首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroticism is major higher‐order personality trait and has been robustly associated with mental and physical health outcomes. Although a growing body of studies have identified neurostructural markers of neuroticism, the results remained highly inconsistent. To characterize robust associations between neuroticism and variations in gray matter (GM) structures, the present meta‐analysis investigated the concurrence across voxel‐based morphometry (VBM) studies using the anisotropic effect size signed differential mapping (AES‐SDM). A total of 13 studies comprising 2,278 healthy subjects (1,275 females, 29.20 ± 14.17 years old) were included. Our analysis revealed that neuroticism was consistently associated with the GM structure of a cluster spanning the bilateral dorsal anterior cingulate cortex and extending to the adjacent medial prefrontal cortex (dACC/mPFC). Meta‐regression analyses indicated that the neuroticism‐GM associations were not confounded by age and gender. Overall, our study is the first whole‐brain meta‐analysis exploring the brain structural correlates of neuroticism, and the findings may have implications for the intervention of high‐neuroticism individuals, who are at risk of mental disorders, by targeting the dACC/mPFC.  相似文献   

2.
Neuroimaging studies have demonstrated that migraine is accompanied by spontaneous brain activity alterations in specific regions. However, these findings are inconsistent, thus hindering our understanding of the potential neuropathology. Hence, we performed a quantitative whole‐brain meta‐analysis of relevant resting‐state functional imaging studies to identify brain regions consistently involved in migraine. A systematic search of studies that investigated the differences in spontaneous brain activity patterns between migraineurs and healthy controls up to April 2022 was conducted. We then performed a whole‐brain voxel‐wise meta‐analysis using the anisotropic effect size version of seed‐based d mapping software. Complementary analyses including jackknife sensitivity analysis, heterogeneity test, publication bias test, subgroup analysis, and meta‐regression analysis were conducted as well. In total, 24 studies that reported 31 datasets were finally eligible for our meta‐analysis, including 748 patients and 690 controls. In contrast to healthy controls, migraineurs demonstrated consistent and robust decreased spontaneous brain activity in the angular gyrus, visual cortex, and cerebellum, while increased activity in the caudate, thalamus, pons, and prefrontal cortex. Results were robust and highly replicable in the following jackknife sensitivity analysis and subgroup analysis. Meta‐regression analyses revealed that a higher visual analog scale score in the patient sample was associated with increased spontaneous brain activity in the left thalamus. These findings provided not only a comprehensive overview of spontaneous brain activity patterns impairments, but also useful insights into the pathophysiology of dysfunction in migraine.  相似文献   

3.
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.  相似文献   

4.
Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta‐analysis of whole‐brain resting‐state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect‐size seed‐based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication‐naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET.  相似文献   

5.
Anorexia nervosa (AN) is a complex psychiatric disorder with poorly understood etiology. Numerous voxel‐based morphometry (VBM) and resting‐state functional imaging studies have provided strong evidence of abnormal brain structure and intrinsic and functional activities in AN, but with inconsistent conclusions. Herein, a whole‐brain meta‐analysis was conducted on VBM (660 patients with AN, and 740 controls) and resting‐state functional imaging (425 patients with AN, and 461 controls) studies that measured differences in the gray matter volume (GMV) and intrinsic functional activity between patients with AN and healthy controls (HCs). Overall, patients with AN displayed decreased GMV in the bilateral median cingulate cortex (extending to the bilateral anterior and posterior cingulate cortex), and left middle occipital gyrus (extending to the left inferior parietal lobe). In resting‐state functional imaging studies, patients with AN displayed decreased resting‐state functional activity in the bilateral anterior cingulate cortex and bilateral median cingulate cortex, and increased resting‐state functional activity in the right parahippocampal gyrus. This multimodal meta‐analysis identified reductions of gray matter and functional activity in the anterior and median cingulate in patients with AN, which contributes to further understanding of the pathophysiology of AN.  相似文献   

