首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate the morphological changes in subjects with mild cognitive impairment (MCI) revealed by quantitative magnetic resonance imaging (MRI). Twenty-one subjects with cognitive impairment and 22 healthy controls were compared with 12 patients suffering from mild Alzheimer's disease (AD). The volumes of the following brain structures were assessed: total intracranial compartment, cerebrospinal fluid compartment, whole brain, and medial temporal substructures (hippocampus and parahippocampal gyrus). Subjects with mild cognitive impairment showed a significantly reduced volume of the right parahippocampal gyrus over healthy controls. Volumes of the other regions and structures did not differ between the MCI group and controls. The volumetric and neuropsychological findings of the present study support the hypothesis that mild cognitive impairment - at least in some of the affected individuals - can be seen as a preclinical stage of AD and that atrophy of the parahippocampal gyrus might be useful as an early marker of AD.  相似文献   

2.
OBJECTIVE: To examine volumetric changes in limbic structures in patients with probable AD using planimetric measures on MRI. METHOD: Limbic structures (i.e., hippocampus, amygdala, anterior thalamus, hypothalamus, mamillary bodies, basal forebrain, septal area, fornix, and cingulate, orbitofrontal, and parahippocampal cortices) were traced on 3D T1-weighted MR images of 40 patients with mild to moderate AD and 40 age-, sex-, and education-matched normal control subjects. Limbic volumes were compared between groups and the predictive ability was assessed. RESULTS: Overall, limbic structures showed significant atrophy in AD patients compared with normal control subjects. Differences (p < 0.05) were found in all limbic regions except the anterior cingulate cortex. The greatest percentage volumetric losses occurred in the septal area (34%), hippocampus (28%), amygdala (21%), parahippocampal cortex (21%), and posterior cingulate cortex (20%). Combining volumetric measures of amygdala and septal area distinguished patients with AD from normal control subjects with 93% accuracy. CONCLUSIONS: These results verify that system-wide limbic degeneration occurs in patients with AD. In addition, atrophy in selected limbic structures was used to distinguish patients with AD from normal elderly individuals with over 90% accuracy in this select clinical sample. The measures require further exploration in samples more representative of those seen by primary care physicians before their utility can be accurately assessed.  相似文献   

3.
Background Early pathological involvement of specific medial temporal lobe areas is characteristic for Alzheimer’s disease (AD). Objective To determine the extent of regional medial temporal lobe atrophy, including hippocampus, amygdala, and entorhinal, perirhinal, and parahippocampal cortices in mild AD patients and healthy controls, and to compare diagnostic accuracy across volumetric markers. Methods We studied 34 patients with clinically probable AD and 22 healthy elderly control subjects. Regional volumetric measures were obtained from volumetric T1–weighted MRI scans after accounting for global brain atrophy using affine transformation into standard space. Results Volumes of medial temporal lobe structures were significantly smaller in AD patients than in controls with exception of the left entorhinal cortex. The degree of atrophy was comparable between all structures. Diagnostic accuracy (number of correctly allocated cases divided by number of all cases) was highest for the right parahippocampal cortex with 85%, but only slightly lower for the right hippocampus and right entorhinal cortex with 82% and 84%. Using a linear combination of markers, the unilateral volumes of the right hippocampus, parahippocampal cortex and perirhinal cortex yielded an accuracy of 93%. Conclusion Extent of atrophy is similar between the different regions of the medial temporal lobe in mild AD.Volume measurements of medial temporal lobe structures in addition to the hippocampus only yield improved diagnostic accuracy if a combination of these structures is used.  相似文献   

