EP(3); EP(4)) and F receptor (FP). In teleost fishes, PGE was implicated in gill epithelium ion transport, while both PGE and PGF were involved in oocyte maturation, follicular rupture and coordination of reproductive behaviors. However, little is known about the mechanisms behind their actions. In present study, we first identified the full-length ORF cDNA clones of three zebrafish prostaglandin E receptor subtype 1 (zEP(1)) isoforms - zEP(1a), zEP(1b) and zEP(1c) - and FP (zFP) from adult ovary. RT-PCR showed that zEP(1a), zEP(1b) and zFP are widely expressed in adult tissues, while zEP(1c) mRNA expression is mainly confined in brain and kidney. Using a pGL3-NFAT-RE luciferase reporter system, both zEP(1a) and zEP(1b) expressed in DF-1 cells were shown to be activated by PGE(2) potently while zEP(1c) and zFP were activated by PGF(2a) effectively, suggesting that the four receptors are functionally coupled to intracellular Ca(2+)-signaling pathway. Furthermore, EP1a and EP1b, but not EP1c were suggested to couple to cAMP-PKA signaling pathway using a pGL3-CRE luciferase reporter assay. Although zEP(1c) might originate as a paralog to zEP(1a) and zEP(1b), its functional coupling to PGF(2α) instead of PGE(2) suggested that zEP(1) isoforms might have sub-functionalized in their ligand binding and G protein coupling specificity, in addition to differential tissue distribution. Characterization of these receptors undoubtedly furthered our understanding on the diverse yet highly target-specific responses of prostaglandins in teleosts.  相似文献   

11.
Female mice lacking the gene encoding the prostaglandin (PG) E(2) receptor subtype EP(2) (EP(2)(-/-)) become pregnant and deliver their pups at term, but with a much reduced litter size. A decrease in ovulation number and a much reduced fertilization rate were observed in EP(2)(-/-) females without difference of the uterus to support implantation of wild-type embryos. Treatment with gonadotropins induced EP(2) mRNA expression in the cumulus cells of ovarian follicles of wild-type mice. The immature cumuli oophori from wild-type mice expanded in vitro in response to both follicle-stimulating hormone and PGE(2), but the response to PGE(2) was absent in those from EP(2)(-/-) mice. Cumulus expansion proceeded normally in preovulatory follicles but became abortive in a number of ovulated complexes in EP(2)(-/-) mice, indicating that EP(2) is involved in cumulus expansion in the oviduct in vivo. No difference in the fertilization rate between wild-type and EP(2)(-/-) mice was found in in vitro studies using cumulus-free oocytes. These results indicate that PGE(2) cooperates with gonadotropin to complete cumulus expansion for successful fertilization.  相似文献   

12.
Sickness evokes various neural responses, one of which is activation of the hypothalamo-pituitary-adrenal (HPA) axis. This response can be induced experimentally by injection of bacterial lipopolysaccharide (LPS) or inflammatory cytokines such as IL-1. Although prostaglandins (PGs) long have been implicated in LPS-induced HPA axis activation, the mechanism downstream of PGs remained unsettled. By using mice lacking each of the four PGE receptors (EP1-EP4) and an EP1-selective antagonist, ONO-8713, we showed that both EP1 and EP3 are required for adrenocorticotropic hormone release in response to LPS. Analysis of c-Fos expression as a marker for neuronal activity indicated that both EP1 and EP3 contribute to activation of neurons in the paraventricular nucleus of the hypothalamus (PVN). This analysis also revealed that EP1, but not EP3, is involved in LPS-induced activation of the central nucleus of the amygdala. EP1 immunostaining in the PVN revealed its localization at synapses on corticotropin-releasing hormone-containing neurons. These findings suggest that EP1- and EP3-mediated neuronal pathways converge at corticotropin-releasing hormone-containing neurons in the PVN to induce HPA axis activation upon sickness.  相似文献   

13.
Prostaglandins act through specific receptors to stimulate cyclic AMP formation which inhibits platelet activation and relaxes vascular smooth muscle. We have used RT-PCR combined with Southern blot analysis to determine the subtypes of prostaglandin receptor on platelets. Platelets expressed the EP4 rather than the EP2 prostaglandin EP receptor subtype, whereas vascular smooth muscle cells predominantly expressed the EP2 receptor. The IP receptor, which binds prostacyclin and couples to stimulation of adenylyl cyclase, and three isoforms of the inhibitory EP3 receptor were equally expressed in platelets, HEL cells and umbilical artery smooth muscle cells. The EP3-II isoform showed variation in level of expression among the three cell types. As a positive control for the presence of platelet RNA, PCR was performed using primers specific for the alpha chain of the platelet membrane glycoprotein Ib. As a negative control for the absence of T and B cell contamination in the platelet RNA, PCR was performed using primers specific for the cell specific cluster determinants CD2 (a T-cell marker) and CD20 (a B-cell marker). The finding that platelets express both stimulatory and inhibitory prostaglandin receptors provides confirmation of a homeostatic model of regulation of platelet adenylyl cyclase previously proposed.  相似文献   