6.
The Balloon Analog Risk Task (BART) is increasingly used to assess risk‐taking behavior and brain function. However, the brain networks underlying risk‐taking during the BART and its reliability remain controversial. Here, we combined the activation likelihood estimation (ALE) meta‐analysis with both task‐based and task‐free functional connectivity (FC) analysis to quantitatively synthesize brain networks involved in risk‐taking during the BART, and compared the differences between adults and adolescents studies. Based on 22 pooled publications, the ALE meta‐analysis revealed multiple brain regions in the reward network, salience network, and executive control network underlying risk‐taking during the BART. Compared with adult risk‐taking, adolescent risk‐taking showed greater activation in the insula, putamen, and prefrontal regions. The combination of meta‐analytic connectivity modeling with task‐free FC analysis further confirmed the involvement of the reward, salience, and cognitive control networks in the BART. These findings demonstrate the core brain networks for risk‐taking during the BART and support the utility of the BART for future neuroimaging and developmental research.  相似文献   

7.
MRI‐derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta‐Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis‐driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large‐scale meta‐ and mega‐analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large‐scale, collaborative studies of mental illness.  相似文献   

8.
Here we review the motivation for creating the enhancing neuroimaging genetics through meta‐analysis (ENIGMA) Consortium and the genetic analyses undertaken by the consortium so far. We discuss the methodological challenges, findings, and future directions of the genetics working group. A major goal of the working group is tackling the reproducibility crisis affecting “candidate gene” and genome‐wide association analyses in neuroimaging. To address this, we developed harmonized analytic methods, and support their use in coordinated analyses across sites worldwide, which also makes it possible to understand heterogeneity in results across sites. These efforts have resulted in the identification of hundreds of common genomic loci robustly associated with brain structure. We have found both pleiotropic and specific genetic effects associated with brain structures, as well as genetic correlations with psychiatric and neurological diseases.  相似文献   

9.
Neurobiological pain models propose that chronic pain is accompanied by neurofunctional changes that mediate pain processing dysfunctions. In contrast, meta‐analyses of neuroimaging studies in chronic pain conditions have not revealed convergent evidence for robust alterations during experimental pain induction. Against this background, the present neuroimaging meta‐analysis combined three different meta‐analytic approaches with stringent study selection criteria for case–control functional magnetic resonance imaging experiments during acute pain processing with a focus on chronic pain disorders. Convergent neurofunctional dysregulations in chronic pain patients were observed in the left anterior insula cortex. Seed‐based resting‐state functional connectivity based on a large publicly available dataset combined with a meta‐analytic task‐based approach identified the anterior insular region as a key node of an extended bilateral insula‐fronto‐cingular network, resembling the salience network. Moreover, the meta‐analytic decoding showed that this region presents a high probability to be specifically activated during pain‐related processes, although we cannot exclude an involvement in autonomic processes. Together, the present findings indicate that dysregulated left anterior insular activity represents a robust neurofunctional maladaptation and potential treatment target in chronic pain disorders.  相似文献   

10.
Ineffective use of adaptive cognitive strategies (e.g., reappraisal) to regulate emotional states is often reported in a wide variety of psychiatric disorders, suggesting a common characteristic across different diagnostic categories. However, the extent of shared neurobiological impairments is incompletely understood. This study, therefore, aimed to identify the transdiagnostic neural signature of disturbed reappraisal using the coordinate‐based meta‐analysis (CBMA) approach. Following the best‐practice guidelines for conducting neuroimaging meta‐analyses, we systematically searched PubMed, ScienceDirect, and Web of Science databases and tracked the references. Out of 1,608 identified publications, 32 whole‐brain neuroimaging studies were retrieved that compared brain activation in patients with psychiatric disorders and healthy controls during a reappraisal task. Then, the reported peak coordinates of group comparisons were extracted and several activation likelihood estimation (ALE) analyses were performed at three hierarchical levels to identify the potential spatial convergence: the global level (i.e., the pooled analysis and the analyses of increased/decreased activations), the experimental‐contrast level (i.e., the analyses of grouped data based on the regulation goal, stimulus valence, and instruction rule) and the disorder‐group level (i.e., the analyses across the experimental‐contrast level focused on increasing homogeneity of disorders). Surprisingly, none of our analyses provided significant convergent findings. This CBMA indicates a lack of transdiagnostic convergent regional abnormality related to reappraisal task, probably due to the complex nature of cognitive emotion regulation, heterogeneity of clinical populations, and/or experimental and statistical flexibility of individual studies.  相似文献   