4.
Distinguishing amnestic mild cognitive impairment (MCI) from Alzheimer's disease (AD) and healthy aging depends mainly on clinical evaluation, and, ultimately, on investigator's judgment. Clinical evaluation in vivo is based primarily on cognitive assessments. The present study explores the potential of volumetric magnetic resonance imaging of parietal and lateral temporal brain structures to support the diagnosis of AD and to distinguish AD patients from patients with MCI and healthy control subjects (HCS). 52 age-matched HCS, 18 patients with MCI, and 59 patients with probable late onset AD were investigated. Using computational, neuromorphometric procedures gray matter (GM) was automatically parcellated into 28 local regions of interest, the volumes of which were computed. The left hippocampus (sensitivity/specificity: 80.8-90.4%/55.6-86.4%) and the right hippocampus (73.1-90.4%/66.7-84.7%) provided highest diagnostic accuracy in separating all three diagnostic groups. Promising diagnostic values for distinguishing MCI from HCS were found for the left superior parietal gyrus (61.5%/55.6%) and left supramarginal gyrus (65.4%/66.7%), and for distinguishing subjects with MCI from AD patients for the right middle temporal gyrus (77.8%/79.7%), left inferior temporal gyrus (83.3%/72.9%), and right superior temporal gyrus (77.8%/71.2%). The left superior temporal pole (92.3%/84.7%), left parahippocampal gyrus (86.5%/81.4%), left Heschl's gyrus (86.5%/79.7%), and the right superior temporal pole (82.7%/78.0%) revealed most promising diagnostic values for distinguishing AD patients from HCS. Data revealed that lateral temporal and parietal GM volumes distinguish between HCS, MCI, and AD as accurate as hippocampal volumes do; hence, these volumes can be used in the diagnostic procedure. Results also suggest that cognitive functions associated with these brain regions, e.g., language and visuospatial abilities, may be tested more extensively to obtain additional information that might enhance the diagnostic accuracy further.  相似文献   

5.
Memory and MRI-based hippocampal volumes in aging and AD   总被引:20,自引:0,他引:20  
OBJECTIVE: To demonstrate structural-functional relationships between MRI-based volumetric measurements of medial temporal lobe structures and cognitive function. BACKGROUND: Previous work has documented the ability of MRI-based measurements of the hippocampus to discriminate between age-matched control subjects and patients with very mild AD. Relatively less is known about the correlation between medial temporal lobe structures and cognitive functions. METHOD: We evaluated structural-functional relationships among the hippocampal formation, parahippocampal gyrus, and amygdala, and measures of memory, language, and general cognitive performance in 220 probable AD patients and normal control subjects. Standardized instruments of memory and general cognitive function were used to assess subjects enrolled in a longitudinal study of aging and dementia. RESULTS: The volume of the hippocampal formation predicted performance on most acquisition and recall measures across the spectrum of normal aging and AD. If the groups were segregated, most of the expected associations between medial temporal lobe structures and memory measures were observed in the AD patients. CONCLUSION: MRI-based hippocampal volumetry accurately depicts the structural-functional relationships between memory loss and hippocampal damage across the spectrum from normal aging to dementia.  相似文献   

6.
OBJECTIVE: To measure hippocampal volumes in patients diagnosed as having subtypes of mild cognitive impairment (MCI) relative to those of elderly control subjects and those of patients with Alzheimer disease (AD) using 3-dimensional mesh reconstructions. DESIGN: A magnetic resonance imaging volumetric study of MCI subgroups (MCI, amnesic subtype [MCI-A]; and MCI, multiple cognitive domain subtype) using 3-dimensional mesh reconstructions of the structure. SETTING: Referral dementia clinic. SUBJECTS: Twenty-six subjects with MCI (MCI-A, n = 6; and MCI, multiple cognitive domain subtype, n = 20), 20 subjects with AD, and 20 controls who were equivalent in age, education, and sex distributions. MAIN OUTCOME MEASURES: Three-dimensional parametric mesh models of the hippocampus and total hippocampal volumes. RESULTS: The hippocampi of the patients with AD were significantly atrophic relative to those of the healthy controls. The MCI, multiple cognitive domain subtype, group did not differ from the controls, yet was significantly different from the MCI-A and the AD groups. The MCI-A patients had significant hippocampal atrophy compared with the controls, and did not differ significantly from the patients with AD. CONCLUSION: These data add to the growing evidence that there are multiple forms of MCI, that they have distinct neuropathological correlates, and that MCI, multiple cognitive domain subtype, is not a more advanced form of the MCI-A subtype.  相似文献   