14.
15.
敲除AT1a基因对血管紧张素II受体介导的信号传导作用   总被引:2,自引:0,他引:2  
目的研究敲除血管紧张素Ⅱ受体亚型(AT1a)基因对血管紧张素Ⅱ(AngⅡ)信号传导的影响,明确AT1a在血管功能调节中的作用。方法应用缺乏AT1a基因小鼠的主动脉血管平滑肌细胞(VSMC),采用钙荧光分析技术,观察G蛋白受体偶联和酪氨酸激酶相关的钙离子信号传导通路的变化。结果敲除AT1a基因,并不影响AngⅡ介导的VSMC钙增加,应用G蛋白拮抗剂和酪氨酸激酶抑制剂均能显著抑制AngⅡ反应。结论敲除AT1a基因,其他AT1受体亚型能起明显的代偿作用,AT1a受体亚型受G蛋白和酪氨酸激酶信号传导通路共同调节。  相似文献   

16.
Singh P  Hoggatt J  Hu P  Speth JM  Fukuda S  Breyer RM  Pelus LM 《Blood》2012,119(7):1671-1682
Dendritic cell (DC) homeostasis, like all mature blood cells, is maintained via hierarchal generation from hematopoietic precursors; however, little is known about the regulatory mechanisms governing DC generation. Here, we show that prostaglandin E(2) (PGE(2)) is required for optimal Flt3 ligand-mediated DC development and regulates expression of the Flt3 receptor on DC-committed progenitor cells. Inhibition of PGE(2) biosynthesis reduces Flt3-mediated activation of STAT3 and expression of the antiapoptotic protein survivin, resulting in increased apoptosis of DC-committed progenitor cells. Reduced DC development caused by diminished PGE(2) signaling is reversed by overexpression of Flt3 or survivin in DC progenitors and conversely is mimicked by STAT3 inhibition. PGE(2) regulation of DC generation is specifically mediated through the EP1 and EP3 G protein PGE(2) receptors. These studies define a novel DC progenitor regulatory pathway in which PGE(2) signaling through EP1/EP3 receptors regulates Flt3 expression and downstream STAT3 activation and survivin expression, required for optimal DC progenitor survival and DC development in vivo.  相似文献   

17.
18.
19.
Prostaglandin E2 (PGE2) plays pleiotropic roles at fetal-maternal interface during establishment of pregnancy. The objectives of the study were to: (i) determine regulation of PGE2 receptors EP1, EP2, EP3, and EP4 in the endometrium during the estrous cycle and early pregnancy; and (ii) understand endometrial epithelial and stromal cell-specific hormonal regulation of EP2 and EP4 in sheep. Results indicate that: (i) early pregnancy induces expression of EP2 and EP4 but not EP1 and EP3 proteins in the endometrium on days 12-16 compared to that of estrous cycle; (ii) intrauterine infusion of interferon tau (IFNT) increases expression of EP2 and EP4 proteins in endometrium; and (iii) IFNT activates distinct epithelial and stromal cell-specific JAK, EGFR, ERK1/2, AKT, or JNK signaling module to regulate expression of EP2 and EP4 proteins in the ovine endometrium. Our results indicate a role for EP2 and EP4-mediated PGE2 signaling in endometrial functions and establishment of pregnancy in ruminants.  相似文献   

20.
Based on the fact that human bile and, particularly gallbladder bile, contains high physiological levels of the antioxidant melatonin, the aim of this study was to investigate whether the melatonin receptor MT1 is present in human gallbladder. Expression and localization of MT1 was assessed by RT-PCR, Western blotting and immunofluorescence analysis in gallbladder samples from patients with cholelithiasis and with advanced gallbladder carcinoma. Additionally, we monitored mRNA expression of the two key enzymes of melatonin synthesis, i.e. arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT). MT1 mRNA and protein were present in all cholelithiasis (n = 10) and gallbladder carcinoma (n = 5) samples. As indicated from RT-PCR and Western blot studies, MT1 is located in gallbladder epithelia. Epithelial expression was further proven by immunofluorescence staining of MT1 in paraffin-embedded cholelithiasis and gallbladder carcinoma sections. Analysis of AANAT and HIOMT mRNA expression showed that HIOMT mRNA is present in gallbladder. Surprisingly, AANAT was not detectable under conditions where it was found in a human colon specimen. The absence of AANAT suggests that in human gallbladder, HIOMT might be involved in the formation of 5-hydroxytryptamine products other than melatonin. In summary, our results provide the first evidence for the presence of MT1 in human gallbladder epithelia. Therefore, in addition to its profound antioxidative effects in the biliary system, melatonin might also act through MT1-mediated signal transduction pathways. Thereby, it might be involved in the regulation of gallbladder function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号