11.
BackgroundCurrent evidence for the efficacy of pharmacological treatment in improving cognitive function is absent. Recent studies have reported that 3‐n‐butylphthalide (NBP) has a positive effect on improving cognitive impairment; however, its clinical efficacy and safety is unclear. Therefore, we conducted a meta‐analysis to assess its efficacy and safety for cognitive impairment.MethodsWe systematically searched the PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus databases, and two reviewers independently screened and extracted the data from included studies. We synthesized the data using the Review Manager Software version 5.3.ResultsWe included six randomized clinical trials (RCTs), encompassing 851 patients with cognitive impairment. The results showed that NBP improved cognitive impairment. Specifically, the clinical efficacy was better than that in the control group, with better performance in improving the Mini‐Mental State Examination and the Montreal Cognitive Assessment scores, while decreasing the Alzheimer''s Disease Assessment Scale‐Cognitive subscale and the Clinician''s Interview‐Based Impression of Change plus caregiver input scores. There was no significant difference in the incidence of adverse events between both groups.ConclusionThe NBP is effective and safe in improving cognitive impairment; however, more high‐quality RCTs are needed to confirm these findings.  相似文献   

12.
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable conditions with overlapping genetic liability. Transdiagnostic and disorder‐specific brain changes associated with familial risk for developing these disorders remain poorly understood. We carried out a meta‐analysis of diffusion tensor imaging (DTI) studies to investigate white matter microstructure abnormalities in relatives that might correspond to shared and discrete biomarkers of familial risk for psychotic or mood disorders. A systematic search of PubMed and Embase was performed to identify DTI studies in relatives of SCZ, BD, and MDD patients. Seed‐based d Mapping software was used to investigate global differences in fractional anisotropy (FA) between overall and disorder‐specific relatives and healthy controls (HC). Our search identified 25 studies that met full inclusion criteria. A total of 1,144 relatives and 1,238 HC were included in the meta‐analysis. The overall relatives exhibited decreased FA in the genu and splenium of corpus callosum (CC) compared with HC. This finding was found highly replicable in jack‐knife analysis and subgroup analyses. In disorder‐specific analysis, compared to HC, relatives of SCZ patients exhibited the same changes while those of BD showed reduced FA in the left inferior longitudinal fasciculus (ILF). The present study showed decreased FA in the genu and splenium of CC in relatives of SCZ, BD, and MDD patients, which might represent a shared familial vulnerability marker of severe mental illness. The white matter abnormalities in the left ILF might represent a specific familial risk for bipolar disorder.  相似文献   

13.
In recent neuroimaging studies, threshold‐free cluster enhancement (TFCE) gained popularity as a sophisticated thresholding method for statistical inference. It was shown to feature higher sensitivity than the frequently used approach of controlling the cluster‐level family‐wise error (cFWE) and it does not require setting a cluster‐forming threshold at voxel level. Here, we examined the applicability of TFCE to a widely used method for coordinate‐based neuroimaging meta‐analysis, Activation Likelihood Estimation (ALE), by means of large‐scale simulations. We created over 200,000 artificial meta‐analysis datasets by independently varying the total number of experiments included and the amount of spatial convergence across experiments. Next, we applied ALE to all datasets and compared the performance of TFCE to both voxel‐level and cluster‐level FWE correction approaches. All three multiple‐comparison correction methods yielded valid results, with only about 5% of the significant clusters being based on spurious convergence, which corresponds to the nominal level the methods were controlling for. On average, TFCE''s sensitivity was comparable to that of cFWE correction, but it was slightly worse for a subset of parameter combinations, even after TFCE parameter optimization. cFWE yielded the largest significant clusters, closely followed by TFCE, while voxel‐level FWE correction yielded substantially smaller clusters, showcasing its high spatial specificity. Given that TFCE does not outperform the standard cFWE correction but is computationally much more expensive, we conclude that employing TFCE for ALE cannot be recommended to the general user.  相似文献   