7.
目的研究轻度认知功能障碍(mildcognitiveimpairment,MCI)和轻度阿尔兹海默病(A1zheimerdisease,AD)患者的海马体积萎缩情况,评价利用影像学测定海马体积对MCI、AD的诊断价值。方法应用3.0T磁共振分别对20例MCI患者,20例轻度AD患者,20例认知功能正常的对照者的海马体积进行测量,所得数值用头颅体积进行标准化处理。采用计算机SPSS13.0统计学软件进行资料的统计学处理,比较三组之间体积的差异。结果对照组与MCI组,对照组与AD组的两侧海马体积均存在显著的统计学差异,轻度AD与MCI组两侧的海马体积无显著的统计学差异。结论认知功能障碍与海马体积具有一定的相关性,海马萎缩对早期认知障碍有一定的诊断意义。  相似文献   

8.
OBJECTIVES: To compare medial and lateral temporal lobe atrophy on magnetic resonance imaging (MRI) in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), and to examine the relationship between volumetric indices and cognitive and non-cognitive symptoms. METHODS: T(1)-weighted 1.0-tesla MRI scans were acquired in elderly subjects with DLB (n = 26; mean age = 75.8 years) and AD (n = 22; 77.3 years) and normal controls (n = 26; 76.2 years). MRI-based volume measurements of the hippocampus, parahippocampus, fusiform gyrus, combined inferior and middle temporal gyri, and superior temporal gyrus were acquired. RESULTS: Hippocampal and parahippocampal volumes were significantly larger in subjects with DLB compared to AD. Differences in hippocampal volumes between DLB and AD were observed across the entire length, and in all subjects with dementia there was a loss of hippocampal asymmetry compared to normal controls. Atrophy of temporal lobe structures correlated with memory impairment in both groups, and with age in DLB. There was no association between atrophy and psychotic symptoms in either group. CONCLUSIONS: Subjects with DLB and AD have a different pattern of temporal lobe atrophy with the most striking differences relating to medial rather than lateral temporal lobe structures. These structural differences could explain the relative preservation of memory function in DLB compared to AD.  相似文献   

9.
This article assesses the feasibility of using shape information to detect and quantify the subcortical and ventricular structural changes in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. We first demonstrate structural shape abnormalities in MCI and AD as compared with healthy controls (HC). Exploring the development to AD, we then divide the MCI participants into two subgroups based on longitudinal clinical information: (1) MCI patients who remained stable; (2) MCI patients who converted to AD over time. We focus on seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricles) in 754 MR scans (210 HC, 369 MCI of which 151 converted to AD over time, and 175 AD). The hippocampus and amygdala were further subsegmented based on high field 0.8 mm isotropic 7.0T scans for finer exploration. For MCI and AD, prominent ventricular expansions were detected and we found that these patients had strongest hippocampal atrophy occurring at CA1 and strongest amygdala atrophy at the basolateral complex. Mild atrophy in basal ganglia structures was also detected in MCI and AD. Stronger atrophy in the amygdala and hippocampus, and greater expansion in ventricles was observed in MCI converters, relative to those MCI who remained stable. Furthermore, we performed principal component analysis on a linear shape space of each structure. A subsequent linear discriminant analysis on the principal component values of hippocampus, amygdala, and ventricle leads to correct classification of 88% HC subjects and 86% AD subjects. Hum Brain Mapp 35:3701–3725, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The brains of patients with Alzheimer's disease (AD) invariably exhibit neuropathology in the hippocampus and entorhinal cortex when examined postmortem. Magnetic resonance imaging (MRI) offers a noninvasive, high-resolution method for quantifying volumetric changes in the AD brain antemortem. Eight patients diagnosed with probable AD and 7 age-matched controls had MRI scans and were tested on a battery of cognitive and olfactory tests. The hippocampus and entorhinal cortex (parahippocampal gyrus) showed significant atrophy, with over 40% reduction in size. Areas of the brain that are not highly involved in the degenerative state of AD, such as the striatum, did not show significant volumetric changes. Hippocampal and parahippocampal gyrus volumes had the highest correlation with scores on the Mini-Mental State Examination (r = 0.89), with lower correlations for a smell identification test (r = 0.65), odor match-to-sample test (r = 0.72), and a visual match-to-sample test (r = 0.26).  相似文献   

11.
A voxel based morphometry study on mild cognitive impairment   总被引:10,自引:0,他引:10  
BACKGROUND: Mild cognitive impairment (MCI) is the most widely used concept in classifying cognitive impairment in the elderly who do not fulfil the criteria for dementia. MCI is considered to confer an increased risk of progressing to dementia and most often Alzheimer's disease (AD). Various approaches such as imaging of the brain have been applied to predict the conversion of MCI to dementia. A number of volumetric magnetic resonance imaging (MRI) studies have detected atrophy of the medial temporal lobe in subjects with MCI, but for the other cerebral regions the results have been inconsistent. OBJECTIVE: To study the pattern of brain atrophy in MCI. METHODS: Thirty two controls and 51 individuals with MCI deriving from population based cohorts were studied by MRI using voxel based morphometry. The threshold of t maps was set at p < 0.001. RESULTS: Individuals with MCI had significant unilateral atrophy in the medial temporal lobe on the right side. Less extensive atrophy was found elsewhere-for example, in the temporal lobe, left superior parietal lobule, left anterior cingulate gyrus, and bilaterally in the thalami. CONCLUSIONS: The MRI findings in MCI resemble those seen in early AD.  相似文献   

12.
Liu Z  Zhang Y  Yan H  Bai L  Dai R  Wei W  Zhong C  Xue T  Wang H  Feng Y  You Y  Zhang X  Tian J 《Psychiatry research》2012,202(2):118-125
Recent studies have shown that cognitive and memory decline in patients with Alzheimer's disease (AD) is coupled with losses of small-world attributes. However, few studies have investigated the characteristics of the whole brain networks in individuals with mild cognitive impairment (MCI). In this functional magnetic resonance imaging (fMRI) study, we investigated the topological properties of the whole brain networks in 18 AD patients, 16 MCI patients, and 18 age-matched healthy subjects. Among the three groups, AD patients showed the longest characteristic path lengths and the largest clustering coefficients, while the small-world measures of MCI networks exhibited intermediate values. The finding was not surprising, given that MCI is considered to be the prodromal stage of AD. Compared with normal controls, MCI patients showed decreased nodal centrality mainly in the medial temporal lobe as well as increased nodal centrality in the occipital regions. In addition, we detected increased nodal centrality in the medial temporal lobe and frontal gyrus, and decreased nodal centrality mainly in the amygdala in MCI patients compared with AD patients. The results suggested a widespread rewiring in AD and MCI patients. These findings concerning AD and MCI may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline that may lead to AD.  相似文献   