14.
Mental arithmetic is a complex skill of great importance for later academic and life success. Many neuroimaging studies and several meta‐analyses have aimed to identify the neural correlates of mental arithmetic. Previous meta‐analyses of arithmetic grouped all problem types into a single meta‐analytic map, despite evidence suggesting that different types of arithmetic problems are solved using different strategies. We used activation likelihood estimation (ALE) to conduct quantitative meta‐analyses of mental arithmetic neuroimaging (n = 31) studies, and subsequently grouped contrasts from the 31 studies into problems that are typically solved using retrieval strategies (retrieval problems) (n = 18) and problems that are typically solved using procedural strategies (procedural problems) (n = 19). Foci were compiled to generate probabilistic maps of activation for mental arithmetic (i.e., all problem types), retrieval problems, and procedural problems. Conjunction and contrast analyses were conducted to examine overlapping and distinct activation for retrieval and procedural problems. The conjunction analysis revealed overlapping activation for retrieval and procedural problems in the bilateral inferior parietal lobules, regions typically associated with magnitude processing. Contrast analyses revealed specific activation in the left angular gyrus for retrieval problems and specific activation in the inferior frontal gyrus and cingulate gyrus for procedural problems. These findings indicate that the neural bases of arithmetic systematically differs according to problem type, providing new insights into the dynamic and task‐dependent neural underpinnings of the calculating brain.  相似文献   

15.
AimsThe aim of this study was to identify brain regions with local, structural, and functional abnormalities in dementia with Lewy bodies (DLB) and uncover the differences between DLB and Alzheimer''s disease (AD). The neural networks involved in the identified abnormal brain regions were further described.MethodsPubMed, Web of Science, OVID, Science Direct, and Cochrane Library databases were used to identify neuroimaging studies that included DLB versus healthy controls (HCs) or DLB versus AD. The coordinate‐based meta‐analysis and functional meta‐analytic connectivity modeling were performed using the activation likelihood estimation algorithm.ResultsEleven structural studies and fourteen functional studies were included in this quantitative meta‐analysis. DLB patients showed a dysfunction in the bilateral inferior parietal lobule and right lingual gyrus compared with HC patients. DLB patients showed a relative preservation of the medial temporal lobe and a tendency of lower metabolism in the right lingual gyrus compared with AD. The frontal‐parietal, salience, and visual networks were all abnormally co‐activated in DLB, but the default mode network remained normally co‐activated compared with AD.ConclusionsThe convergence of local brain regions and co‐activation neural networks might be potential specific imaging markers in the diagnosis of DLB. This might provide a pathway for the neural regulation in DLB patients, and it might contribute to the development of specific interventions for DLB and AD.  相似文献   

16.
Working memory (WM) impairments are common features of psychiatric disorders. A systematic meta‐analysis was performed to determine common and disorder‐specific brain fMRI response during performance of WM tasks in patients with SZ and patients with MDD relative to healthy controls (HC). Thirty‐four published fMRI studies of WM in patients with SZ and 18 published fMRI studies of WM in patients with MDD, including relevant HC, were included in the meta‐analysis. In both SZ and MDD there was common stronger fMRI response in right medial prefrontal cortex (MPFC) and bilateral anterior cingulate cortex (ACC), which are part of the default mode network (DMN). The effects were of greater magnitude in SZ than MDD, especially in prefrontal‐temporal‐cingulate‐striatal‐cerebellar regions. In addition, a disorder‐specific weaker fMRI response was observed in right middle frontal gyrus (MFG) in MDD, relative to HC. For both SZ and MDD a significant correlation was observed between the severity of clinical symptoms and lateralized fMRI response relative to HC. These findings indicate that there may be common and distinct anomalies in brain function underlying deficits in WM in SZ and MDD, which may serve as a potential functional neuroimaging‐based diagnostic biomarker with value in supporting clinical diagnosis, measuring illness severity and assessing the efficacy of treatments for SZ and MDD at the brain level.  相似文献   

17.
Procrastination, which is defined as delaying an intended course of action despite negative outcomes, is demonstrated to have a deal with negative emotion including trait anxiety. Although highly anxious individuals showed impoverished control ability, no studies have indicated the role of self‐control in the relationship between trait anxiety and procrastination, and its neural correlates. To this end, we used the sliding window method to calculate the temporal deviation of dynamic functional connectivity (FC) in 312 healthy participants who underwent the resting‐state functional magnetic resonance imaging (fMRI) scanning. In line with our hypothesis, higher trait anxiety is linked to more procrastination via poorer self‐control. Besides, the dynamic FC analyses showed that trait anxiety was positively correlated with dynamic FC variability in hippocampus–prefrontal cortex (HPC–PFC) pathways, including left rostral hippocampus–left superior frontal gyrus (left rHPC–left SFG), and left rHPC–right middle frontal gyrus (left rHPC–‐MFG). Furthermore, the structural equation modeling (SEM) uncovered a mediated role of self‐control in the association between the anxiety‐specific brain connectivity and procrastination. These findings suggest that the HPC–PFC pathways may reflect impoverished regulatory ability over the negative thoughts for anxious individuals, and thereby incurs more procrastination, which enhances our understanding of how trait anxiety links to procrastination.  相似文献   