13.
Weniger G  Boucsein K  Irle E 《Hippocampus》2004,14(6):785-796
There has been growing interest in the differential role of medial temporal lobe structures in learning and memory. The goal of the present study was to clarify how lesions of hippocampus, parahippocampal gyrus, and amygdala interfere with associative learning and memory. Thirty subjects with pharmacoresistant medial temporal lobe epilepsy (TLE) and temporal lobe removal were compared with 30 matched healthy control subjects. A set of neuropsychological test measures and an associative learning task requiring the learning and recall of objects and faces were administered. The lesions of hippocampus, parahippocampal gyrus, amygdala, and fusiform gyrus of TLE subjects were determined by three-dimensional magnetic resonance imaging (3-D MRI) volumetric assessment. The results indicate that TLE subjects with combined large hippocampal lesions, large parahippocampal gyrus (i.e., perirhinal/entorhinal) lesions, and large amygdala lesions learned and recalled the associative task significantly worse than control subjects or subjects with small lesions of the hippocampus, parahippocampal gyrus, and amygdala. Regression analysis revealed that larger lesions of the parahippocampal gyrus (i.e., perirhinal/entorhinal cortices) were significantly related to increasing deficits on the task, and that hippocampal and amygdala lesion size did not significantly improve the prediction. Our results suggest that perirhinal and entorhinal cortices may contribute predominantly to the associative learning and recall of objects and faces.  相似文献   

14.
A 3-D volumetric study of the medial temporal lobe (MTL) was performed to evaluate how a minimum thickness of the MTL (mtMTL), a visually estimated measure, is associated with other MTL measures, maximal and minimal hippocampal length (max-HL, min-HL) and hippocampal volume, all measured with a 3-D device, Neurolucida, in 33 patients with Alzheimer's disease (AD), seven patients with mild cognitive impairment (MCI), and 20 age-matched controls. Cognitive impairment was evaluated with Mini-Mental State examination (MMSE). The T1-weighted horizontal magnetic resonance imaging (MRI) scans with slices 5 mm thick were analyzed with Neurolucida and the mtMTL was measured with visual estimation. The MTL was divided into the amygdala and hippocampus. Max-HL on both sides was longer in controls than in AD and MCI, whereas min-HL and mtMTL were longer in controls than in AD, and no difference was observed between MCI and controls. Similarly hippocampal volume was larger in controls than in AD, and no differences were seen within the MCI and controls. No difference in amygdala and midbrain volumes was observed among AD, MCI and controls. Correlation of MMSE score with min-HL and mtMTL was higher than that with max-HL. Although hippocampal and MTL measures examined here failed to show significant difference between AD and MCI, max-HL could be a diagnostic neuroimaging sign of AD. The high correlation of MMSE with mtMTL as well as with min-HL compared with that with max-HL, also will support neuroimaging diagnosis of AD.  相似文献   

15.
BACKGROUND: Corpus callosum atrophy possibly indicates neuronal degeneration in association cortex in Alzheimer's disease (AD). Water diffusivity allows detecting physiological changes that probably occur earlier than structural shrinkage in cerebral regions during the development of AD. Objective: To simultaneously investigate the focal volumetric and early structural changes with apparent diffusion coefficient (ADC) of corpus callosum in mild cognitive impairment (MCI), and to explore the regional pattern of ADC increase in hippocampus and corpus callosum. METHODS: Thirteen subjects with MCI and 13 healthy age-matched control subjects were studied. With three-dimensional volumetric spoiled gradient recalled echo MRI images, we measured the volume of hippocampus and corpus callosum. Using MRI-guided diffusion-weighted imaging analysis, we calculated ADCs from hippocampus and corpus callosum. Within the receiver-operation curve (ROC) statistical framework, areas under ROC curves from hippocampal and callosal ADCs were compared in differentiating between MCI and controls. RESULTS: After normalization to intracranial volume, hippocampal, not callosal, volume was significantly reduced in MCI. ADC values were increased in hippocampus and corpus callosum in MCI. The extent of ADC increase was similar between hippocampus and corpus callosum. CONCLUSION: Alterations in water diffusivity may precede corpus callosum atrophy during the development of MCI. Diffusion changes might occur simultaneously in allocortex and neocortex in MCI.  相似文献   

16.
OBJECTIVE: To characterize and quantify the patterns of temporal lobe atrophy in AD vs semantic dementia and to relate the findings to the cognitive profiles. Medial temporal lobe atrophy is well described in AD. In temporal variant frontotemporal dementia (semantic dementia), clinical studies suggest polar and inferolateral temporal atrophy with hippocampal sparing, but quantification is largely lacking. METHODS: A volumetric method for quantifying multiple temporal structures was applied to 26 patients with probable AD, 18 patients with semantic dementia, and 21 matched control subjects. RESULTS: The authors confirmed the expected bilateral hippocampal atrophy in AD relative to controls, with involvement of the amygdala bilaterally and the right parahippocampal gyrus. Contrary to expectations, patients with semantic dementia had asymmetric hippocampal atrophy, more extensive than AD on the left. As predicted, the semantic dementia group showed more severe involvement of the temporal pole bilaterally and the left amygdala, parahippocampal gyrus (including the entorhinal cortex), fusiform gyrus, and the inferior and middle temporal gyri. Performance on semantic association tasks correlated with the size of the left fusiform gyrus, whereas naming appeared to depend upon a wider left temporal network. Episodic memory measures, with the exception of recognition memory for faces, did not correlate with temporal measures. CONCLUSIONS: Hippocampal atrophy is not specific for AD but is also seen in semantic dementia. Distinguishing the patients with semantic dementia was the severe global but asymmetric (left > right) atrophy of the amygdala, temporal pole, and fusiform and inferolateral temporal gyri. These findings have implications for diagnosis and understanding of the cognitive deficits in AD and semantic dementia.  相似文献   

17.
This study is an observational study that takes the existing longitudinal data from Alzheimer''s disease Neuroimaging Initiative to examine the spatial correlation map of hippocampal subfield atrophy with CSF biomarkers and cognitive decline in the course of AD. This study included 421 healthy controls (HC), 557 patients of stable mild cognitive impairment (s‐MCI), 304 Alzheimer''s Disease (AD) patients, and 241 subjects who converted to be AD from MCI (c‐MCI), and 6,525 MRI scans in a period from 2004 to 2019. Our findings revealed that all the hippocampal subfields showed their accelerated atrophy rate from cognitively normal aging to stable MCI and AD. The presubiculum, dentate gyrus, and fimbria showed greater atrophy beyond the whole hippocampus in the HC, s‐MCI, and AD groups and corresponded to a greater decline of memory and attention in the s‐MCI group. Moreover, the higher atrophy rates of the subiculum and CA2/3, CA4 were also associated with a greater decline in attention in the s‐MCI group. Interestingly, patients with c‐MCI showed that the presubiculum atrophy was associated with CSF tau levels and corresponded to the onset age of AD and a decline in attention in patients with c‐MCI. These spatial correlation findings of the hippocampus suggested that the hippocampal subfields may not be equally impacted by normal aging, MCI, and AD, and their atrophy was selectively associated with declines in specific cognitive domains. The presubiculum atrophy was highlighted as a surrogate marker for the AD prognosis along with tau pathology and attention decline.  相似文献   