18.
The neurophysiological bases of mind wandering (MW)—an experiential state wherein attention is disengaged from the external environment in favour of internal thoughts—and state meta‐awareness are poorly understood. In parallel, the relationship between introspection confidence in experiential state judgements and neural representations remains unclear. Here, we recorded EEG while participants completed a listening task within which they made experiential state judgements and rated their confidence. Alpha power was reliably greater during MW episodes, with unaware MW further associated with greater delta and theta power. Multivariate pattern classification analysis revealed that MW and meta‐awareness can be decoded from the distribution of power in these three frequency bands. Critically, we show that individual decoding accuracies positively correlate with introspection confidence. Our results reaffirm the role of alpha oscillations in MW, implicate lower frequencies in meta‐awareness, and are consistent with the proposal that introspection confidence indexes neurophysiological discriminability of representational states.  相似文献   

19.
BackgroundAttention‐deficit/hyperactivity disorder (ADHD) is a highly complex and heterogeneous disorder. Abnormal brain connectivity in ADHD might be influenced by developmental ages which might lead to the lacking of significant spatial convergence across studies. However, the developmental patterns and mechanisms of ADHD brain connectivity remain to be fully uncovered.MethodsIn the present study, we searched PubMed, Scopus, Web of Science, and Embase for seed‐based whole‐brain resting‐state functional connectivity studies of ADHD published through October 12th, 2020. The seeds meeting inclusion criteria were categorized into the cortex group and subcortex group, as previous studies suggested that the cortex and subcortex have different temporal patterns of development. Activation likelihood estimation meta‐analysis was performed to investigate the abnormal connectivity in different age groups (all‐age group, younger: <12 years, older: ≥12 years). Moreover, significant convergence of reported foci was used as seeds for validation with our independent dataset.ResultsAs with previous studies, scarce results were found in the all‐age group. However, we found that the younger group consistently exhibited hyper‐connectivity between different parts of the cortex and left middle frontal gyrus, and hypo‐connectivity between different parts of the cortex and left putamen/pallidus/amygdala. Whereas, the older group (mainly for adults) showed hyper‐connectivity between the cortex and right precuneus/sub‐gyral/cingulate gyrus. Besides, the abnormal cortico‐cortical and cortico‐subcortical functional connectivity in children, and the abnormal cortico‐cortical functional connectivity in adults were verified in our independent dataset.ConclusionOur study emphasizes the importance of developmental age effects on the study of brain networks in ADHD. Further, we proposed that cortico‐cortical and cortico‐subcortical connectivity might play an important role in the pathophysiology of children with ADHD, while abnormal cortico‐cortical connections were more important for adults with ADHD. This work provided a potential new insight to understand the neurodevelopmental mechanisms and possible clinical application of ADHD.  相似文献   

20.
Sign language (SL) conveys linguistic information using gestures instead of sounds. Here, we apply a meta‐analytic estimation approach to neuroimaging studies (N = 23; subjects = 316) and ask whether SL comprehension in deaf signers relies on the same primarily left‐hemispheric cortical network implicated in spoken and written language (SWL) comprehension in hearing speakers. We show that: (a) SL recruits bilateral fronto‐temporo‐occipital regions with strong left‐lateralization in the posterior inferior frontal gyrus known as Broca''s area, mirroring functional asymmetries observed for SWL. (b) Within this SL network, Broca''s area constitutes a hub which attributes abstract linguistic information to gestures. (c) SL‐specific voxels in Broca''s area are also crucially involved in SWL, as confirmed by meta‐analytic connectivity modeling using an independent large‐scale neuroimaging database. This strongly suggests that the human brain evolved a lateralized language network with a supramodal hub in Broca''s area which computes linguistic information independent of speech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号