18.
Differential cortical atrophy in subgroups of mild cognitive impairment   总被引:7,自引:0,他引:7  
OBJECTIVE: To compare gray matter brain volumes in patients diagnosed with subtypes of mild cognitive impairment (MCI) (those with a focal amnestic disorder and those with more diffuse cognitive dysfunction) with those of elderly controls. DESIGN: Magnetic resonance imaging volumetric study of MCI subgroups (MCI-amnestic [MCI-A], and MCI-multiple cognitive domain [MCI-MCD]) using a whole brain voxel-based analysis. SETTING: Referral dementia clinic.Patients Thirty-seven patients with MCI (age range, 49-85 years; MCI-A, n = 9; MCI-MCD, n = 28) and 47 control subjects (age range, 55-81 years). MAIN OUTCOME MEASURES: Volumetric anatomical magnetic resonance imaging differences between MCI subgroups and normal controls, and between patients with MCI who progressed to dementia. Magnetic resonance imaging scans were analyzed using statistical software SPM99. RESULTS: Overall, the patients with MCI had significantly decreased volume in the hippocampus and middle temporal gyrus, bilaterally, compared with control subjects. Compared with patients with MCI-MCD, patients with MCI-A had significant volume loss of the left entorhinal cortex and inferior parietal lobe. Compared with patients with MCI-A, patients with MCI-MCD had significantly reduced volume of the right inferior frontal gyrus, right middle temporal gyrus, and bilateral superior temporal gyrus. Patients with MCI who progressed to Alzheimer disease during follow-up (mean interval 2 years, maximum 4.5 years), showed greater atrophy in the left entorhinal cortex, bilateral superior temporal gyri, and right inferior frontal gyrus compared with those who did not progress. CONCLUSIONS: These data provide evidence of distinct brain structural abnormalities in 2 groups of patients with MCI. While both have mesial temporal and cortical volume loss, those with a focal memory deficit have more involvement of the mesial temporal structures and less involvement of the neocortical heteromodal association areas than those patients with MCI with diffuse cognitive dysfunction. Thus, MCI may represent a more heterogeneous group than currently conceived, possibly reflecting 2 different etiological processes to dementia. These data also suggest that these structural abnormalities precede the development of Alzheimer disease.  相似文献   

19.
Noninvasive diagnostic tests for Alzheimer's disease (AD) are limited. Postmortem diagnosis is based on density and distribution of neurofibrillary tangles (NFTs) and amyloid‐rich neuritic plaques. In preclinical stages of AD, the cells of origin for the perforant pathway within the entorhinal cortex are among the first to display NFTs, indicating its compromise in early stages of AD. We used diffusion tensor imaging (DTI) to assess the integrity of the parahippocampal white matter in mild cognitive impairment (MCI) and AD, as a first step in developing a noninvasive tool for early diagnosis. Subjects with AD (N = 9), MCI (N = 8), or no cognitive impairment (NCI; N = 20) underwent DTI‐MRI. Fractional anisotropy (FA) and mean (MD) and radial (RD) diffusivity measured from the parahippocampal white matter in AD and NCI subjects differed greatly. Discriminant analysis in the MCI cases assigned statistical membership of 38% of MCI subjects to the AD group. Preliminary data 1 year later showed that all MCI cases assigned to the AD group either met the diagnostic criteria for probable AD or showed significant cognitive decline. Voxelwise analysis in the parahippocampal white matter revealed a progressive change in the DTI patterns in MCI and AD subjects: whereas converted MCI cases showed structural changes restricted to the anterior portions of this region, in AD the pathology was generalized along the entire anterior–posterior axis. The use of DTI for in vivo assessment of the parahippocampal white matter may be useful for identifying individuals with MCI at highest risk for conversion to AD and for assessing disease progression. J. Comp. Neurol. 521:4300–4317, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Oxidatively modified RNA in mild cognitive impairment   总被引:2,自引:0,他引:2  
Studies show increased oxidative damage in the brains of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI). To determine if RNA oxidation occurs in MCI, sections of hippocampus/parahippocampal gyrus (HPG) from 5 MCI, 5 late stage AD (LAD) and 5 age-matched normal control (NC) subjects were subjected to immunohistochemistry using antibodies against 8-hydroxyguanine (8-OHG) and 1-N2-propanodeoxyguanosine (NPrG). Confocal microscopy showed 8-OHG and NPrG immunostaining was significantly (p<0.05) elevated in MCI and LAD HPG compared with NC subjects and was predominately associated with neurons identified using the MC-1 antibody that recognizes conformational alterations of tau, which are associated with early neurofibrillary tangle formation. Pretreating sections with RNase or DNase-I showed immunostaining for both adducts was primarily associated with RNA. In addition, levels of both adducts in MCI were comparable to those measured in LAD, suggesting RNA oxidation may be an early event in the pathogenesis of neuron degeneration in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号